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Dedication

Dedicated	to	my	wonderful	wife	Marcia,	without	whose	patience	and	support	the	huge	undertaking	that
became	the	writing	of	this	book	would	never	have	got	further	than	a	collection	of	notes.

Preface

At	 the	age	of	11	 in	 the	early	1980s	 I	began	exploring	 the	world	of	microcomputers,	 first	with	 the	Sinclair
ZX81,	and	then	with	 the	ZX	Spectrum.	I	marvelled	at	 the	seemingly	endless	possibilities	 they	offered,	and
was	in	awe	of	the	engineers	who	conceived,	designed	and	built	the	machines.

From	the	moment	I	acquired	my	first	microcomputer,	I	started	designing	and	building	electronic	add-ons	for
them.	My	ambition	however,	was	to	build	my	own	computer.

The	biggest	obstacle	 to	realising	my	dream	was	designing	the	 television	or	monitor	 interface.	I	bought	and
borrowed	 many	 electronic	 and	 microelectronic	 books,	 trying	 to	 cross-reference	 and	 compile	 enough
information	to	learn	the	concepts	and	techniques	I	needed	to	master.	However,	the	information	I	found	was
generally	very	high	level	and	vague,	or	written	for	the	professional	electronics	engineer	and	therefore	almost
impossible	 to	 decipher	 by	 the	 untrained	 eye.	 There	 simply	 were	 no	 books	 that	 dealt	 with	 the	 subject	 of
building	your	own	microcomputer,	or	the	techniques	involved	in	graphical	display	generation,	and	so	I	could
not	achieve	my	goal.

Many	years	later,	in	2007,	I	uncovered	some	of	my	notes	that	had	lain	hidden	for	20	years,	and	was	inspired
to	revisit	my	childhood	dream	and	apply	the	benefit	of	further	education	and	experience.	To	that	end	I	decided
to	 design	 and	build	my	own	 the	ZX	Spectrum	 from	 scratch,	 aiming	 for	 100	per	 cent	 compatibility.	 In	 the

3



course	of	my	work,	 I	made	several	previously	undocumented	discoveries	about	 the	ZX	Spectrum’s	design,
and	was	encouraged	by	my	friends	and	enthusiasts	of	the	ZX	Spectrum	to	document	my	findings	in	a	short
book.

In	writing	 a	 book,	 I	wanted	 to	 ensure	 that	 every	 detail	was	 factual,	 and	 not	merely	 inferred	 through	 non-
invasive	reverse	engineering	and	experimentation.	Achieving	this	was	going	to	be	a	major	hurdle,	as	25	years
had	passed	since	 the	ZX	Spectrum	was	designed,	and	 there	was	 little	hope	of	obtaining	 the	original	circuit
diagrams.

My	luck	changed	in	November	2008	when	Mike	Connors	of	Datel	Ltd	offered	to	optically	image	the	silicon
chip	 of	 the	ULA.	With	 these	 images	 and	 the	 help	 of	 the	 Ferranti	 archive	 at	 the	Museum	Of	 Science	 and
Industry	 in	Manchester,	 I	was	able	 to	work	out	 the	component	structure	of	 the	ULA	and	back-annotate	 the
entire	ZX	Spectrum	ULA	schematic.

To	do	justice	to	the	wealth	and	quality	of	information	I	now	had,	I	felt	compelled	to	write	a	bigger,	definitive
guide	to	the	ZX	Spectrum	ULA,	and	perhaps	the	book	I	had	sought	during	the	1980s.

The	back-annotation	of	the	ULA	images	into	a	full	schematic	took	approximately	one	year	to	complete.	I	first
produced	a	paper	schematic	that	matched	the	physical	layout	of	an	uncommitted	6000	series	logic	array,	and
copied	onto	this	the	connections	from	between	the	2500	transistors	in	the	ULA	image.

From	 this	 transistor-level	 schematic	 I	 went	 on	 to	 produce	 a	 NOR	 gate	 schematic	 of	 the	 same	 size	 and
structure.	Within	 it	 I	 outlined	 individual	 functions	 such	 as	 flip-flops	 and	 latches,	 and	 grouped	 them	 into
functional	units	such	as	counters,	 identifying	and	labelling	signals	as	I	proceeded.	Once	this	schematic	was
complete,	functional	analysis	was	possible.

The	 most	 difficult	 chapter	 to	 write	 has	 been	 Chapter	 13,	 Video	 Memory	 Access.	 The	 circuit	 itself	 is
functionally	quite	simple,	however	the	signal	timings	measured	at	the	ULA	pins	do	not	match	those	suggested
by	the	circuit.	The	parameters	of	the	6C001	logic	gates	are	currently	unknown,	and	this	makes	it	difficult	to
predict	 the	 timing	 of	 signals	 that	 are	 intentionally	 subjected	 to	 propagation	 delay.	 Because	 of	 this,	 where
discrepancies	exist	due	to	insufficient	information	being	available,	a	comment	has	been	made	to	this	effect.

The	 most	 rewarding	 chapters	 to	 research	 and	 write	 have	 been	 Chapter	 5,	The	 Ferranti	 ULA,	 Chapter	 6,
Sinclair	 and	 the	 ULA,	 Chapter	 16,	 Analogue	 Video	 and	 Chapter	 23,	Hidden	 Features	 and	 Errors.	 Each
chapter	offered	its	own	challenges,	and	made	them	all	the	more	enjoyable	to	work	on.

I	hope	the	reader	finds	the	information	presented	in	this	book	informative	and	useful,	and	that	it	answers	the
questions	they	have	about	microcomputer	design	and	the	Sinclair	ZX	Spectrum	ULA.
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Chapter	1

Introduction

The	 objective	 of	 this	 book	 is	 to	 present	 the	 design	 and	 implementation	 of	 the
Sinclair	 ZX	 Spectrum's	 core	 and	 custom	 chip,	 the	 Uncommitted	 Logic	 Array
(ULA),	and	so	doing	introduce	the	concepts	and	methodologies	required	to	design
a	microcomputer	based	around	an	8-bit	microprocessor.

The	ULA	contains	the	video	display	logic	responsible	for	converting	data	stored
in	 video	 RAM	 into	 a	 television	 picture.	 It	 controls	 the	 CPU	 and	 manages	 its
access	 to	memory,	 along	with	decoding	 the	keyboard	 and	cassette	 interfaces.	 In
effect,	the	ULA	glues	the	CPU,	RAM	and	ROM	together	so	that	they	form	a	ZX
Spectrum,	and	as	such	it	is	the	soul	of	the	machine.

The	book	is	intended	for	two	different	audiences:

The	electronics	hobbyist	or	professional	researching	the	designs	and
techniques	pioneered	and	used	by	home	computers	of	the	1980s,	either
wishing	to	design	their	own	computer	or	for	purely	academic	reasons.
The	ZX	Spectrum	enthusiast	wishing	to	discover	the	secrets	that	the	ZX
Spectrum	ULA	holds.

Material	 is	 presented	 in	 a	 form	 that	 is	 accessible	 to	 the	 amateur,	 but	 thorough
enough	 for	 the	 expert.	 Some	 familiarity	 with	 basic	 circuit	 design,	 digital
electronics	and	boolean	algebra	is	assumed.

Accurate	 schematics	 are	 given	 for	 the	 complete	 ZX	 Spectrum	 ULA	 and	 are
accompanied	by	comprehensive	analysis	and	discussion.	With	these	schematics	it
is	possible	to	implement	a	100	per	cent	compatible	clone	of	the	48K	ZX	Spectrum
using	discrete	or	programmable	logic,	such	as	a	CPLD.

In	addition,	for	the	first	time,	a	full	discussion	of	the	Ferranti	ULA	technology	and
manufacturing	process	is	given,	a	technology	without	which	Sinclair	Research	and
others	could	not	have	brought	home	computing	within	reach	of	the	general	public.

To	present	the	details	of	the	ZX	Spectrum	ULA,	its	design	has	been	divided	into
logical	 sections	 and	 a	 chapter	 assigned	 to	 each.	On	 the	whole,	 a	 chapter	 builds
upon	 the	 material	 presented	 in	 previous	 chapters,	 and	 where	 possible	 cross-

6



references	 have	 been	 provided	 to	 assist	 the	 reader	 who	 is	 using	 the	 book	 as	 a
reference	text.

The	operation	of	 the	ZX	Spectrum's	PCB	circuit	 is	not	discussed,	 except	where
specific	 details	 are	 relevant	 to	 the	 ULA	 design.	 Circuit	 schematics	 for	 the	 ZX
Spectrum	PCB	are	freely	available	via	the	Internet.

Ferranti's	 ULA	 technology	 occupies	 a	 unique	 place	 in	 the	 development	 of	 the
microelectronics	 industry.	 It	 relied	on	an	advanced	 transistor	 fabrication	method
called	 Collector	 Diffusion-Isolation	 (CDI).	 To	 understand	 what	 made	 the	 ULA
significant,	 an	 understanding	 of	 CDI	 and	 how	 it	 differs	 from	 other	 fabrication
methods	 is	 required.	 A	 reader	 familiar	 with	 such	 semiconductor	 transistor
fabrication	 techniques	 may	 wish	 to	 skip	 the	 overview	 provided	 by	 Chapter	 2,
Integrated	Circuits.

Chapter	3,	The	Standard	Microcomputer,	introduces	the	standard	design	on	which
all	computers	of	the	late	1970s	and	beyond	were	based,	including	the	modern	PC.
It	 also	 presents	 an	 overview	 of	 the	 Z80	microprocessor,	 around	 which	 the	 ZX
Spectrum	was	designed.

Chapter	 4,	 Semi-Custom	 Devices,	 discusses	 advances	 in	 microelectronic
fabrication	that	allowed	manufacturers	to	realise	the	potential	of	custom	designed
integrated	circuits,	without	resorting	to	the	prohibitively	expensive	custom	made
silicon	chip.

Chapter	 5,	 The	 Ferranti	 ULA,	 introduces	 Ferranti	 Semiconductors,	 their	 CDI
process	 and	 range	 of	 ULA	 products.	 The	 ULA	 customisation	 process	 is	 then
described	 in	detail,	 starting	with	 the	customer	specification	and	moving	 through
design,	fabrication	and	testing.

Chapter	6,	Sinclair	and	the	ULA,	gives	a	brief	history	of	the	development	of	the
ZX80	and	ZX81,	predecessors	of	the	ZX	Spectrum,	and	discusses	Sinclair's	first
use	 of	 the	 Ferranti	ULA.	This	 is	 followed	 by	 a	 description	 of	 the	 development
process	 and	 testing	 of	 the	 ZX	 Spectrum.	 Although	 the	 MK14	 was	 technically
Sinclair's	first	computer,	it	does	not	fit	the	category	of	a	home	microcomputer,	and
therefore	it	is	not	discussed	here.

Chapter	7,	The	ZX	Spectrum	Overview,	introduces	the	functional	areas	of	the	ZX
Spectrum's	design,	and	the	relationship	between	them.	Those	readers	familiar	with
these	may	wish	to	skip	this	chapter.

Chapter	8,	The	Memory	Map,	describes	how	the	memory	of	 the	ZX	Spectrum	is
allocated	to	the	system,	display	and	user.

Chapter	 9,	 The	 Video	 Display,	 introduces	 the	 principles	 of	 television	 display
generation,	and	describes	the	concepts	required	to	design	a	computer	display.

7



Chapter	 10,	 The	 Internal	 Clocks,	 discusses	 the	 various	 clocks	 and	 counters
required	 to	 track	 the	 position	 of	 the	 television's	 electron	 beam	 as	 it	 scans	 the
screen.	 These	 counters	 are	 at	 the	 core	 of	 the	 ZX	 Spectrum's	 ULA	 design,	 and
control	all	aspects	of	its	operation.

Chapter	11,	Video	Synchronisation,	 explains	how	 the	 television	electron	beam	 is
synchronised	 with	 the	 counters	 described	 in	 Chapter	 10,	 The	 Internal	 Clocks,
allowing	a	stable	and	flicker-free	picture	to	be	displayed.

Chapter	 12,	 Generating	 The	 Display,	 describes	 how	 a	 computer	 display	 is
designed,	what	resolution	it	should	have,	and	how	the	digital	 information	that	 is
stored	 in	 memory	 can	 be	 processed	 into	 a	 form	 suitable	 for	 conversion	 into	 a
video	signal.

Chapter	 13,	Video	Memory	 Access,	 discusses	 the	 control	 signals	 that	 the	 video
generator	 must	 produce	 to	 enable	 it	 to	 access	 the	 computer's	 video	 memory.
Specific	reference	to	the	ZX	Spectrum's	signal	timing	is	given.

Chapter	14,	Video	Control	Clocks,	 gives	 a	 full	 analysis	 and	design	of	 the	video
control	signals	identified	in	the	preceding	chapters.

Chapter	 15,	 Video	 Addressing,	 introduces	 the	 memory	 addressing	 schemes
suitable	 for	 use	 with	 the	 video	 system	 discussed	 so	 far,	 both	 theoretical	 and
practical.	In	doing	so,	the	ZX	Spectrum's	peculiar	video	memory	arrangement	is
explained.

Chapter	 16,	 Analogue	 Video,	 gives	 a	 thorough	 discussion	 and	 analysis	 of	 the
techniques	 required	 to	 generate	 a	 video	 signal	 composed	 of	 luminance	 and
chrominance	signals.	The	design	of	 the	ZX	Spectrum's	analogue	video	output	 is
covered	in	detail.

Chapter	 17,	 CPU	 Memory	 Access,	 discusses	 the	 control	 signals	 that	 must	 be
generated	to	enable	the	CPU	to	access	the	memory	within	the	computer.

Chapter	18,	CPU	Clock	and	Contention,	describes	the	conflict	that	exists	between
the	CPU	and	the	video	generator	when	they	simultaneously	require	access	to	the
video	RAM.	Several	conflict	resolution	methods	are	discussed,	culminating	in	the
explanation	of	the	techniques	used	by	the	ZX	Spectrum,	including	the	differences
between	the	three	issues	of	ULA.

Chapter	 19,	 Input-Output	 Devices,	 discusses	 the	 input	 and	 output	 (I/O)
capabilities	of	 the	ZX	Spectrum	and	 the	design	behind	 these	 interfaces,	making
reference	to	Chapter	3,	The	Standard	Microcomputer.

Chapter	20,	Cassette	Storage	and	Sound,	discusses	the	analogue	requirements	of
the	 ZX	 Spectrum's	 cassette	 and	 loudspeaker	 interfaces,	 and	 describes	 their
patented	design.
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Chapter	 21,	 Interrupts,	 follows	 on	 from	 the	 topic	 introduced	 in	Chapter	 3,	 The
Standard	Microcomputer,	 and	 analyses	 the	 interrupt	 timing	 implemented	 in	 the
ZX	 Spectrum	 ULA.	 The	 cause	 of	 the	 "late	 timing"	 interrupt	 detection	 is	 also
discussed.

Chapter	22,	Signal	Interfacing,	gives	the	complete	list	of	signals	passed	in	and	out
of	the	ZX	Spectrum	ULA,	describing	their	purpose,	signal	level	and	capability.

Chapter	 23,	 Hidden	 Features	 and	 Errors,	 uncovers	 undocumented	 errors	 and
hidden	features	of	ZX	Spectrum	ULA	design,	and	examines	the	cause	and	effect
of	design	and	production	errors	such	as	the	"snow	effect".

Chapter	24,	ULA	Versions,	gives	a	complete	overview	of	each	ZX	Spectrum	ULA
revision,	highlighting	the	significant	differences	between	them.

Appendix	A,	The	ULA	Die	Plot,	illustrates	the	physical	layout	of	the	ZX	Spectrum
ULA's	silicon	die	at	a	functional	level,	and	relates	each	area	to	the	circuit	designs
presented	in	this	book.

Appendix	B,	Component	Library,	gives	 the	basic	circuit	building	blocks	used	in
the	design	of	 the	ZX	Spectrum	ULA.	All	of	 the	complex	components	used,	but
not	described	elsewhere	 in	 this	book	 (such	as	 flip-flops,	 shift	 registers	and	TTL
outputs),	are	given	here.

Appendix	 C,	 ULA	 Configuration,	 explains	 how	 ULA	 matrix	 cells	 are
interconnected	 and	 intraconnected	 to	 provide	 different	 logic	 gate	 configurations
and	speeds.	This	chapter	supplements	Chapter	5,	The	Ferranti	ULA.

A	 glossary	 of	 terms	 is	 provided	 at	 the	 end	 of	 the	 book,	 along	 with	 a
comprehensive	bibliography.
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Chapter	2

Integrated	Circuits

Integrated	 circuits	 became	 possible	 with	 the	 invention	 of	 the	 Planar	 process	 in
1959	 by	 Jean	 Hoerni	 at	 Fairchild	 [HOERNI].	 This	 viewed	 the	 silicon	 wafer
substrate	as	a	flat	 two-dimensional	plane	onto	which	successive	layers	of	silicon
could	 be	 deposited	 through	 oxide	 masks	 and	 Photolithography,	 allowing	 all
components	 of	 a	 transistor	 to	 be	 fabricated	 from	 one	 side	 of	 the	 silicon	wafer.
Shortly	afterwards	in	July	of	that	year	Robert	N.	Noyce,	also	at	Fairchild,	devised
the	monolithic	 integrated	circuit	 [NOYCE]	where	 several	 transistors	 are	 formed
and	interconnected	on	a	single	silicon	die,	and	produced	the	first	working	ICs	in
May	 1960.	 Publicly	 available	 devices	 were	 announced	 in	 March	 1961,
photographs	of	which	appeared	in	LIFE	magazine.	It	is	generally	recognised	that
Jack	 Kilby	 of	 Texas	 Instruments	 independently	 conceived	 the	 monolithic
integrated	circuit	at	about	the	same	time,	and	though	both	companies	fought	legal
battles	over	patents,	they	eventually	settled	and	cross-licensed	their	technologies.

In	1960,	Bell	Labs	introduced	a	process	of	growing	a	thin	layer	of	silicon	on	the
substrate	by	chemical-vapor	deposition	to	provide	isolation	between	a	transistor's
base	 and	 collector	 regions.	 This	 epitaxial	 process	 reduced	 current	 leakage,
increased	the	breakdown	voltage	and	dramatically	increased	the	switching	speed
of	 the	 transistor.	 In	 1961,	 Jean	Hoerni	 increased	 the	 switching	 speed	 of	 silicon
transistors	 further,	 to	 exceed	 that	 of	 germanium,	 by	 doping	 silicon	 with	 gold
impurities.	 Silicon	 is	 preferable	 to	 germanium	 as	 it	 has	 a	 wider	 temperature
tolerance	and	is	stable	at	up	to	150°C,	twice	that	of	germanium.	This	allowed	the
first	 high	 speed	 computers	 to	 be	 produced,	 incorporating	 many	 hundreds	 of
transistors	that	generate	considerable	amounts	of	heat.	Germanium	transistors	do
not	switch	reliably	at	the	temperatures	found	within	these	machines,	making	them
unsuitable.

The	UK-based	Ferranti	Semiconductors	began	experimenting	with	monolithic	ICs
around	1961,	having	successfully	marketed	a	range	of	diffused	transistors	such	as
the	 1960	ZT20	Mesa	 transistor.	They	 introduced	 the	Micronor	 I	 IC	 in	 1963/64,
Europe's	first	integrated	circuit,	followed	in	1965	by	the	Micronor	II,	both	Diode-
Transistor	Logic	(DTL)	devices	[SWANN].

In	 addition	 to	 bipolar	 transistor	 technologies,	 Fairchild	was	 also	 developing	 the
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Complimentary	Metal	Oxide	Semiconductor	transistor,	which	was	first	described
by	 Sah	 and	Wanlass	 in	 1963,	 CMOS	 combines	 n-channel	 and	 p-channel	MOS
transistors	in	a	complementary	symmetry	configuration,	which	draws	almost	zero
power	 in	 standby	mode.	 These	 early	 CMOS	 devices	were	 however	 plagued	 by
manufacturing	and	reliability	issues,	and	it	would	be	several	years	before	they	saw
high	volume	adoption,	eventually	becoming	the	dominant	 technology	of	modern
integrated	circuits.

It	was	during	1963	that	the	first	mass	market	for	digital	ICs	began,	initially	based
around	 Signetics	 SE100	 Series	 Diode-Transistor	 Logic,	 followed	 by	 Farichild's
cheaper	and	better	performing	930	Series.	At	the	same	time,	Sylvania	introduced
its	 SUHL	 Transistor-Transistor	 Logic	 (TTL)	 series,	 the	 success	 of	 which
encouraged	Texas	Instruments	to	introduce	its	SN5400	TTL	Series	the	following
year.	In	1966	TI	announced	the	SN7400	series	and	quickly	gained	more	than	50%
of	the	market.

The	 significant	 weight	 and	 size	 reduction	 of	 integrated	 circuits	 compared	 to
discrete	 transistors	 prompted	 the	 Massachusetts	 Institute	 of	 Technology	 and
NASA	to	select	a	Fairchild	Micrologic	3-input	Resistor-Transistor	NOR	gate	for
the	Apollo	Guidance	Computer,	becoming	the	largest	single	user	of	ICs	in	1965.

Driven	 by	 the	 demands	 of	 high	 power	 mainframe	 computing,	 circuit
configurations	offering	 significant	 improvement	 in	 speed	 and	performance	were
sought.	 To	 this	 end,	 mainframe	 manufacturer	 RCA	 developed	 the	 concept	 of
Current-Mode	Logic	(CML)	circuits,	custom	produced	for	their	Spectra	70	series
computer	 by	 various	 IC	 manufacturers	 (1965).	 Fairchild	 developed	 a	 similar
Complementary	 Transistor	 Logic	 (CTL)	 family	 to	 power	 the	 Burroughs
B2500/3500	and	Hewlett-Packard's	3000	Series	(1966).

Epitaxial	Transistor	Fabrication

There	 are	 a	 variety	 of	 methods	 of	 fabricating	 bipolar	 transistors,	 and	 we	 shall
consider	 those	 used	 in	 IC	manufacture	 and	which	 specifically	 use	 the	 epitaxial
process.

Bipolar	 transistors	 use	 both	 hole	 and	 charge	 carriers,	 and	 their	 fabrication	 is	 a
planar	 process	where	 regions	 of	 an	 n-type	 or	 p-type	 silicon	 substrate	 are	 doped
using	high	 temperature	 gas	 diffusion.	The	 areas	 to	 be	doped	 are	 typically	made
through	windows	in	a	silicon	dioxide	mask,	and	depending	on	the	doping	element
used,	n-type	or	p-type	areas	are	formed.	Where	two	different	types	of	silicon	are
in	 contact,	 a	 PN	 Junction	 is	 created	which	 acts	 as	 a	 conductor	when	 voltage	 is
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applied	in	one	direction,	and	a	nonconductor	in	the	other,	as	in	Figure	2-1.

Figure	2-1:	PN	junction	showing	hole	and	charge	carriers

Doping	an	n-type	area	with	a	group	13	element	such	as	boron	produces	a	p-type
area	 of	 electron	 acceptors	 (also	 known	 as	 holes).	 Doping	 a	 p-type	 area	 with	 a
group	15	element	such	as	arsenic,	produces	an	n-type	area	of	electron	donors.

The	Standard	Buried	Collector	Process

The	general	transistor	fabrication	of	an	NPN	transistor	using	the	Standard	Buried
Collector	(SBC)	process	is	as	follows	(Figure	2-2):

1.	 An	area	of	highly	doped	n+	is	diffused	into	a	p-type	substrate.	This	is
referred	to	as	the	buried	sub-collector.

2.	 An	epitaxial	layer	of	n-type	silicon	is	grown	over	the	substrate.
3.	 A	deep	diffusion	of	p+	is	made	through	the	epitaxial	layer,	creating	a	deep

moat	around	the	device	to	form	an	isolated	island.
4.	 A	shallow	diffusion	of	lightly	doped	p-type	silicon	is	made,	creating	the

base	region.
5.	 A	shallow	diffusion	of	n+	is	made	in	the	base	region	forming	the	emitter,

and	in	the	epitaxial	layer	forming	the	collector.
6.	 At	the	emitter,	base	and	collector	regions,	aluminium	is	deposited	to	create

the	transistor	contacts.
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Figure	2-2:	Junction-isolated	bipolar	transistor	fabrication

The	 epitaxial	 layer	 and	 diffusions	 are	 thin,	 so	 the	NPN	 transistor	 currents	 flow
vertically	from	the	emitter,	through	the	base	to	the	collector.

Isolation	between	multiple	devices	on	the	same	silicon	die	is	achieved	by	making
the	 p-type	 substrate	 the	 most	 negative	 point.	 A	 PN	 junction	 therefore	 exists
between	 the	 p-type	 moat	 and	 the	 n-type	 collector	 region,	 and	 will	 be	 reverse-
biased,	creating	what	is	termed	junction	or	diode	isolation.

The	n+	buried	layer	prevents	 the	formation	of	a	vertical	parasitic	PNP	transistor
between	the	base,	collector	and	substrate.	The	shallow	diffusion	of	the	n+	ohmic
collector	contact	is	required	as	aluminium	and	n-type	silicon	will	together	form	a
slight	 PN	 junction.	 Buffering	 the	 aluminium	 contact	 with	 a	 highly	 doped	 n+
region	prevents	such	a	junction	forming.

SBC	transistors	do	not	make	efficient	use	of	the	silicon	die	as	the	active	area	of
the	SBC	 transistor	 is	only	 in	 the	 region	directly	below	 the	emitter.	Also,	due	 to
lateral	diffusion	the	minimum	width	of	the	p+	isolation	moat	is	twice	the	depth	of
the	epitaxial	 layer,	so	that	 the	useful	area	of	 the	transistor	 is	 less	 than	5%	of	the
total	device	area,	with	the	active	area	beneath	the	emitter	being	only	2.67%	of	the
total	device	[HURSTVLSI].

Integrated	 circuits	 are	 generally	 constructed	 from	 NPN	 transistors,	 as	 the
alternative	 PNP	 transistor	 has	 a	 lower	 performance,	 with	 holes,	 not	 electrons,
forming	 the	 majority	 charge	 carrier.	 Also,	 the	 transistor	 action	 tends	 to	 act
horizontally	in	SBC	PNP	transistors.

Other	components	such	as	diodes	and	resistors	are	created	by	a	similar	process	of
isolating	epitaxial	regions	of	n-type	silicon	with	p+	diffusions.
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Standard	Resistor	Fabrication

Resistors	are	formed	by	surrounding	a	region	of	epitaxial	layer	above	a	buried	p+
layer,	with	a	deep	diffusion	of	p+.	This	creates	an	isolated	region	of	n-type	silicon
with	 a	 characteristic	 sheet	 resistance.	Metal	 deposits	 at	 either	 end	 of	 the	 region
provide	the	resistor	contacts.

By	 varying	 the	width	 of	 the	 n-type	 silicon	 region	 and	 the	 distance	 between	 the
contacts,	 different	 resistor	 values	 can	 be	 formed.	 The	 sheet	 resistance	 of	 an
epitaxial	 layer	 is	usually	given	in	units	of	ohms	per	square,	where	one	square	 is
the	distance	between	the	resistor	contacts	divided	by	the	width	of	the	region.

1.	 An	area	of	highly	doped	n+	is	diffused	into	a	p-type	substrate.	This	is
referred	to	as	the	buried	layer.

2.	 An	epitaxial	layer	n-type	silicon	is	grown	over	the	substrate.
3.	 A	deep	diffusion	of	p+	is	made	through	the	epitaxial	layer,	creating	a

rectangular	boundary	around	the	resistor,	creating	an	isolated	region	of	n-
type	silicon.

4.	 Aluminium	deposits	are	placed	at	either	end	of	the	longest	resistor
dimension,	forming	the	resistor	contacts.

Logic	Gate	Technology

A	single	 bipolar	 transistor	 provides	 only	 the	 simplest	 logic	 function,	 that	 of	 the
inverter.	 To	 build	 more	 complex	 logic	 functions,	 transistors	 must	 be
interconnected	 to	 form	 functionally	 complete 	 gates	which	 can	 be	 built	 up	 into
higher	functional	units.

Various	 families	of	bipolar	 logic	have	been	used	by	manufacturers	 to	produce	a
range	 of	 off-the-shelf	 logic	 devices,	 with	 each	 family	 having	 particular	 useful
characteristics.

Resistor-Transistor	Logic

Resistor-Transistor	Logic	(RTL)	is	one	of	the	simplest	and	earliest	class	of	logic
gate,	and	was	used	to	create	the	first	integrated	circuits	in	March	1961.	A	typical
three	input	NOR	gate	is	shown	in	Figure	2-3.

1
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The	 disadvantage	 of	 RTL	 devices	 is	 their	 high	 current	 consumption	 and	 slow
switching	speed	due	to	transistor	saturation	and	charge	storage.	This	high	power
requirement	 leads	 to	 issues	with	 heat	 dissipation,	which	 limits	 the	 gate	 packing
density	and	therefore	the	number	of	gates	per	chip.

Figure	2-3:	Three	input	RTL	NOR	gate

Transistor-Transistor	Logic

This	 is	 the	 standard	 and	 most	 popular	 bipolar	 logic	 family	 used	 in	 small	 and
medium	 scale	 integrated	 circuits.	 Figure	 2-4	 shows	 a	 typical	 TTL	 three	 input
NAND	gate	with	a	totem	pole	output,	giving	active	pull	up	to	Vcc	for	logic	1	and
push	down	to	0V	for	logic	0.
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Figure	2-4:	TTL	NAND	gate	with	totem	pole	output

The	 disadvantage	 with	 this	 logic	 family	 is	 it's	 high	 power	 consumption,	 slow
propagation	 times	caused	by	 transistor	 saturation,	and	 large	current	 spikes	when
the	output	switches	between	 logic	 levels	due	 to	a	moment	when	both	 transistors
conduct,	shorting	Vcc	to	0V.

To	address	 these	problems	several	 advances	 in	TTL	design	have	occurred,	most
importantly	the	Schottky	TTL	gate.	Here	a	Schottky	diode	is	placed	between	the
base	and	collector	of	the	switching	transistors	to	prevent	them	becoming	saturated
and	storing	charge,	greatly	improving	their	switching	speed.	Figure	2-5.

A	Schottky	diode	is	formed	between	lightly	doped	n-type	silicon	and	aluminium,
which	 may	 be	 considered	 a	 weak	 p-type	 dopant,	 thus	 forming	 a	 PN	 junction.
However,	as	few	holes	are	produced	by	the	weak	p-type	aluminium,	most	of	the
semiconductor	 action	 consists	 of	 electron	 donors	 which	 gives	 rise	 to	 junction
characteristics	that	are	different	from	normal	PN	junctions;	for	instance,	a	forward
voltage	 drop	 of	 approximately	 0.35V	 and	 practically	 zero	 storage	 time.	 A
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Schottky	diode	placed	across	the	transistors	base-collector	junction	will	therefore
conduct	before	 the	 transistor	(at	0.35V	compared	with	0.6V),	redirecting	current
and	preventing	transistor	saturation.

Figure	2-5:	Schottky	diode	and	transistor

Fabrication	 of	 a	 Schottky	 diode	 across	 the	 collector-base	 junction	 is	 easily
achieved	by	extending	the	aluminium	that	forms	the	ohmic	contact	with	the	p-type
region	of	 the	base,	 so	 that	 it	 overlaps	 the	 area	of	n-type	 silicon	at	 the	 collector,
where	it	reaches	the	transistor	surface.	Figure	2-6.
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Figure	2-6:	Schottky	TTL	fabrication

Emitter-Coupled	Logic

Emitter-Coupled	Logic	(ECL)	is	one	of	the	fastest	switching	class	of	logic	gate,	at
the	 expense	 of	 high	 power	 dissipation	 which	 limits	 the	 number	 of	 gates	 per
device.	 They	 have	 generally	 been	 used	 for	 the	 highest	 performance	 computers,
such	as	the	CRAY-1.

ECL	gates	work	by	directing	a	fixed	current	through	one	of	two	paths,	depending
on	 the	 input	 logic	 levels.	 In	 this	way	a	current	always	flows,	 removing	voltages
spikes	during	output	switching	but	contributing	to	the	overall	power	consumption.
Figure	2-7	shows	a	simple	ECL	NOR	gate.	Multi-input	NOR/OR	gates	are	created
by	connecting	multiple	input	transistors	in	parallel.	With	a	Vin	less	than	VRef,	T1
will	be	off	and	T2	will	be	conducting.	As	Vin	exceeds	VRef,	T1	begins	to	conduct
and	T2	shuts	off.	Two	complementary	outputs	are	produced	by	the	two	switching
transistors,	 allowing	 both	 NOR	 and	 OR	 functionality	 to	 be	 simultaneously
implemented.	 The	 resistors	 are	 chosen	 so	 neither	 transistor	 saturates	 when	 it
conducts,	achieving	the	maximum	switching	speed.	The	low	output	voltage	swing
produced	 as	 a	 result	 complicates	 external	 interfacing,	 where	 5V	 signals	 are
normal.
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Figure	2-7:	Typical	ECL	gate

Current-Mode	Logic

Unlike	 ECL,	 where	 a	 constant	 current	 is	 switched	 between	 one	 of	 two	 paths,
Current-Mode	Logic	(CML)	allows	a	preset	current	to	flow	or	not	to	flow	through
the	switching	transistors,	depending	on	the	state	of	the	logic	input.	Its	basic	circuit
configuration	is	shown	in	Figure	2-8.

The	value	of	the	preset	current	supplied	by	the	current	source	is	small	enough	to
prevent	 the	 transistors	 saturating,	 so	 that	 they	only	operate	 in	 their	off	or	active
mode,	thus	enabling	them	to	switch	rapidly.
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Figure	2-8:	CML	NOR	gate	and	signal	thresholds
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Figure	2-9:	CML	NOR	gate	showing	output	voltage	swing

CML	gates	may	be	produced	in	a	wide	range	of	speed	and	power	configurations,
as	 their	 speed	 power	 product	 is	 directly	 proportional	 to	 the	 supply	 voltage	 and
logic	swing;	therefore	by	reducing	the	size	of	the	load	resistor,	RL,	or	increasing
the	supply	voltage,	 the	gate	switching	speed	may	be	 increased	at	 the	expense	of
increased	power	dissipation.

Typical	CML	gates	 have	 a	minimum	 supply	 voltage	 of	 0.6	 to	 0.95	 volts,	 and	 a
logic	 swing	 range	which	 is	determined	by	noise	considerations.	Under	LSI	chip
conditions,	where	noise	 is	 controlled,	 a	margin	of	200mV	 is	 equivalent	 to	 a	1V
noise	 margin	 found	 within	 a	 printed	 circuit	 board;	 therefore	 a	 logic	 swing	 of
approximately	360mV	within	the	gate	is	more	than	sufficient	(Figure	2-9),	and	is
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defined	by	the	current	source	and	load	resistors.

The	 low	 on-chip	 voltage	 swings	 achieved,	 however,	 means	 that	 signals	 require
amplification	and	buffering	before	they	can	be	connected	to	external	devices.

The	constant	 current	 source	 in	 the	emitter	 circuit	 is	provided	by	a	multi-emitter
transistor	operating	 in	 inverse	mode.	That	 is,	 its	 collector	 is	 used	 as	 the	 emitter
and	its	emitters	as	multiple	collectors,	one	of	which	has	a	particular	base-collector
bias	that	causes	it	to	act	as	a	current	mirror,	setting	the	current	that	will	be	passed
by	the	other	collectors.	See	Figure	2-9.

This	 current	 source	 action	 demands	 a	 transistor	 that	 exhibits	 extremely	 good
inverse-mode	 operation,	 something	 that	 Collector-Diffusion	 Isolation	 (CDI)
fabrication	in	particular	provides.

Collector-Diffusion	Isolation	Process

Collector-Diffusion	Isolation	(CDI)	process	was	invented	by	B.	T.	Murphy	et	al	at
Bell	Labs	in	1969	[MURPHY].	The	technology	proved	troublesome	for	Fairchild
and	 Bell	 Labs	 who,	 to	 date,	 had	 only	 managed	 to	 make	 Collector-Diffusion
Isolation	 integrated	 circuits	 that	 operated	 at	 3	 volts,	 and	 not	 at	 the	 industry
standard	of	 5	 volts.	 Ferranti	Electronics	Limited	 licensed	 and	 further	 developed
this	technology	for	mixed	digital	and	analogue	applications,	becoming	the	worlds
first	 microelectronics	 supplier	 to	 successfully	 utilise	 CDI	 in	 the	 production	 of
VLSI	integrated	circuits	[WILSON2].

The	CDI	process	is	similar	to	that	of	the	SBC,	except	that	a	p-type	epitaxial	layer
is	grown	instead	of	an	n-type	layer,	eventually	becoming	the	final	transistor	base
regions.	The	CDI	process	is	as	follows:

1.	 A	low-resistance	n+	buried	layer	is	diffused	into	the	p-type	substrate.
2.	 A	p-type	epitaxial	layer	is	grown	over	the	substrate,	eventually	forming	the

base	region	of	the	transistor.
3.	 A	deep	n+	isolation	moat	is	diffused	through	the	epitaxial	layer	forming	an

isolated	region	of	p-type	silicon.	This	n+	diffusion	also	forms	the	collector
of	the	transistor,	surrounding	the	base	region.

4.	 A	p+	diffusion	is	made	to	create	a	shallow	p+	skin	over	the	whole	silicon
slice.	The	concentration	of	this	diffusion	is	so	low	that	it	does	not	alter	the
polarity	or	resistivity	of	the	n+	isolation	diffusion.	It	does	however	perform
the	important	task	of	ensuring	that	no	inversion	occurs	at	the	surface,	and
creates	a	sheet	resistance	of	470	ohms	per	square	for	fabricating	resistors.
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5.	 A	shallow	n-type	diffusion	into	the	epitaxial	layer	forms	the	emitter.	This
pushes	the	p+	skin	diffusion	down	into	the	epitaxial	layer	creating	a	graded
base	transistor	with	controlled	current	gains	and	a	high	gain	bandwidth
product.

6.	 At	the	emitter,	base	and	collector	regions,	aluminium	is	deposited	to	create
the	transistor	contacts.

Figure	2-10:	Collector	diffusion-isolation	fabrication

The	CDI	process	is	far	simpler	than	the	SBC	process,	and	provides	many	benefits.
In	particular	 it	has	a	 thin	epitaxial	 layer,	of	 the	order	of	2µm,	and	very	 shallow
diffusion	 depths	 of	 approximately	 1µm,	 creating	 a	 very	 narrow	 base	width	 and
good	 operating	 speed.	 Silicon	 is	 therefore	 used	 economically,	 achieving	 circuit
packing	 densities	 2.5	 times	 higher	 than	 obtainable	 using	 the	 standard	 buried
collector	structure	with	the	same	masking	tolerances	[ULAHAND]	[MURPHY].

Another	 feature	 of	 the	 CDI	 process	 is	 that	 the	 heavily	 doped	 n-type	 collector
region	 gives	 the	 transistor	 a	 good	 inverse-mode	 operation,	 required	 for	 current
sources	 in	 Current	 Mode	 Logic	 circuits.	 In	 addition	 to	 allowing	 the	 p-type
substrate	to	be	used	as	the	ground	connection,	CDI	devices	allow	n+	diffusions	to
be	used	to	distribute	the	supply	rail	around	the	chip.

CDI	process	resistor	fabrication

As	with	the	SBC	process,	resistors	are	formed	by	surrounding	a	region	of	epitaxial
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layer	 by	 a	 deep	 moat	 of	 diffused	 n+,	 over	 a	 buried	 n+	 layer.	 This	 creates	 a
completely	isolated	region	of	p-type	silicon	which,	due	to	its	diffused	p+	skin,	has
a	defined	sheet	resistance.	Metal	deposits	at	either	end	of	 the	region	provide	the
resistor	contacts.

Altering	 the	 length	 and	width	 dimensions	 of	 the	 resistor	 alters	 the	 value	 of	 the
resistor.

1.	 An	area	of	highly	doped	n+	is	diffused	into	a	p-type	substrate.
2.	 An	epitaxial	layer,	or	skin,	of	p-type	silicon	is	grown	over	the	substrate.
3.	 A	deep	diffusion	of	n+	is	made	through	the	epitaxial	layer,	creating	a

rectangular	boundary	around	the	resistor	which	connects	with	the	n+	buried
layer,	creating	an	isolated	region	of	n-type	silicon.

4.	 Aluminium	deposits	are	placed	at	either	end	of	the	longest	resistor
dimension,	forming	the	resistor	contacts.

Figure	2-11:	CDI	process	resistor	fabrication

1.	A	functionally	complete	gate	is	one	that	may	be	used	as	the	building	block	of
any	other	logic	gate.	NOR	and	NAND	are	such	gates.
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Chapter	3

The	Standard	Microcomputer

The	standard	microcomputer	of	the	late	1970s	and	early	1980s	consisted	of	four
separate	components:	a	microprocessing	unit	(MPU	or	CPU),	Read	Only	Memory
(ROM)	 for	 program	 storage,	 Random	 Access	 Memory	 (RAM)	 for	 data	 and
program	storage	and	some	form	of	input	and	output	(I/O).	These	components	were
produced	 as	 standalone	 devices,	 designed	 to	 be	 integrated	 into	 such	 a	 system
architecture,	 as	 the	 degree	 of	 fabrication	 density	 possible	 at	 the	 time	 did	 not
permit	integration	of	memory	and	I/O	directly	into	the	microprocessor	chip	itself,
what	would	later	become	termed	the	System-on-a-Chip	(SoC).

All	microcomputers	of	 the	era	followed	 this	design,	using	common	off	 the	shelf
memory	ICs	and	peripheral	components.	It	was	only	the	choice	of	microprocessor
and	custom	I/O	circuits	that	stood	them	apart.

The	Architecture

The	microprocessor	 prevalent	 at	 the	 time	was	 the	 8-bit	 processor.	 Such	 devices
could	transfer	eight	data	bits	at	a	time	and	were	usually	provided	with	up	to	a	16
bit	address	bus,	enabling	access	to	65536	(216)	memory	locations.	Control	signals
were	 also	 necessary	 to	 coordinate	 the	 activity	 of	 devices	 connected	 to	 the
processor,	up	to	14	lines	in	total,	as	well	as	the	power	supply.	Typically	as	many
as	40	pins	would	be	used.	Producing	ICs	with	more	than	40	pins	was	prohibitively
expensive	due	to	their	size,	and	this	limited	the	number	of	CPU	data	and	address
lines	 that	 could	 be	made	 available	 to	memory	 and	 I/O	 devices.	 The	 few	 16-bit
devices	 that	were	produced	at	 the	 time	provided	 the	additional	data	and	address
bus	 signals	 by	 multiplexing	 them	 over	 existing	 signals,	 which	 increased	 the
complexity	of	the	system	design	greatly,	and	was	generally	considered	not	worth
the	effort.

The	basic	architecture	of	the	standard	microcomputer	is	shown	in	Figure	3-1.	To
the	far	left,	a	clock	circuit	provides	the	CPU	with	a	regular	time	signal	with	which
to	 synchronise	 its	 internal	 state	 machine.	 Next	 is	 the	 CPU	 itself,	 providing
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address,	data	and	control	buses	through	which	it	interfaces	with	ROM,	RAM	and
I/O	devices,	shown	to	the	right.

Figure	3-1:	The	standard	microcomputer

The	Control	Bus

The	control	bus	contains	signals	that	allow	the	processor	to	control	the	operation
of	devices	to	which	it	is	connected,	and	allows	devices	to	control	certain	aspects
of	the	processors	operation.	In	general	the	signals	provide	the	following	activities:

1.	 To	notify	memory	devices	that	the	processor	is	about	to	access	a	memory
location	and	that	they	should	use	the	address	on	the	bus	to	determine	which
location	is	required.

2.	 To	notify	I/O	devices	that	the	processor	is	about	to	access	an	I/O	port	and
that	they	should	use	the	address	on	the	bus	to	determine	which	port	is
required.

3.	 To	interrupt	the	processor	and	have	it	perform	a	time	critical	task.
4.	 To	pause	the	processor,	allowing	slow	memories	or	other	devices	time	to

prepare	for	the	requested	memory	or	I/O	operation.
5.	 To	request	and	acknowledge	a	direct	memory	access	(DMA).
6.	 To	specify	the	direction	of	data	flow.
7.	 To	reset	the	processor.

The	exact	nature	of	these	control	signals,	and	which	are	provided,	depends	on	the
microprocessor.	For	example,	some	processors	provide	signals	 to	select	memory
or	I/O	devices	along	with	read	and	write	signals;	whereas	others	make	I/O	devices
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synonymous	with	memory	and	provide	just	read	and	write	signals.

A	 typical	memory	write	 by	 the	 processor	would	 see	 it	 place	 the	 address	 of	 the
required	 memory	 location	 on	 the	 address	 bus	 and	 activate	 the	 memory	 access
signal.	While	the	memory	device	is	responding	to	this	signal,	the	processor	places
the	data	to	be	written	on	the	data	bus	and	activates	the	write	control	signal.	The
memory	 detects	 this	 write	 indication	 and	 stores	 the	 data	 in	 the	 pre-prepared
location.	The	processor	then	deactivates	the	two	control	signals.

Memory	Devices

Memory	 ICs	may	be	 either	ROM	or	RAM	and	generally	 provide	 fewer	 storage
locations	than	the	65536	that	may	be	addressed	by	a	16-bit	address	bus.	Several
devices	will	therefore	be	necessary	to	provide	both	ROM	and	RAM	at	the	quantity
of	memory	required.	These	devices	must	be	connected	to	the	CPU	in	such	a	way
that	 they	 appear	 at	 their	 appropriate	 place	 in	 the	 memory	 map	 and	 provide
contiguous	pools	of	memory	locations.

The	placement	of	devices	within	the	memory	map	is	achieved	through	address	bus
decoding,	which	may	take	the	form	of	linear	(partial)	or	full	address	decoding.

Linear	 decoding	works	 by	 assigning	 the	more	 significant	 signals	 of	 the	 address
bus	to	the	select	pins	of	individual	memory	devices.	This	simple	decoding	results
in	 a	 fragmented	memory	map	because	devices	 are	mapped	 to	blocks	of	 address
that	 increase	 in	 powers	 of	 two.	 This	 type	 of	 address	 decoding	 is	 therefore	 not
suitable	when	 several	memory	 devices	must	 be	 placed	 one	 after	 another	 in	 the
memory	map.

Full	address	decoding	considers	combinations	of	address	bus	signals	and	activates
specific	memory	devices	when	certain	ranges	of	address	appear	on	the	bus.	This
decoding	is	more	complicated	than	linear	addressing	and	requires	additional	logic,
but	it	does	allow	devices	to	be	placed	at	any	location	within	the	memory	map.

Dynamic	RAM

The	memory	capacities	prevalent	 in	 the	1970s	and	1980s	were	 small	by	 today's
standards,	but	back	then	silicon	die	sizes	were	very	much	larger,	and	fabrication	of
as	 little	 as	 32	 or	 64K	RAM	was	 expensive	 -	 comparable	 in	 price	 to	 the	multi-
megabyte	devices	available	today.
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There	 are	 two	 types	 of	 RAM	 generally	 used	 in	 computers:	 dynamic	RAM	 and
static	 RAM.	Dynamic	 RAM	 employs	 a	 capacitor	 charge	method	 of	 storing	 the
binary	value	of	bytes.	However	this	state	leaks	away	as	the	capacitors	discharge,
so	 it	 must	 be	 regularly	 refreshed	 by	 external	 control	 circuitry.	 Static	 RAM	 by
contrast	uses	flip-flops	to	store	binary	values,	which	do	not	forget	their	state.	Flip-
Flops	 are	 relatively	 complicated	 and	 therefore	 take	 up	more	 space	 on	 a	 silicon
wafer	 than	 a	 capacitor,	 consume	 a	 larger	 current	 and	 are	 more	 expensive	 to
produce.	Dynamic	RAM	(DRAM)	 therefore	offers	a	higher	density	and	cheaper
overall	cost	than	static	RAM	(SRAM),	even	with	the	added	complexity	of	refresh
control.

Internally	RAM	is	arranged	as	a	matrix,	or	grid,	of	 storage	 locations.	To	access
any	one	location,	its	row	and	column	must	be	selected,	the	location	being	accessed
being	at	the	intersection	of	the	two.

To	 reduce	 cost	 further,	 the	physical	 package	 size	 of	 a	RAM	device	 is	 kept	 to	 a
minimum,	 the	 limiting	 factor	 being	 the	 number	 of	 connection	 pins	 required.
DRAM	designers	reduce	the	number	of	pins	by	dividing	the	address	bus	in	two,
and	have	both	halves	 share	 the	 same	address	pins.	This	makes	 interfacing	more
complicated	 as	 the	 CPU	 address	 bus	 must	 be	 presented	 to	 the	 DRAM	 in	 two
stages.

This	technique	is	call	multiplexing,	and	DRAM	chips	provide	two	special	pins	to
achieve	this:	a	Row	Address	Strobe	(RAS)	and	a	Column	Address	Strobe	(CAS).

Systems	using	DRAM	place	the	lower	half	of	the	memory	address	on	the	DRAM
address	 bus	 and	 pull	 RAS	 low,	 causing	 the	DRAM	 to	 select	 the	 corresponding
matrix	row.	Shortly	after	this	the	upper	half	of	the	memory	address	is	presented	to
the	DRAM	on	the	same	bus,	and	the	CAS	signal	pulled	low,	selecting	the	required
matrix	column	and	thus	the	desired	memory	location.

In	 addition	 to	 selecting	 a	 memory	 location,	 the	 state	 of	 the	 RD/WR	 signal
determines	whether	the	chosen	location	is	to	be	read	from	or	written	to.

To	keep	the	contents	of	the	dynamic	RAM	refreshed	and	prevent	the	stored	charge
leaking	 away,	 each	matrix	 row	must	 be	 read	 every	 2	milliseconds	 (ms)	 or	 less.
This	is	performed	by	initiating	a	RAS-only	refresh	cycle	by	placing	a	refresh	row
address	on	 the	RAM	data	bus,	 and	activating	 the	RAS	control	 line.	The	 refresh
row	address	is	then	incremented	and	used	for	the	next	refresh	cycle,	2ms	later.

ROM

The	interfacing	requirements	of	ROM	are	simpler	than	for	dynamic	RAM	because
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they	 are	 non	 volatile	 devices	 that	 do	 not	 forget	 their	 contents	 when	 power	 is
removed,	and	do	not	require	refreshing.	They	are	programmed	once	when	they	are
manufactured,	and	their	contents	cannot	be	changed.

Input	and	Output

A	computer	essentially	 takes	a	number	of	 inputs	and	processes	 them	to	produce
one	or	more	outputs.	To	be	useful,	 the	standard	microcomputer	described	above
must	be	provided	with	both	input	and	output	devices.	Output	devices	may	consist
of	LEDs,	seven-segment	displays,	a	CRT	monitor,	digital	 to	analogue	converters
(DAC),	 printers	 or	 tape	 recorders.	 Inputs	 devices	 include	 switches,	 keyboards,
analogue	to	digital	converters	(ADC)	and	tape	recorders.

Interfacing	 such	 I/O	 peripherals	 to	 the	 microprocessor	 can	 be	 achieved	 in	 two
ways.	 One,	 through	 memory	 mapping	 the	 device,	 or	 two,	 by	 I/O	 mapping	 the
device,	if	supported	by	the	CPU.

Memory	mapping	 input-output	 devices	 may	 be	 a	 matter	 of	 choice,	 or	 the	 only
option	 if	 the	 microprocessor	 does	 not	 provide	 I/O	 specific	 control	 signals	 and
instructions.	Here	the	I/O	device	is	allocated	a	region	of	the	memory	map	through
memory	address	decoding.	This	has	the	advantage	of	allowing	input	and	output	to
be	 performed	 through	 the	 processor's	 wide	 range	 of	 powerful	 memory
instructions.	The	disadvantage	being	that	memory	mapped	I/O	reduces	the	amount
of	system	memory	that	can	be	provided.

For	I/O	mapped	input-output,	the	processor	provides	a	set	of	I/O	specific	enable
and	 direction	 control	 signals,	 complementing	 those	 for	memory	 devices.	 It	 also
provides	a	set	of	I/O	related	instructions	through	which	input	and	output	may	be
performed.	 The	 advantages	 of	 this	 scheme	 are:	 One,	 the	 full	 address	 space	 is
available	 for	 memory	 devices.	 Two,	 the	 processor	 provides	 instruction	 timings
and	features	specifically	for	I/O.	Three,	program	code	that	accesses	an	I/O	device
is	easily	distinguishable	from	that	which	accesses	memory.	The	disadvantages	are
the	 loss	 of	 the	 powerful	memory	 instructions	 and	 the	 need	 for	 the	 processor	 to
provide	additional	control	signal	pins.

Serial	I/O

Many	peripherals	 of	 the	 era	 communicated	with	 the	microcomputer	 via	 a	 serial
I/O	interface.	Data	transfer	rates	were	slow,	around	300	bits	per	second	typically,
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but	 required	 only	 a	 single	 connection	wire	 for	 each	 direction	 of	 data	 flow	 and
another	for	synchronisation.

The	basis	of	serial	communication	is	to	convert	each	byte	to	be	sent	into	a	stream
of	1s	and	0s,	and	to	reassemble	a	stream	being	received	back	into	bytes.	This	can
be	 achieved	 in	 two	 ways:	 through	 software	 or	 through	 a	 dedicated	 I/O
communications	 IC	 called	 a	 universal	 asynchronous	 receiver-transmitter	 or
UART.

With	 software,	 a	 program	 takes	 responsibility	 for	 the	 serialisation	 and
deserialisation	of	data.	For	output,	the	program	takes	each	byte	in	turn	and	shifts
bits	out	of	it	with	one	of	the	processor's	shift	instructions,	at	a	fixed	rate.	For	each
bit	examined,	a	single	bit	of	an	output	port	is	set	or	reset.	Where	handshaking	is
required,	an	additional	output	port	bit	 is	set	and	reset	as	 required.	For	 input,	 the
program	samples	the	input	port	bit	until	it	detects	a	start	bit,	after	which	it	samples
the	 port	 at	 the	 required	 rate,	 shifting	 the	 bits	 read	 into	 the	 receiving	 byte	 with
another	of	the	processor's	shift	instructions.

The	advantage	of	software	serialisation	and	deserialisation	is	its	flexibility	and	the
use	 of	 specialised	UART	 hardware	 is	 avoided.	 The	 disadvantages	 are:	 one,	 the
software	can	be	complicated	and	ties	up	the	processor,	preventing	it	from	carrying
out	other	tasks,	and	two,	it	is	slow.

Hardware	UART	ICs	take	the	burden	of	converting	bytes	to	and	from	a	serial	data
stream	away	from	the	processor,	freeing	it	to	perform	other	tasks	like	processing
the	 data	 that	 is	 being	 received	 or	 handling	 other	 events.	 It	 is	 interfaced	 to	 the
microprocessor	 through	 two	 I/O	 ports:	 one	 for	 bi-directional	 data	 input	 and
output,	and	another	for	interface	control.	UARTs	simplify	software	design,	lighten
processor	 load	and	 increase	data	 throughput,	however	 this	comes	with	 increased
hardware	complexity	and	cost.

Keyboard	Input

Keyboards	may	be	interfaced	to	the	microcomputer	in	two	ways:	One,	as	a	serial
peripheral	that	sends	information	about	key	presses	over	a	serial	data	connection.
Two,	as	a	bank	of	switches	connected	to	the	microprocessor	through	a	number	of
input	ports.

Serial	 keyboards	 are	 self	 contained	 peripherals	 using	 a	 standard	 serial	 and
handshaking	 protocol.	 This	 makes	 them	 expensive	 and	 requires	 the
microcomputer	 to	 provide	 a	UART	or	 software	 serial	 interface	 to	which	 it	may
connect,	again	adding	to	system	cost.
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Alternatively,	 a	 keyboard	may	 be	 implemented	 as	 a	matrix	 of	 switches	 directly
connected	 to	 the	 microcomputer	 buses	 as	 a	 number	 of	 8-bit	 input	 ports.	 This
method	of	interfacing	is	simple	and	inexpensive,	but	has	the	disadvantage	that	the
keyboard	scanning	must	be	performed	by	software,	placing	an	additional	load	on
the	processor.

CRT	Display

CRT	 display	 interfacing	 is	 complicated	 and	 requires	 specialised	 hardware.
Dedicated	CRT	monitors	 that	 required	nothing	more	 than	 a	 serial	 data	 feed	 and
appropriate	 controlling	 software	were	 available,	but	were	 expensive	 and	offered
limited	graphical	capability.	Microcomputer	manufacturers	therefore	often	sought
cheaper	 direct	 connection	 displays,	 and	 commonly	 targeted	 the	 domestic
television	set.

It	was	usual	for	such	microcomputers	to	make	use	of	dedicated	display	controller
ICs,	 which	 interfaced	 to	 the	 processor	 as	 an	 I/O	 device.	 Typically	 the	 display
controller	 and	 processor	 shared	 an	 area	 of	 memory	 known	 as	 display	 RAM,
through	 which	 software	 passed	 information	 to	 be	 displayed	 to	 the	 display
controller.	 Because	 this	 RAM	was	 shared,	 the	 processor	 and	 display	 controller
could	not	both	access	it	at	the	same	time.	One	device	had	to	be	given	priority.

Where	the	processor	was	given	priority,	the	display	controller	would	be	prevented
from	accessing	the	display	RAM	while	the	processor	was	writing	to	it,	causing	a
momentary	 screen	 flicker.	 Such	 flicker	 could	 be	 avoided	 by	 carefully	 written
software	that	wrote	to	the	display	RAM	only	when	the	display	controller	was	not
updating	the	display.

Where	 the	 display	 controller	was	 given	 priority,	 the	 processor	would	 be	 briefly
halted	while	attempting	 to	write	 to	 the	display	RAM	if	 the	video	controller	was
performing	 a	 display	update.	This	 guaranteed	 the	display	would	not	 flicker,	 but
meant	that	the	processor	would	slow	down	when	making	accesses	to	the	display
RAM.	This	side	effect	could	be	minimised	by	restricting	these	processor	writes	to
periods	when	no	display	update	was	being	carried	out.

Alternatively,	 some	 microprocessors	 released	 control	 of	 memory	 devices	 at
frequent	and	regular	clock	cycles,	allowing	microcomputers	based	on	them	to	hide
display	controller	memory	accesses	within	these	cycles.

Architecture	Evolution
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This	 standard	 architecture	 formed	 the	 basis	 of	 the	 original	 8-bit	 IBM	 5150
Personal	Computer	of	1981,	and	the	later	16-bit	IBM	5170	PC	AT	that	became	the
basis	of	all	modern	personal	computers.	The	processor	bus	was	supplemented	by
the	 Industry	 Standard	Architecture	 (ISA)	 bus	which	 abstracted	 I/O	 devices	 and
their	direct	memory	accesses	(DMA)	from	the	processor	bus.	The	ROM	became
known	as	the	BIOS,	and	contained	enough	program	code	to	instruct	the	processor
in	how	to	load	the	first	program	from	disk	into	RAM,	and	then	execute	it.

The	architecture	has	changed	little	since	then;	the	CPU	still	remains	as	a	distinct
component	in	its	own	right,	the	data,	address	and	control	buses	have	become	more
complicated	 with	 the	 advent	 of	 16,	 32	 and	 64-bit	 buses,	 and	 have	 been
supplemented	 by	 additional	 system	 buses	 such	 as	 EISA	 and	 PCI.	 Most	 I/O	 is
performed	 through	dedicated	 I/O	 controller	 chips	 that	 interface	directly	 to	 these
buses,	at	clock	speeds	independent	to	that	of	the	processor.

The	Z80	Microcomputer

The	Z80	microprocessor	was	developed	by	Zilog	Inc.	in	1976.	A	more	powerful
processor	 than	 its	 predecessor,	 the	 Intel	 8080,	 which	 was	 developed	 by	 Zilog
founder	Federico	Faggin	at	Intel	in	1974,	the	Z80	went	on	to	become	one	of	the
most	dominant	processors	of	the	late	70s	and	80s.

The	 Z80	 is	 binary	 compatible	 with	 the	 8080,	 but	 provides	 many	 additional
instructions	 and	 registers,	 as	 well	 as	 improved	 interrupt	 handling,	 16-bit	 I/O
addressing,	 simple	 power	 requirements	 and	 on-chip	 dynamic	 memory	 refresh
control.

32



Figure	3-2:	The	Z80	microcomputer

A	basic	Z80	system	is	shown	in	figure	Figure	3-2,	illustrating	the	signals	provided
by	the	processor	for	the	control	of	system	devices.

Dynamic	RAM	Interface

Dynamic	Random	Access	Memory	 (DRAM)	was	 the	only	 type	of	RAM	with	 a
capacity	 large	 enough	and	at	 a	 cost	 economical	 enough	 to	be	used	 for	data	 and
program	 store	 in	 microcomputers	 of	 the	 70s	 and	 80s.	 Dynamic	 RAM	 has
complicated	 interfacing	 and	 timing	 requirements	 due	 to	 its	 address	 bus	 being
multiplexed,	at	its	need	to	have	its	'memory'	refreshed	every	few	milliseconds.	See
the	section	called	Dynamic	RAM.

One	of	the	advantages	of	the	Z80	over	its	competitors,	such	as	the	6502,	is	that	it
provides	all	of	the	control	signals,	and	at	the	necessary	timing,	to	interface	directly
to	 dynamic	 RAM	 without	 the	 need	 for	 additional	 hardware 	 such	 as	 a	 refresh
controller.

The	Z80	exploits	the	instruction	decode	cycle	of	an	instruction	fetch,	which	does
not	need	access	 to	 the	address	bus,	 to	perform	a	dynamic	RAM	refresh.	During
this	 cycle,	 a	 7-bit	 refresh	 address	 is	 placed	 on	 the	 address	 bus	 and	 the	 /RFSH
control	 signal	 is	 activated.	 This	 tells	 the	 RAM	 to	 perform	 a	 refresh	 of	 the
addressed	dynamic	RAM	row,	recharging	the	capacitors	storing	the	data.	The	7-bit
address	is	 incremented	every	instruction	fetch,	so	that	every	row	of	the	dynamic
RAM	 is	 refreshed	 within	 the	 critical	 period	 common	 to	 dynamic	 memories

1
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designed	at	the	time	of	the	Z80.

The	 remaining	 interfacing	 requirement	 is	address	bus	decoding,	 so	 that	memory
devices	appear	at	their	correct	place	in	the	memory	map.	For	this	the	Z80	provides
a	 memory	 request	 signal,	 /MREQ,	 which	 indicates	 that	 a	 memory	 operation	 is
taking	 place	 and	 the	 address	 on	 the	 address	 bus	 should	 be	 decoded	 and	 the
appropriate	device	selected.	In	addition	it	provides	separate	read	and	write	signals,
/RD	 and	 /WR,	 that	 indicate	 when	 the	 memory	 should	 perform	 the	 required
operation.

ROM	Interface

As	with	dynamic	RAM	interfacing	above,	the	Z80	control	signal	/MREQ	is	used
to	 enable	 decoding	 of	 the	 address	 bus,	 and	 the	 subsequent	 selection	 of	 the
appropriate	memory	device.	Following	this	the	read	request	signal,	/RD,	activates
the	ROM	output	enable,	causing	it	 to	place	 the	requested	byte	onto	 the	data	bus
for	the	processor	to	read.	A	Z80	system	will	always	find	ROM	mapped	to	the	start
of	 its	 address	 space,	 as	 the	 processor	 begins	 execution	 at	 address	 zero	 on
powering	up.

I/O	Interface

The	Z80's	I/O	interfacing	facilities	mirror	those	for	memory,	and	have	signal	and
instruction	timings	that	are	tailored	specifically	to	I/O	operations.

When	the	Z80	wishes	to	access	an	I/O	device,	it	places	the	address	of	the	required
I/O	 port	 on	 the	 address	 bus,	 and	 activates	 the	 I/O	 request	 signal,	 /IORQ.	 This
indicates	that	an	I/O	operation	is	taking	place	and	that	the	address	on	the	address
bus	should	be	decoded	and	the	appropriate	I/O	device	selected.	A	short	time	later,
one	of	 the	 read	 and	write	 request	 signals,	 /RD	and	 /WR,	 is	 activated	 indicating
that	the	device	should	perform	the	request.

Interrupts

Some	I/O	devices	are	asynchronous	in	design,	and	do	not	require	the	processor	to
be	 reading	 or	 writing	 to	 them	 for	 them	 to	 be	 performing	 I/O	 activities.	 For
example,	a	printer	may	be	sent	a	line	of	text	to	print,	and	as	printing	is	generally
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slow,	 the	processor	may	get	on	with	 some	other	 action	while	 that	 is	 happening.
For	the	processor	to	send	a	second	line	of	text	to	the	printer	it	needs	to	know	when
it	has	finished	with	the	first.	It	could	determine	this	by	periodically	reading	an	I/O
port	to	get	the	current	status	of	the	printer.	However,	this	requires	repeated	effort
by	 the	 processor	 and	 limits	 the	 tasks	 it	 could	 be	 doing	 while	 waiting.
Alternatively,	 the	 system	designers	 could	 arrange	 for	 the	printer	 to	 interrupt	 the
processor	when	 it	 is	 ready	 for	more	 data,	 freeing	 the	 processor	 completely	 and
allowing	it	to	direct	its	attention	to	other	activities.

The	Z80	provides	several	interrupt	mechanisms	for	use	by	I/O	devices.	A	device
that	 wishes	 to	 inform	 the	 processor	 that	 it	 requires	 attention	 can	 do	 so	 by
activating	the	Z80	control	signal	/INT.	On	receipt	of	an	interrupt	signal,	the	Z80
will	complete	the	current	instruction	and	then	begin	execution	of	a	special	section
of	code	called	 the	 Interrupt	Service	Routine.	The	 ISR	usually	 looks	 to	see	what
I/O	device	 raised	 the	 interrupt,	 and	executes	 the	appropriate	code	 to	handle	 that
device.	Once	 the	 interrupt	 has	 been	 satisfied,	 execution	 returns	 to	 the	 point	 the
processor	 was	 interrupted,	 where	 it	 continues.	 The	 interrupted	 program	 is
generally	unaware	that	interruption	took	place.

Microcomputer	Implementation

Microcomputers	 of	 the	 70s	 were	 typically	 implemented	 through	 small	 scale
integration	 (SSI)	 using	 off	 the	 shelf	 integrated	 circuits	 such	 as	 74LS	NOR	 and
NAND	 gates,	 counters	 and	 flip-flops.	 As	 the	 complexities	 of	 these	 computers
rose,	 so	did	 their	 size,	 power	 consumption	and	manufacturing	costs.	 In	order	 to
stay	 competitive,	 computer	 and	 other	 original	 equipment	manufacturers	 (OEM)
increasingly	 turned	 to	 large	 scale	 integration	 (LSI),	 where	 more	 complete
functional	units	were	implemented	within	a	single	integrated	circuit.

Initially	 the	 only	 option	 available	 to	 the	 original	 equipment	manufacturers	 was
through	 the	custom	design	of	 silicon	devices,	an	expensive	and	 time	consuming
process	where	a	positive	 return	on	 investment	could	only	be	 realised	after	 large
volumes	of	the	product	had	been	sold.

Later,	 semi-custom	 options	 became	 available	which	 filled	 the	 gap	 between	 SSI
and	LSI	by	reducing	the	development	cycle	and	cost	of	producing	OEM	specific
solutions.	 This	 allowed	 manufacturers	 to	 increase	 the	 complexity	 of	 their
products,	 whilst	 simultaneously	 lowering	 their	 cost,	 promoting	 competition	 and
innovation.

1.	A	simple	address	bus	multiplexer	 is	 the	only	external	 interfacing	 requirement
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when	using	dynamic	RAM	that	provided	more	than	128	bytes	of	storage.
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Chapter	4

Semi-Custom	Devices

Prior	to	the	advent	of	semi-custom	devices,	the	OEM	in	need	of	a	microelectronic
solution	 could	 either	 use	 off	 the	 shelf	 SSI	 integrated	 circuits	 or	 invest	 in	 the
development	of	a	fully-custom	LSI	device.

SSI	 is	 a	 cost	 effective	 option	 for	 simple	 designs	 because	 these	 generic	 ICs	 are
mass	produced,	and	are	therefore:

1.	 inexpensive	to	use
2.	 available	from	multiple	sources,	giving	the	OEM	supplier	independence
3.	 highly	reliable

As	 circuit	 complexity	 rises,	 so	 does	 the	 number	 of	 SSI	 devices	 and	 the	 area	 of
printed	 circuit	 board	 (PCB)	 required,	 increasing	 manufacturing	 costs.	 If
complexity	rises	further,	these	manufacturing	costs	may	become	so	great	that	SSI
ceases	to	be	an	economic	option	and	a	custom	LSI	solution	must	be	sought.

Furthermore,	the	OEM	conscious	of	commercial	security	would	be	aware	of	how
easily	 SSI	 designs	 can	 be	 copied,	 and	 may	 seek	 an	 LSI	 solution	 to	 protect	 its
intellectual	property.

Fully-custom	 design	 has	 the	 advantage	 that	 only	 the	 necessary	 functionality	 is
implemented,	removing	the	redundancy	associated	with	SSI,	where	chip	features
generally	 exceed	 design	 requirements.	 Additionally,	 the	 transistor	 and	 gate
structures	 used	 may	 be	 varied	 to	 optimise	 performance	 and/or	 the	 silicon	 area
consumed.

Development	of	a	fully-custom	LSI	device	requires	that	every	aspect	of	the	silicon
device	be	designed	from	the	oxide	masks	and	Photolithography	process,	through
to	 the	metal	 interconnect	 layers.	 This	 is	 a	 skilled	 and	 time	 consuming	 activity,
which	can	only	be	 reasonably	undertaken	by	 the	microelectronics	manufacturer.
Once	 designed,	 the	 device	 can	 be	 produced	 on	 a	 standard	 integrated	 circuit
production	line.

The	 cost	 of	 the	 fully-custom	device,	 therefore,	 depends	 largely	upon	 the	design
time	and	the	level	of	skilled	resource	required	[HURSTCSIC].
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Semi-custom	devices	neatly	fill	the	gap	between	fully-custom	design	and	SSI	by
reducing	 the	 expertise	 and	 time	 required	 to	 produce	 a	 custom	design,	 placing	 it
within	the	capability	of	the	OEM.

The	 techniques	 used	 fall	 broadly	 into	 two	 categories.	 One,	 the	 cell-library	 or
macrocell	approach,	and	two,	the	uncommitted	masterslice	approach.	Today,	these
technologies	have	been	replaced	by	the	structured	application-specific	 integrated
circuit	 (ASIC),	 the	 field-programmable	 gate	 array	 (FPGA)	 and	 the	 complex
programmable	logic	device	(CPLD).

Semi-custom	devices	that	were	designed	using	the	cell-library	approach	required
the	generation	of	a	full	mask	set,	much	like	a	fully-custom	design.	However,	their
distinguishing	feature	was	that	the	custom	device	was	constructed	from	a	library
of	proven	standard	components.	This	was	similar	to	the	SSI	approach,	except	that
precisely	 the	 required	 number	 of	 gate,	 latch	 and	 flip-flop	 "cells"	 would	 be
interconnected	on	the	silicon	to	form	the	custom	integrated	circuit.

The	 use	 of	 a	 cell-library	 considerably	 reduced	 the	 design	 time	 compared	will	 a
fully-custom	device,	at	the	expense	of	increased	chip	size	and	possibly	a	less	than
optimum	performance.

The	 alternative	 masterslice	 approach	 is	 divided	 into	 two	 categories;	 the
uncommitted	gate	array	(UGA)	and	the	uncommitted	component	array	(UCA).

A	component-array	consists	of	a	slice	of	silicon	upon	which	there	are	an	array	of
unconnected	 cells,	 each	 cell	 containing	 a	 number	 of	 unconnected	 components
such	as	transistors	and	resistors.	These	uncommitted	devices	were	produced	ahead
of	 requirement	 and	 stored	 until	 needed,	 and	 were,	 thus,	 given	 the	 name
uncommitted	component	array.

The	alternative	to	the	component	array	was	the	gate	array,	where	cells	operate	at
the	functional	level	instead	of	at	the	component	level.	These	functional	units	could
be	anything	from	simple	logic	gates	to	fully	realised	logic	modules.

The	 subsequent	 dedication	 of	 the	 pre-produced	 arrays	 to	 a	 customer's	 specific
requirements	was	achieved	by	adding	a	number	of	final	metallisation	layers	over
the	 array.	 These	 layers	 provided	 the	 required	 inter-cell	 and	 between-cell
connections	 necessary	 to	 achieve	 the	 desired	 circuit	 functionality.	 A	 major
advantage	of	the	component	array	was	that	they	could	be	configured	for	analogue
or	digital	operation	or	both.

For	 the	 original	 equipment	 manufacturer,	 this	 method	 was	 far	 cheaper	 than
producing	a	fully-custom	or	cell-library	semi-custom	design,	as	special	production
plant	tooling	was	not	required,	and	design	to	production	times	were	considerably
shorter.	The	disadvantage	was	 that	component	density	was	usually	 the	 lowest	of
the	 three	 LSI	 technologies,	 and	 there	 was	 often	 a	 percentage	 of	 component
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wastage	due	to	the	limitations	of	connection	routing	via	the	metal	layer.

Semi-Custom	Gate	Technologies

Various	silicon	technologies	have	been	employed	by	companies	in	the	production
of	 gate	 arrays,	 in	 particular	 bipolar	 transistor	 and	 metal-oxide-semiconductor
(MOS)	transistor.

One	 of	 the	 first	 component	 array	 manufacturers	 was	 Fairchild	 who	 in	 1967
produced	the	worlds	first	two-layer	metal	process,	32-gate,	20	nanosecond	custom
DTL	component-array	-	the	Fairchild	Micromatrix	4500	[MICROMATRIX].	This
was	 followed	by	Sylvania	 in	 1968	with	 a	 30	 cell,	 four	 gate	 per	 cell	TTL	 array.
When	Motorola	 joined	 the	market,	 they	 introduced	 25	 and	 80	TTL	gate	 arrays,
with	propagation	delays	of	just	5ns.

In	1972,	UK	semiconductor	manufacturer	Ferranti	Electronics	Ltd	introduced	its
bipolar	Uncommitted	Logic	Array	(ULA),	an	uncommitted	component	array.	This
was	 based	 on	 the	 advanced	 CDI	 process	 and	 offered	 an	 efficient	 cell	 routing
capability	 through	 a	 single	 metal	 interconnection	 layer.	 Ferranti	 quickly
dominated	 the	 international	semi-custom	device	market,	and	by	 the	1980s	had	a
40%	world	market	share.

Ferranti	and	its	ULA	are	discussed	fully	in	Chapter	5,	The	Ferranti	ULA.
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Chapter	5

The	Ferranti	ULA

In	 the	 1960s	 Ferranti	 achieved	 great	 technological	 success	 with	 semiconductor
products	 such	 as	 the	Mesa	 transistor	 and	 the	Micronor	 I	 and	 II	DTL	 integrated
circuits.	Their	commercial	success	was	limited	however,	as	American	companies
such	 as	 Fairchild,	 Motorola	 and	 Texas	 Instruments	 began	 manufacturing	 and
marketing	 their	 devices	 in	 Britain,	 competing	 directly	 with	 companies	 such	 as
Ferranti	in	a	fledgling	market.

However	superior	the	Micronor	II	was	at	the	time,	companies	such	as	ICT	(which
later	became	ICL)	purchased	the	cheaper	Texas	Instruments	5400	and	7400	TTL
ICs	for	their	1906	computer	series,	despite	the	fact	they	had	propagation	delays	of
10ns,	compared	to	Micronor	II's	8ns.

In	 order	 to	 reach	 this	 level	 of	 technical	 achievement,	 Ferranti	 were	 naturally
reliant	 upon	patent	 licences	 from	Bell	Labs,	Texas	 Instruments	 and	Fairchild	 as
the	 early	 innovators	 of	 silicon	 technologies.	 Much	 of	 the	 funding	 for	 this	 and
Ferranti's	 research	 and	 development	 activities	 came	 from	 government	 loan
schemes	such	as	the	Advanced	Computer	Techniques	Project,	launched	by	the	UK
Ministry	of	Technology	in	1966.

It	was	 this	 availability	of	 funds	 that	 allowed	Ferranti	 to	pursue	and	develop	 the
CDI	process,	paying	Fairchild	£150,000	for	the	use	of	its	patents	[WILSONTT].
Though	invented	by	Bell	Labs	in	1969	[MURPHY],	both	Bell	Labs	and	Fairchild
had	 failed	 to	 turn	 it	 into	 a	 viable	 semiconductor	 technology,	managing	 only	 to
produce	 prototype	 devices	 that	 operated	 at	 three	 volts,	 and	 not	 at	 the	 industry
standard	of	five	volts.

Towards	 the	 end	 of	 1969	 Ferranti	 engineers	 Alan	 Bardsley	 and	 Dick	 Walker
visited	 Bell	 Labs	 to	 learn	 all	 they	 could	 about	 the	 CDI	 process	 and	 technical
issues	that	had	been	experienced.	On	returning	to	the	UK	they	reworked	the	entire
process,	and	by	early	1970	they	had	improved	production	yields	at	each	stage	of
manufacture	 and	 increased	 the	 operating	 voltage	 to	 five	 volts.	 At	 this	 point	 of
development	 Ferranti	 began	 planning	 a	 range	 of	 CDI	 integrated	 circuits	 and
applications,	setting	out	a	strategy	based	on	this,	their	latest,	and	highly	significant
technical	achievement.
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In	June	1970	the	Labour	government	lost	the	general	election	to	the	Conservative
Party,	who	were	keen	to	reduce	the	interference	of	government	in	industry.	In	the
months	that	followed,	they	abolished	the	ACTP	scheme	and	effectively	ended	the
availability	 of	 credit	 on	 which	 Ferranti	 and	 others	 had	 been	 so	 reliant
[CPMAN1970]	 [WILSON2].	 Coupled	 with	 diminishing	 sales	 on	 standard	 ICs,
Ferranti	 was	 clear	 that	 it	 would	 be	 unable	 to	 compete	 in	 price	 with	 their	 U.S.
competitors,	 and	 was	 forced	 to	 review	 its	 product	 portfolio	 and	 strategies	 in	 a
drive	to	remain	in	the	semiconductor	manufacturing	arena.

Inspired	by	their	technical	strengths,	Ferranti	adopted	a	strategy	of	finding	a	niche
market	for	their	new	advanced	CDI	process.	One	such	niche	was	the	manufacture
of	 non-standard	 ICs	 for	 original	 equipment	manufacturers	who	 required	 custom
designs.

It	was	this	direction	of	research	that	gave	birth	to	the	Uncommitted	Logic	Array
(ULA).	This	 unique	bipolar	 semi-custom	LSI	device	 could	be	 customised	 to	 an
individual	 customer's	 requirements	 quickly	 and	 cheaply,	 offering	 the	 most	 cost
effective	 technique	 for	 designing	 and	 producing	 LSI	 for	 customer	 specific
applications.

In	1972	Ferranti	Semiconductors	pioneered	and	introduced	the	first	commercially
available	 ULA,	 providing	 an	 economic	 large	 scale	 integration	 solution	 to	 a
customer's	 requirements	 in	 a	 fixed,	 fast	 and	dependable	 timescale,	whatever	 the
market	sector	[FERRANTISG1].

The	following	year	Ferranti	received	an	unexpected	boost	in	the	form	of	renewed
funding	from	the	UK	Department	of	Trade	and	Industry	and	its	Microelectronics
Support	Scheme.	This	 allowed	Ferranti	 to	 claim	50	per	 cent	of	 all	 research	 and
development	 costs	 and	 enabled	 it	 to	 perfect	 the	 CDI	 process	 even	 further,
significantly	improving	production	reliability.

ULA's	were	 initially	produced	 in	 two	categories,	a	digital/linear	optimised	ULA
Digilin	 Array	 using	 RTL	 technology,	 and	 a	 ULA	Gate	 Array	 using	 CML	with
increased	 operating	 speeds	 and	 packing	 densities.	Like	 other	 component	 arrays,
each	ULA	contained	an	array	of	'uncommitted'	active	and	passive	components,	but
uniquely	 required	 only	 a	 single	 final	 layer	 of	 interconnecting	 aluminium	which
allowed	a	high	degree	of	chip	utilisation	and	complexity.

The	 interconnection	 pattern	 connecting	 the	 individual	 components	 to	 provide
system	integration	was	generated	from	the	customer's	own	specification	either	by
Ferranti	or	by	the	customer	themselves.

By	 the	 end	 of	 the	 1970s,	 the	ULA	 family	was	 composed	 of	 12	 arrays	 offering
complexities	 from	200	 to	1000	gates,	with	 speeds	of	up	 to	20MHz.	These	were
marketed	as	the	ULA1000,	2000	and	5000	series,	with	each	providing	a	range	of
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performance	 and	 power	 ratios	 coupled	 with	 flexible	 digital	 and	 analogue
capability.

By	 1982	 the	 family	 had	 increased	 to	 50	 arrays,	 following	 the	 introduction	 of	 a
new	buffered-CML	technology.	These	new	 'R'	series	arrays	offered	up	to	10,000
gates	 at	 frequencies	 up	 to	 80MHz,	 with	 low	 power	 consumption	 in	 four
performance	and	power	ratios.

Ferranti	 also	began	offering	 the	 automated	ULA	CAD	Complex	 services	 at	 this
time,	based	on	the	Applicon	AGS860/870	interactive	graphics	and	the	VAX11/780
computer	 system	 supported	 by	 PDP11/60,	 PDP11/05,	 design	 stations	 and	 high
speed	plotters.	This	facility	automated	the	routing	of	ULA	metallisation	layers	to
VLSI	 complexity,	 and	 was	 linked	 to	 the	 automatic	 ULA	 test	 centre	 and
microlithography	centre.

Over	 40	 man-years	 of	 dedicated	 gate	 array	 software	 was	 available,	 with	 an
extensive	 design	 library	 and	 all	 the	 programs	 necessary	 for	 ULA	 design	 and
verification,	 including	 layout	 and	 design	 rule	 checking,	 logic	 validation	 and
simulation,	 high	 level	 test	 language,	 test	 program	 generation	 and	 test	 schedule
verification.	The	ULA	Designer	was	the	first	system	of	its	kind,	worldwide,	 that
could	 be	 installed	 at	 a	 customers	 premises,	 allowing	 an	 engineer	 to	 control	 and
carry	out	the	full	ULA	design	cycle	up	to	the	manufacturing	stage.	This	powerful
multi-user	system	consisted	of	a	DEC	PDP11/23	minicomputer	running	the	RSX-
11M	 operating	 system,	 high	 quality	 graphical	 display,	 digitising	 tablet,
printer/plotter	and	control	console.	A	verified	design	for	a	1000-gate	array	would
typically	 take	 three	 to	 four	weeks,	with	 prototypes	 available	 after	 an	 additional
four	 to	 seven	 weeks.	 Verification	 was	 achieved	 by	 communicating	 with	 the
Ferranti	 CAD	Complex	 using	 a	 2400	 baud	 dial-up	modem	 using	 the	DECNET
protocol.	The	ULA	Designer	was	announced	on	the	23rd	February	1982,	at	a	base
price	of	$99,000.

ULA	Organisation

Each	 ULA	 chip	 has	 a	 matrix	 of	 identical	 cells	 containing	 uncommitted
components,	 whose	 role	 is	 to	 satisfy	 the	 functional	 logic	 of	 the	 system,
surrounded	by	peripheral	cells	of	uncommitted	components	 for	 input/output	and
linear	functions.

Matrix	Cells
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The	number	of	matrix	cells	on	any	given	array	determines	 the	 logic	complexity
that	can	be	achieved.

Each	 matrix	 cell	 contains	 a	 number	 of	 unconnected	 components,	 which	 when
connected	in	their	basic	form	provide	two	2-input	NOR	gates.

There	are	three	types	of	matrix	cell,	RTL,	CML	and	buffered	CML,	each	of	which
provide	performance	advantages	depending	on	the	particular	application.

Figure	5-1:	Location	of	matrix	and	peripheral	cells	of	the	ULA5000

Peripheral	Cells
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Arranged	 around	 the	periphery	of	 the	 chip,	 the	peripheral	 cells	 provide	 I/O	 and
linear	 functionality.	The	number	of	peripheral	cells	available	 is	governed	by	 the
physical	chip	dimensions,	which	is	related	to	the	number	of	matrix	cells.

ULA	Gate	Arrays	have	peripheral	cells	whose	components	provide	I/O	interface
capability	with	bipolar,	MOS	and	CMOS	technologies.	They	may	be	configured
to	drive	LCD	and	LED	displays	and	switch	outputs,	and	in	addition	will	provide
linear	functions	such	as	oscillators	and	Schmitt	triggers.

ULA	Digilin	Arrays	(those	with	combined	digital	and	enhanced	linear	capability)
have	 peripheral	 cells	 whose	 components	 provide	 high	 performance	 linear
functions	 such	 as	 amplifiers,	 precision	 analogue	 switches,	 comparators	 and	 op-
amps,	 as	 well	 as	 digital	 I/O.	 In	 addition,	 the	 later	 generation	 of	 Digilin	 Array
peripheral	 areas	 contain	 special	 supporting	 linear	 elements	 such	 as	 voltage
reference	sources,	high	current	drive	transistors	and	shaping	capacitors.

ULA	Design	Process

Prior	 to	 the	 availability	 of	 the	 ULACAD	 system,	 the	 ULA	 design	 process	 was
relatively	manual,	 though	simple	and	efficient.	The	 later	CAD	process	 followed
the	same	key	steps,	but	 through	automated	tools,	reducing	the	turn	around	times
and	producing	more	automatically	correct	designs.

The	general	sequence	is	as	follows:

1.	 Determine	the	type	of	array,	define	and	agree	the	logic	specification.
2.	 Generate	a	single	interconnection	pattern	from	agreed	specification.
3.	 Produce	single	interconnection	mask.
4.	 Fabricate	prototype	samples	by	applying	aluminium	interconnection

patterns	to	uncommitted	wafers	held	in	stock.
5.	 Prototype	testing.

Steps	one	to	three	could	be	carried	out	by	the	Ferranti	ULA	engineering	team	or
by	 the	customer.	Fabrication	and	production	 testing	was	carried	out	by	Ferranti,
and	usually	followed	by	a	level	of	customer	testing.

Determine	Array	Type	and	Agree	Logic
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The	choice	of	ULA	depends	on	 the	 complexity	of	 the	 logic	 to	be	 implemented,
once	it	had	been	designed	down	to	the	gate	level.	Deciding	factors	would	be	the
amount	and	accuracy	of	the	linear	function	required,	the	number	of	pins	and	cells
needed,	the	power	requirements	and	propagation	delays.

Since	each	ULA	array	provided	different	internal	component	values,	the	choice	of
ULA	array	and	final	circuit	design	were	closely	related.	It	was	usual	for	a	suitable
array	 candidate	 to	 be	 chosen	 before	 the	 design	 was	 finalised,	 so	 it	 could	 be
expressed	in	terms	of	the	component	values	and	propagation	delays	found	in	the
selected	array.

Once	 a	 suitable	 array	 type	 had	 been	 chosen,	 the	 logic	 and	 linear	 circuit	 design
would	be	prototyped	on	breadboard	or	simulated.	Once	verified,	the	design	would
be	agreed	with	Ferranti	and	signed-off.	This	was	particularly	important	if	Ferranti
were	carrying	out	the	design	and	development	life	cycle.

Generate	Interconnect	Pattern

Converting	 the	 agreed	 logic	 diagram	 into	 an	 interconnect	 pattern	was	 the	most
complex	and	time	consuming	task.	A	manual	250×	magnification	drawing	of	the
interconnect	 pattern	 was	 created	 in	 pencil	 on	 mylar,	 laid	 over	 a	 routing	 grid
identifying	 the	 matrix	 and	 peripheral	 cell	 component	 connection	 points.	 The
approach	 used	 to	 place	 the	 logic	 gates	 on	 the	 matrix	 was	 to	 divide	 the	 logic
diagram	into	blocks	of	strong	affinity.	These	blocks	would	then	be	placed	on	the
array	matrix,	leaving	room	for	inter-block	routing.	Detailed	gate	placement	within
the	blocks	would	then	be	performed.
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Figure	5-2:	Generation	of	250×	ULA	interconnection	pattern

The	interconnect	co-ordinates	of	the	250×	interconnect	pattern	was	digitised	into
Ferranti's	Applicon	 system	 and	 verified	 before	 being	 used	 to	 produce	magnetic
steering	tapes	for	the	final	stage	mask	generation.	The	mask	artwork	would	then
be	 automatically	 cut	 and	 then	 checked,	 producing	 a	 negative	 250×	 light-field
mask,	 where	 significant	 parts	 of	 the	 mask	 were	 opaque.	 The	 mask	 was	 then
inspected	 for	 flaws	 (Figure	 5-3)	 before	 being	 optically	 reduced	 to	 a	 10×
magnification	mask	called	a	reticle	(see	Figure	5-4).
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Figure	5-3:	Inspection	of	machine	cut	250×	artwork

The	main	problem	with	a	user	supplied	pencil	interconnect	pattern	occurred	at	the
verification	phase,	 as	 the	user	had	 to	allocate	 time	 to	visit	Ferranti	 to	 solve	any
problems	found	by	the	system.

Finally	the	single	reticle	was	used	to	create	a	1×	magnification	multi-chip	wafer
mask	 of	 552	 individual	 masks,	 using	 an	 optical	 step-and-repeat	 procedure,
through	optical	projection	and	a	precision	stepper	table.

Prototype	Fabrication

The	 final	 full-size	 wafer	 mask	 (Figure	 5-5)	 containing	 the	 grid	 of	 23×24
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individual	masks	was	used	to	optically	expose	an	entire	wafer.

The	 uncommitted	 wafer	 was	 first	 coated	 with	 a	 layer	 of	 aluminium	 and	 a	 UV
sensitive	negative	photoresist.	A	few	microns	above	this	was	placed	the	full-	size
wafer	 mask,	 which	 was	 then	 exposed	 to	 UV	 light.	 The	 chemical	 bonds	 in	 the
negative	photoresist	strengthen	under	UV	so	that	the	areas	not	illuminated	can	be
etched	away,	leaving	the	aluminium	interconnection	tracks.

Figure	5-4:	Final	10×	optical	interconnect	mask	or	reticle

Testing

Before	 the	 prototype	 committed	 arrays	 were	 assembled	 and	 packaged,	 some
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verification	 of	 the	 individual	 integrated	 circuits	 would	 be	 performed.	 This	 was
followed	 by	 functional	 testing	 by	 Ferranti	 and	 then	 the	 customer.	 The	 essential
checks	being	[HURSTVLSI]:

Fabrication	Checks:	Test	that	all	the	fabrication	steps	have	been
implemented	during	the	wafer	manufacture.
Design	Checks:	Test	that	the	prototype	ICs	are	functionally	correct	and	meet
the	specification.
Production	Checks:	Test	that	production	ICs	to	be	used	in	the	final	product
are	free	from	defects.

Fabrication	 checks	 were	 carried	 out	 by	 Ferranti	 through	 special	 drop-ins
distributed	 across	 the	 wafer.	 Drop-ins,	 or	 process	 evaluation	 devices,	 are	 small
circuits	that	allow	various	parameters	of	a	wafers	fabrication	to	be	checked	such
as	 resistivity,	 transistor	 junction	 breakdown	 voltage	 and	 capacitance.	 These
features	 were	 checked	 before	 any	 functional	 verification	 of	 the	 surrounding
committed	 array	 dies	 was	 carried	 out.	 Five	 drop-ins	 can	 be	 seen	 arranged	 in	 a
cross	pattern	over	the	full-size	interconnect	mask	in	Figure	5-5.
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Figure	5-5:	Full-size	wafer	interconnection	mask	with	five	drop-ins

Customer	 testing	 of	 prototypes	 was	 essential,	 as	 there	 was	 no	 guarantee	 that	 a
committed	array	that	passed	Ferranti's	production	and	functional	tests	would	work
correctly	when	subjected	 to	 real	product	conditions	by	 the	customer.	These	may
not	be	production	faults,	but	minor	design	or	specification	errors	that	occurred	due
to	 changes	 in	 the	 product	 specification	 after	 the	 ULA	 logic	 design	 had	 been
agreed,	or	from	incomplete	design	verification	and	simulation	at	the	initial	design
phase.

Production	testing	of	committed	arrays	was	always	carried	out,	as	the	fabrication
of	 integrated	circuits	can	never	be	considered	defect	free.	Each	die	on	the	wafer
was	individually	tested	through	an	automated	wafer	probe	that	rapidly	applied	the
customer	 supplied	 test	 vectors.	 Those	 dies	 that	 failed	were	 painted	with	 an	 ink
spot	so	that	they	could	be	discarded	after	dicing.
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ULA	Computer	Aided	Design

From	 approximately	 1981,	 Ferranti	 offered	 computer	 aided	 design	 and
verification	of	gate	array	designs	at	their	ULACAD	complex	[RAMSAYAUTO],
and	from	1982	at	the	customers	own	premises	through	the	ULA	Designer	system.

Both	 systems	 implemented	 the	 same	 design	 sequence	 consisting	 of	 four	 simple
steps,	which	were	straightforward	enough	that	no	expertise	was	required	to	use	the
ULA	Designer	[FERRANTIUDB]:

1.	 Enter	Logic	Diagram:	The	logic	diagram,	the	key	reference	database	for
layout	and	logic	verification	routines,	was	digitised	into	the	ULA	Designer
as	a	complete	graphical	drawing	and	syntax	checked.

2.	 Design	ULA	Layout:	The	user	carried	out	the	layout	design	using	standard
and	user-defined	functions.	When	complete,	the	layout	data	was	digitised
into	the	ULA	Designer	and	a	check	plot	produced.	Interactive	editing	of	any
errors	or	modifications	could	be	performed	at	the	graphics	terminal	where
special	ULA	window	and	backcloth	facilities	were	available	to	help	the
operator	determine	the	locations	of	contact	holes	on	the	matrix.

3.	 Enter	Test	Schedule:	The	test	schedule	was	written	in	Ferranti's	high-level
SAM	Integrated	Circuit	Testing	Language,	which	was	used	by	the
ULACAD	Applicon	host	computer.	After	it	had	been	entered	into	the	ULA
Designer	and	a	complete	syntax	check	performed,	the	schedule	would	be
used	for	both	logic	verification	and	for	production	of	the	final	ATE	program
[RAMSAYREM].

4.	 Verify	Design:	For	this	stage	the	user	would	transmit	three	files	via	modem
to	the	ULACAD	centre	for	processing:	logic,	layout	and	test	schedule,
along	with	processing	commands	(ULASIM	for	logic	simulation,
ULACHECK	for	layout	checks	and	ULATEST	for	test	program
generation).	Ferranti	would	automatically	process	each	file	with	the
appropriate	program	and	return	the	results	to	the	users	ULA	Designer	later
that	day.	The	user	therefore	had	full	access	to	the	specialised	ULA	software
necessary	for	complete	design	verification.

Once	 the	 design	 was	 complete,	 the	 user	 would	 transmit	 instructions	 to	 the
ULACAD	complex	to	proceed	with	mask	and	prototype	device	manufacture.

Logic	diagram	entry	was	considered	to	be	one	of	the	key	stages	of	the	automation
process,	as	nearly	all	subsequent	stages	of	the	process,	from	logic	simulation	and
interconnect	routing,	through	to	layout	checking,	would	be	performed	by	referring
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to	the	logic	design	and	related	information.

Figure	5-6:	Digitising	logic	diagram	into	the	ULA	Designer

The	 logic	diagram	produced	by	 the	CAD	system	served	as	 the	master	 reference
database,	 once	 it	 had	 been	 checked	 by	 the	 original	 designer.	 Several	 items	 of
reference	data	were	required	to	be	held	against	the	logic	drawing:

1.	 Network	interconnections,	generated	through	the	digitisation	process.
2.	 Gate	types.
3.	 Gate	propagation	delays.
4.	 Gate	supply	currents.
5.	 ULA	type.
6.	 Peripheral	cell	type	(for	instance	the	ULA2U000	array	contains	two

different	types	of	peripheral	cell).
7.	 Peripheral	cell	propagation	delays.
8.	 Peripheral	cell	supply	currents.
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Figure	5-7:	Interactive	editing	of	layout	in	the	ULA	Designer

Once	 layout	 paths	 had	 been	 stored	 in	 the	 ULA	Designer	 or	 ULACAD	 system,
they	could	be	edited	or	modified	through	the	interactive	graphical	terminal,	Figure
5-7.	Such	modification	could	be	carried	out	during	the	digitising	process,	allowing
immediate	correction.

The	 design	 verification	 stage	 automated	 the	 process	 of	 layout	 checking	 by
comparing	against	the	logic	drawing	master	database.	Since	this	was	performed	at
the	 ULACAD	Complex,	 layouts	 produced	 using	 a	 remote	 ULA	Designer	 were
required	to	be	transmitted	to	Ferranti	by	modem	link.

Based	on	experience	gained	 through	the	1970s,	Ferranti	 found	that	most	routing
errors	were	between	components	within	a	cell.	Ferranti	 therefore	split	 the	layout
checking	into	two	phases:

1.	 Intra-cell	checking:	Verify	that	each	logic	cell	is	wired	correctly	in	terms	of
transistors	and	resistors.	This	was	necessary	due	to	the	possibility	of	errors
in	manual	or	hand	finished	routing.

2.	 Inter-cell	checking:	Verify	that	logic	cells	are	correctly	routed	against	the
logic	diagram.

Designs	 that	 were	 carried	 out	 by	 Ferranti	 engineers	 at	 the	 ULACAD	 complex
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could	 be	 laid	 out	 using	 automatic	 logic	 placement	 and	 routing.	 Automatic
placement	of	a	layout	followed	the	same	process	as	manual	placement,	in	that	the
logic	was	split	into	a	few	blocks	of	strong	affinity	which	were	placed	allowing	for
inter-block	 routing.	Once	 the	blocks	had	been	placed,	 cell	 orientation	had	 to	 be
considered.	A	ULA	cell	may	be	routed	in	multiple	ways	to	perform	the	same	logic
function,	 the	 complexity	 of	which	 increased	 as	 you	went	 above	 a	 4	 input	NOR
gate,	such	as	a	D-type	latch	which	could	require	between	four	and	six	matrix	cells.
The	CAD	 system	 employed	 a	 center	 of	 gravity	 tree	 calculation	 for	 each	 net	 to
calculate	the	best	configuration.

Automatic	routing	of	the	array	was	carried	out	using	algorithms	derived	from	the
Applicon	PCB	routing	application.	The	common	conduction	routes	of	the	matrix
cells,	such	as	cross-unders	and	the	path	between	multiple	common	collectors	of	a
transistor,	were	held	as	fixed	routes	on	a	virtual	second	routing	layer,	so	that	the
router	had	the	necessary	information	about	pre-connected	points.

One	hundred	per	cent	full	automatic	routing	was	generally	not	achieved	due	to	the
high	packing	density	required	on	most	ULA	array	designs.	Some	degree	of	hand
finishing	was	therefore	required	on	many	layouts,	often	involving	modification	of
internal	cell	routing	to	achieve	a	fully	interconnected	design.

ULA	Construction

The	ULAs	discussed	 in	 this	chapter	were	produced	using	 the	Ferranti	Advanced
Bipolar	 LSI	 process	 (FAB-2),	 a	 successful	 implementation	 of	 the	 Bell
Labs/Fairchild	CDI	process	discussed	in	Chapter	2,	Integrated	Circuits.

This	 semiconductor	 process	 utilised	 N+	 diffusions	 to	 provide	 both	 isolation	 as
well	as	 transistor	base	and	resistor	areas.	By	employing	a	 thin	epitaxial	 layer	of
2µm	 and	 shallow	 diffusion	 depths	 of	 1µm,	 a	 component	 packing	 density
equivalent	to	NMOS	was	achieved	[ULAHAND].

Figure	5-8	shows	an	exploded	view	of	the	FAB-2	construction	of	a	ULA	transistor
and	resistor.
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Figure	5-8:	Exploded	FAB-2	CDI	transistor	and	resistor

The	entire	p-type	substrate	is	used	to	provide	the	ground	rail	for	the	ULA,	being
brought	to	the	die	surface	by	the	p-type	epitaxial	layer	which	surrounds	transistor
areas.	Vcc	on	the	other	hand	is	provided	by	highly	doped	n+	diffusions,	such	as
that	 surrounding	 resistors,	 allowing	 the	 ULA	 supply	 connections	 to	 be	 made
without	metal,	and	the	single	aluminium	layer	to	be	used	entirely	for	component
interconnection.	As	ULA	sizes	increase,	Vcc	routing	features	are	incorporated	into
the	array	to	ensure	an	even	distribution	of	supply	voltage	across	the	ULA.

Matrix	Cells

There	were	three	types	of	ULA	matrix	cell	in	use	by	1982:

1.	 RTL	or	Resistor-Transistor	Logic	cells
2.	 CML	or	Current-Mode	Logic	cells
3.	 BCML	or	Buffered	Current-Mode	Logic	cells

Resistor-Transistor	Logic	cells	were	used	by	 the	first	available	ULA	arrays.	The
resistor	 values	 used	 in	 each	 type	 were	 carefully	 chosen	 to	 provide	 a	 particular
speed	 to	 power	 ratio.	 Diffused	 resistors	 were	 generally	 used,	 except	 for	 values
over	 10K	 which	 were	 implemented	 as	 pinch	 resistors.	 Figure	 5-9	 shows	 the
components	 of	 an	 RTL	 matrix	 cells,	 typically	 with	 Rin	 and	 RL	 of	 10K	 for
standard	array	types,	and	of	120K	for	low	power	array	types.

A	 wide	 supply	 voltage	 was	 supported	 by	 RTL	 arrays,	 and	 the	 matrix	 cells
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themselves	could	operate	between	1.0V	and	5.0V.

Figure	5-9:	ULA	2000	RTL	matrix	cell	schematic

Current-Mode	 Logic	 offered	 a	 faster	 switching	 speed	 and	 lower	 current
consumption	 than	RTL,	and	was	used	 in	 the	 later	ULA	gate	arrays	as	 the	 range
was	 extended.	 Like	 RTL	 cells,	 the	 resistor	 values	 of	 each	 CML	 array	 type
configured	a	particular	speed	to	power	ratio.	Figure	5-11	shows	the	ratio	operating
frequency	 to	 gate	 current	 for	 the	 RTL	 and	 CML	 arrays	 of	 the	 ULA1000-5000
series.	 CML	 arrays	 supported	 a	 wide	 supply	 voltage	 but	 as	 their	 matrix	 cells
operated	at	a	fixed	voltage	of	between	0.84	and	0.95V,	current	consumption	was
considerably	reduced.
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Figure	5-10:	ULA	2C000	CML	matrix	cell	schematic
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Figure	5-11:	RTL	and	CML	frequency	to	current	ratio

The	operation	of	CML	circuits	was	discussed	 in	Chapter	 2,	 Integrated	Circuits.
The	simplest	configuration	of	the	CML	cell	is	that	of	a	NOR	gate	provided	by	the
common-collector	 switching	 transistors.	 The	 current	 source	 and	 load	 resistors
defining	the	voltage	swing	between	logic	states,	and	also	the	power	consumption
of	 the	gate.	Low	power	device	 types	 therefore	 employed	high	value	 resistors	 in
the	matrix	cells;	90K	in	the	case	of	the	2U000	type.

Figure	5-12	shows	the	voltage	levels	within	half	a	5C000	matrix	cell,	configured
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as	a	two	input	NOR	gate.

Buffered	 current-mode	 logic	 cells	 were	 first	 used	 at	 the	 end	 of	 1981	 with	 the
introduction	of	 the	R	series	ULA.	These	matrix	cells	contained	CML	gates	with
buffered	outputs	 that	 increased	 the	 fan-out	of	each	gate,	and	 resistor	values	 that
when	combined	with	an	improved	manufacturing	process,	improved	the	switching
speed	to	power	product	ratio	by	a	factor	of	4	to	1	(Figure	5-13).

Figure	5-12:	CML	NOR	gate	logic	thresholds
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Figure	5-13:	R	Series	buffered	CML	matrix	cell	schematic

Peripheral	Cells

External	 interfacing	 and	 linear	 functionality	 is	 provided	 by	 specially	 designed
peripheral	 cells	 arranged	 around	 the	 periphery	 of	 the	 array.	 The	 complexity	 of
these	cells	and	the	component	values	used	was	determined	by	the	intended	use	of
the	array,	and	were	specifically	matched	to	the	matrix	cells.

There	were	three	general	configurations	of	peripheral	cell	depending	on	the	type
of	 array:	 one	 for	RTL	arrays,	 another	 for	CML	arrays	 and	 a	 third	 for	DIGILIN
arrays.	The	component	values	used	by	an	array	established	its	switching	speed	and
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power	consumption	and	therefore	differed	between	ULA	array	types	of	the	same
family.

RTL	 peripheral	 cells	 were	 of	 limited	 complexity	 and	 generally	 had	 high	 value
pinch	resistors.

Figure	5-14:	ULA2000	RTL	peripheral	cell	schematic

CML	 peripheral	 cells	 had	 a	 high	 complexity	 and	 a	 good	 spread	 of	 low	 value
resistors.	Figure	5-15	shows	a	2C000/5C000	series	peripheral	cell.
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Figure	5-15:	ULA2C000	CML	peripheral	cell	schematic

The	 Digilin	 peripheral	 cells	 contained	 high	 performance	 components	 such	 as
matched	transistors	and	a	good	spread	of	high	value	resistors,	contributing	to	their
low	power	 consumption.	 For	 instance,	 the	 2U000	 very	 low	power	CML	device
contained	 40K,	 80K,	 160K	 and	 500K	 resistors.	 In	 addition,	 the	 2U000	 device
provided	 two	 different	 complexities	 of	 peripheral	 cell,	 avoiding	 component
wastage	where	simpler	I/O	was	required.

Power	Rails

In	a	fully	utilised	array	the	largest	power	consumers	would	be	the	peripheral	cells.
Because	 of	 this,	 the	 power	 rails	 were	 routed	 along	 the	 inside	 edge	 of	 the
peripheral	cells,	surrounding	the	central	matrix	square,	as	shown	in	Figure	5-16.
Not	only	did	this	provide	power	precisely	where	it	was	needed,	but	was	the	most
efficient	way	 to	supply	 the	matrix	cells	by	guaranteeing	 that	no	cell	was	 further
than	half	 the	matrix	width	from	the	Vs	supply.	These	main	power	rails	were	the
only	 fixed	 metal	 interconnections	 required	 in	 a	 ULA	 design,	 as	 shown

62



schematically	in	Figure	5-15.

Figure	5-16:	ULA	power	rails

Peripheral	cells	operated	from	Vcc	whereas	matrix	cells	operated	from	Vs	which,
in	 the	case	of	CML	arrays,	was	a	 regulated	noise-free	supply	of	between	0.84V
and	0.95V	generated	by	temperature	compensated	series-regulators	located	at	the
base	of	each	peripheral	cell.	These	regulators	drove	the	Vs	rail	from	Vreg	(usually
Vcc),	 and	were	controlled	by	a	Bandgap	 reference	voltage	of	between	1.35	and
1.5V	provided	by	discrete	components	at	two	opposing	corners	of	the	chip.	Since
there	are	many	Vs	 regulators	 evenly	distributed	around	 the	outside	of	 the	array,
the	total	current	available	was	much	greater	than	a	single	regulator	could	provide.
Furthermore,	 as	 the	 number	 of	 cells	 in	 the	 matrix	 increased,	 so	 did	 the
circumference	 of	 the	 array.	 This	 allowed	 more	 peripheral	 cells	 and	 series
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regulators	to	be	fabricated,	which	in	turn	provided	the	additional	current	required
by	the	increase	in	matrix	cells.

All	 arrays	 could	 be	 powered	 from	 a	 single	 supply,	 where	 the	 internal	 Vcc	 and
regulator	supply	Vreg	were	commoned.	Alternatively,	CML	arrays	permitted	 the
use	of	 two	separate	supply	voltages	for	Vcc	and	Vreg,	producing	a	 lower	power
dissipation	without	compromising	speed.

The	basic	chip	organisation	of	a	CML	ULA	is	shown	in	Figure	5-17.

Figure	5-17:	Basic	CML	chip	organisation

The	ULA1000,	2000	and	5000	Series

The	 ULA1000-5000	 series	 of	 arrays	 were	 developed	 from	 the	 first	 ULA
introduced	in	late	1972,	and	by	1979	offered	complexities	from	200	to	1000	gates
at	 a	 range	 of	 power	 and	 performance	 levels	 (see	Figure	5-11).	 Early	 low-speed
versions	 were	 implemented	 using	 RTL	 and	 were	 later	 supplemented	 by	 faster,
lower	power	CML	types.

The	speed	and	power	ratings	that	were	available	are	shown	in	Table	5-1,	the	type
code	 determines	 the	ULA	 device.	 For	 instance	 a	 5N000	ULA	would	 be	 a	 Low
Power,	Medium	speed	5000	series	ULA.

Type
Code

Description Clock
(MHz)

Gate	Delay
(ns)

Gate	Current
(µA)

Logic
Type

L Low	Power	Digilin 0.250 200 36 RTL
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U Very	Low	Power
Digilin

0.800 450 3 CML

- Normal 3 25 420 RTL1
N Low	Power	Medium

Speed
6 25 60 CML

H High	Speed 10 10 260 RTL
C Very	High	Speed 20 8 210 CML

Table	5-1:	Ferranti	ULA1000-5000	speed	and	power	ratings

Each	 array	 in	 the	 series	 has	 its	 own	 geometry,	 accommodating	 the	 varying
complexities	available.	The	ULA1000	and	ULA2000	arrays	both	contain	a	single
central	matrix,	however	the	much	larger	ULA5000	matrix	may	be	divided	by	the
Vs	supply	rail	into	four	quarters,	shown	in	Figure	5-18.

Series Types Matrix	Size Matrix	Cells Peripheral	Cells Average	Gates
1000 -	L	H 10×10×1 100 28 150
1000 U 11×13×1 143 26 215
2000 -	L	H	N	C 15×15×1 225 40 337
2000 U 16×16×1 256 40 384
5000 -(1) 11×11×4 484 48 726

5000 L 22×22×1 484 48 726
5000 N	C 11×10×4 440 48 660

Table	5-2:	Ferranti	ULA1000-5000	array	sizes

The	size	and	cell	count	for	each	array	type	is	given	by	Table	5-2.

The	 simple	coupled	 transistors	 and	 resistors	 in	 a	 single	ULA	cell	were	not	very
useful	on	their	own	other	than	for	implementing	a	basic	switch.	To	create	the	more
common	 logic	 functionality	 used	 as	 the	 basic	 building	 blocks	 of	more	 complex
designs,	ULA	cells	must	be	combined	and	interconnected.	The	more	complex	the
logic	function,	the	more	ULA	cells	required.	For	instance,	NOR	and	NAND	gates
are	 the	simplest	 'complete'	gates	and	require	single	cells,	 flip-flops	and	counters
on	 the	other	hand	require	 far	more.	This	 is	 illustrated	by	Table	5-3	 for	 a	 5C000
ULA	device.

Logic	Function Cell	Count
TTL	Buffer 1
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3	Input	NOR	Gate 1
2	Input	NAND	Gate 1
Monostable 2
Binary	Divider	with	Preset	and	Clear 3
Data	Latch 3
D-Type	Flip	Flop	with	Preset	and	Clear 6
Differential	Amplifier 6

Table	5-3:	Cell	count	for	typical	logic	functions

The	5000	Series	ULA

The	5000	Series	ULA	 is	 show	 in	Figure	5-18.	The	matrix	 cells	 are	 arranged	 as
four	 blocks	of	 11×11	 cells ,	 separated	 by	 a	 channel	 containing	 six	 cross-unders
per	matrix	row	and	column.	Running	over	this	channel,	above	the	cross-unders,	is
the	Vs	power	rail	which	distributes	power	evenly	across	the	matrix.	The	exception
is	the	5L000	device	which	contains	a	single	block	of	22×22	matrix	cells,	being	a
low	power	type	it	does	not	require	elaborate	supply	routing,	and	better	use	is	made
of	 available	 space	 by	 have	 additional	 matrix	 cells	 rather	 than	 power	 routing
channels.

1
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Figure	5-18:	Uncommitted	ULA	5000	standard	type	CML	die

The	ULA	 2000/5000	 CML	matrix	 cell	 has	 the	 structure	 shown	 in	 Figure	5-19,
which	 is	 described	 by	 schematic	 Figure	 5-20	 and	 contains	 the	 following
components:

Two	pairs	of	collector	coupled	transistors
A	dual	current	source	supplying	120	µA	(T5)
Two	load	resistors	(RL):	ULA	Type	N	=	5K7,	Type	C	=	1K7
One	current	source	resistor	(Rcs):	ULA	Type	N	=	5K7,	Type	C	=	1K7
A	Vs	supply	connection
A	GND	connection
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Three	cross-unders

Figure	5-19:	ULA	5C000	/	2C000	CML	matrix	cell
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Figure	5-20:	ULA	5C000	/	2C000	CML	matrix	schematic

Surrounding	 the	 central	 gate-array	 cell	matrix	 are	 the	 peripheral	 cells,	 arranged
around	the	edge	of	the	chip.	These	cells	are	similar	to	the	matrix	cells	but	have	a
higher	 current	 handling	 capacity	 and	 a	 larger	 component	 count,	 making	 them
suitable	for	linear	and	interfacing	functions.	Each	peripheral	cell	contains	a	bond
pad	for	connection	to	the	external	pin	of	the	IC	package.	There	may	be	between
26	and	48	peripheral	cells,	depending	on	chip	size,	but	up	 to	a	maximum	of	40
package	pins,	determined	by	the	choice	of	DIL	package.

The	ULA	2000/5000	CML	peripheral	cell	contains:

Two	coupled	transistors	rated	at	5mA	and	16mA
One	transistor	rated	at	16mA
One	transistor	rated	at	5mA
Two	general	purpose	transistors
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A	16K	pull-up	resistor
Six	resistors	of	value	200R,	1K,	2K,	3K,	5K	and	5K
One	voltage	divider	of	4K	and	400R
A	Vs	supply	rail	at	0.84	or	0.95V,	depending	on	ULA	type
A	Vcc	supply	rail	at	between	3.5	and	5.5V
A	reference	voltage	rail
A	ground	rail
Three	cross-unders
An	IC	pin	bond	pad
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Figure	5-21:	ULA	2C000	/	5C000	CML	peripheral	cell
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Figure	5-22:	ULA	2C000	/	5C000	CML	peripheral	cell	schematic

Note	that	the	Vs	rail	at	the	base	of	each	peripheral	cell	connects	directly	to	the	n+
diffusion	 that	 surrounds	 all	 matrix	 and	 peripheral	 cells,	 providing	 an	 evenly
distributed	supply	 (white	area	at	bottom	of	Figure	5-21).	Figure	5-19	 shows	 the
matrix	cell	Vs	connection	attached	 to	 the	same	 layer.	The	GND	rail	 is	 similarly
distributed	by	bonding	to	the	p-type	epitaxial	layer	at	each	peripheral	cell	(grey),
where	it	is	carried	through	to	the	substrate.

The	power	dissipation	of	a	5C000	ULA	is	given	by:

where	the	matrix	cell	dissipation	is	0.95mW	per	gate,	and	the	peripheral	cell	llmW
for	a	Vcc	of	5V.

A	5C000	ULA	powered	at	 5V	utilising	300	active	gates	 and	40	peripheral	 cells
has	a	total	power	dissipation	of:
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The	R	Series	ULA

Developed	 from	 the	 range	 of	 digital	 CML	 arrays	 ULA2N000	 through	 to
ULA9C000,	the	R	Series	ULAs	improved	the	speed	to	power	product	by	a	factor
of	4	to	1,	reducing	the	current	consumption	of	a	gate,	increasing	switching	speed,
improving	 peripheral	 cell	 capability	 and	 reducing	 the	 number	 of	 matrix	 cells
required	to	implement	a	design	[FERRANTIRS].

They	were	 initially	available	 in	 three	speed/power	options:	high	speed	 type	RA,
offering	2.5ns	typical	gate	delay,	standard	type	RB	offering	7.5ns	gate	delay,	and	a
low	power	type	RC	with	30µW	per	gate,	15.0ns	delay	(Figure	5-23).	Each	came	in
five	configurations	offering	between	500	and	2000	gates.	Later,	 the	 lower	speed
and	power	RD	type	was	added,	offering	8µW	per	gate.

Figure	5-23:	R	Series	speed	/	power	comparison
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The	 matrix	 cells	 were	 more	 advanced	 that	 the	 earlier	 CML	 series,	 having	 an
additional	 emitter	 follower	 added	 to	 each	 gate	 with	 two	 electrically	 isolated
emitter	outputs.	The	dual	gate	outputs	permitted	a	wired-OR	arrangement	which
reduced	the	gate	count	required	by	the	earlier	ULA	types.

Figure	5-24:	R	Series	matrix	cell
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Figure	5-25:	R	Series	matrix	cell	schematic

In	total	the	R	Series	matrix	cells	contain	six	transistors,	one	diode,	a	quad	current
source	 and	 seven	 cross-unders.	A	 typical	 dual	 2-input	NOR	 gate	 configuration,
supporting	two	independent	outputs	per	gate	is	shown	in	Figure	5-26.
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Figure	5-26:	R	Series	matrix	cell	configured	as	a	dual	2-input	NOR	gate

The	peripheral	cells	were	also	more	advanced	as	they	contained	11	resistors	and
eight	 transistors.	The	resistor	values	 themselves	differed	between	R	series	 types,
providing	 the	 range	 of	 power	 and	 speed	 options.	 With	 lower	 values	 the	 ULA
switched	faster,	but	at	the	expense	of	power	consumption.	The	resistor	values	for
each	type	are	shown	in	Table	5-4.

The	 R	 Series	 peripheral	 cell	 shown	 in	 Figure	 5-27	 contains	 the	 following
components:

Three	cross-unders
Three	Vcc	connections
Three	GND	connections
An	IC	pin	bond	pad
A	Vs	supply	rail	at	0.95V
A	Vcc	supply	rail	at	between	3.5	and	5.5V
A	reference	voltage	rail
A	ground	rail
A	series	regulator	to	generate	the	matrix	cell	supply	Vs
Four	transistors	T1,	T2,	T3,	T6	rated	at	7mA,	6mA,	6mA	and	16mA
Two	collector	coupled	transistors	T4	and	T5,	rated	at	6mA	and	18mA
Two	general	purpose	transistors	T7	and	T8,	rated	at	11mA
One	voltage	divider	of	500R	and	1K5
Nine	resistors,	Rp1-9,	the	values	of	which	depend	on	ULA	type
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Figure	5-27:	R	Series	peripheral	cell

Resistor RA RB RC
Rcs 3K 11K5 30K
RL 2K6 10K 26K
Rp1-4 4K1 7K2 45K
Rp5 3K6 6K3 38K
Rp6,7 3K1 5K4 32K
Rp8 2K1 3K7 20K
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Rp9 100R 100R 100R

Table	5-4:	R	Series	matrix	and	peripheral	cell	resistor	values

Figure	5-28:	ULA	R	series	peripheral	cell	schematic

The	6000	Series	ULA

The	6000	series	ULA	advanced	the	5000	series	by	incorporating	features	from	the
R	 series	 ULA,	 and	 appears	 to	 have	 been	 produced	 specifically	 for	 Sinclair
Research	 Limited	 to	 reduce	 the	 ZX	 Spectrum's	 power	 consumption	 and	 heat
output.

Ferranti	product	selection	guides	from	the	early	to	mid	1980s,	when	Sinclair	was
using	 the	 6C001	 ULA,	 provide	 several	 array	 comparison	 tables	 between	 early
ULA2C	 and	 later	 ULA12C	 devices	 and	 the	 R-series	 arrays.	 At	 no	 point	 is
reference	made	to	the	ULA6C	array	(Figure	5-29).

Sinclair	 was	 Ferranti's	 single	 largest	 user	 of	 ULAs	 [WILSON2]	 and	 it	 is
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conceivable	that	a	special	array	satisfying	Sinclair's	requirements	could	have	been
produced	 from	 Ferranti's	 existing	 technologies,	 considering	 the	 high	 production
volumes	that	Sinclair	would	have	required.

The	6C000	matrix	 cell	 is	 almost	 identical	 to	 the	5C000	 in	 structure	 and	 layout.
This	would	have	been	important	to	reduce	the	amount	of	redesign	and	re-routing
required.	Physically	 the	dual-current	 source	has	 been	 rotated	90°	 clockwise	 and
the	resistors	grid	aligned	to	the	transistor	connections.	Additionally,	Rcs	and	RL2
share	 a	 common	 connection,	 adjacent	 to	 which	 a	 second	 Vs	 connection	 is
provided.	The	overall	structure	is	shown	in	Figure	5-30.

Figure	5-29:	Ferranti	Product	Selection	Guide	comparison	chart
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Figure	5-30:	ULA6000	CML	matrix	cell
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Figure	5-31:	ULA6000	matrix	cell	schematic

The	6C001	peripheral	cell	is	identical	to	the	R	Series	ULA	peripheral	cell,	except
for	 a	 slight	 repositioning	 of	 the	 cross-under	 (Figure	5-32).	 It	 therefore	 has	 the
schematic	 shown	 in	 Figure	 5-28.	 Which	 R	 Series	 type	 it	 is	 based	 on	 can	 be
determined	by	examining	the	values	of	resister	used.

As	 there	 is	no	documentation	available	 for	 this	ULA,	 some	elementary	 reverse-
engineering	is	required	to	discover	the	resistor	values	used.

Ferranti's	original	CDI	process	used	for	the	2C	and	5C	devices	incorporates	a	p+
skin	diffusion	that	provides	a	sheet	resistance	of	470	ohms	per	square	(Figure	2-
10);	 therefore	 for	 a	 given	 length	 and	 width	 of	 a	 resistor	 formed	 from	 such	 an
isolated	p-type	region,	the	effective	resistance	may	be	calculated	as:
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The	6000	series	ULA	may	have	a	different	sheet	resistance	if	 it	was	constructed
from	the	later	FAB2	process	of	the	R	Series	ULA.	As	all	R	Series	peripheral	cells
have	 a	 100	 ohm	 resistor	 in	 common,	 by	 measuring	 the	 dimensions	 of	 the
equivalent	resistor	in	the	6C001	ULA,	Figure	5-33,	the	effective	sheet	resistance
can	be	calculated.	This	allows	each	 resistor	value	of	 the	6000	series	ULA	 to	be
derived	without	knowing	the	R	Series	type	on	which	it	is	based.

Figure	5-32:	6C001	peripheral	cell

82



Figure	5-33:	6C001	peripheral	cell	100R	resistor	dimensions

Rearranging	 the	 previous	 equation	 in	 terms	 of	 resistance	 and	 dimension,	 and
substituting	the	width	and	height	of	the	6C001	ULA	100R	resistor,	Rp9,	gives	an
approximate	sheet	resistance	of:

Analysing	the	dimensions	of	the	other	resistors	in	the	peripheral	cell	gives	Rp1-4
at	4189	ohms,	Rp5	at	3613	ohms,	Rp6	and	Rp7	at	3103	ohms	and	Rp8	at	2105
ohms.	These	values	match	 the	RA	ULA	type	exactly.	This	comes	as	no	surprise
considering	 the	RA	peripheral	 cell	 resistor	values	 are	very	 close	 to	 those	of	 the
5C000	ULA,	 the	ULA	on	which	 the	 Sinclair	 ZX	Spectrum	design	was	 initially
based.	The	RB	and	RC	 types	by	 comparison	have	 resistors	which	 are	 orders	 of
magnitude	 larger.	 Migrating	 to	 a	 ULA	 type	 that	 had	 very	 different	 component
values	would	have	required	a	significant	redesign	and	testing	effort.
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Figure	5-34:	6C001	matrix	cell	resistor	dimensions

Figure	 5-34	 shows	 an	 optical	 image	 of	 the	 6C001	 matrix	 cell	 after	 the
metallisation	layer	has	been	removed.	As	the	dimensions	of	all	three	resistors	are
identical,	their	resistance	will	also	be	identical.	For	clarity	the	length	of	Rcs	and
the	width	of	RL2	are	shown.	Given	these	dimensions,	the	resistance	of	the	matrix
cell	resistors	may	be	calculated	as:

This	value	 is	 close	 to	 that	 of	RA	matrix	 cell	 resistors	RL	and	Rcs,	 at	 2600	and
3000	ohms	respectively,	again	demonstrating	its	relationship	to	the	RA	ULA.

The	Sinclair	6C001	ULA	makes	use	of	 the	 two	 independent	power	 rails,	one	 to
supply	the	peripheral	cells	and	the	other	 to	supply	the	matrix	cells	via	the	series
voltage	regulators,	Tvs.	This	is	 illustrated	by	Figure	5-17.	By	being	driven	from
two	isolated	supplies,	the	ULA	allows	current	to	the	matrix	cells	to	be	controlled

84



independently	 of	 the	 peripheral	 cells,	 reducing	 power	 consumption	 and	 heat
dissipation.

Last	 we	 present	 two	 scanning	 electron	 microscope	 images	 of	 the	 6C001	 ULA
showing	how	advanced	and	precise	Ferranti's	process	was,	being	able	to	produce
metallisation	track	widths	of	just	3.2	microns	across,	plus	the	depth	of	the	silicon
wafer	compared	to	the	surface	detail.

Figure	5-35:	Scanning	Electron	Microscope	image	of	ULA	6C001	track	widths
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Figure	5-36:	SEM	image	of	ULA	6C001	showing	chip	and	layer	depths

Package	Types

ULAs	were	available	in	several	packages,	as	shown	in	Table	5-5.

Package	Code Description
E Plastic	DIL
J Ceramic	DIL
G Plastic	FLATPACK
F Ceramic	FLATPACK

Table	5-5:	ULA	package	types

l.	 The	ULA	Technical	Manual,	 1980	 [ULAHAND]	 defines	 the	 5C000	ULA	 as
containing	440	matrix	cells,	and	the	accompanying	photo	confirms	this.	A	Ferranti
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marketing	 publication	 from	 1979	 [FERRANTILSI]	 shows	 a	 large	 photo	 of	 a
ZNA5002	ULA	whose	structure	is	almost	identical	to	the	5N000	and	5C000	ULA,
titled	"ULA	5000	committed	LSI	circuit",	but	which	has	484	matrix	cells.

It	is	interesting	that	there	is	no	performance	identification	in	the	ZNA5002	string
(i.e.	no	C,	H,	L,	N	or	U),	 implying	 that	 the	ULA	 is	a	normal,	3MHz	maximum
device.

The	ULA	Technical	Manual	does	not	describe	such	a	device	in	either	the	Product
Data	 Summary,	 section	 5.3	 (ULA1000	 and	 ULA2000	 being	 the	 only	 standard
devices	listed),	or	in	the	technical	product	data	sheets	for	each	device.

However,	further	investigation	of	the	ULA	Series	Numbering	System	reveals	that
ULA	50000	devices	could	have	484	matrix	cells:	"5	-	means	5000	Series	-	440	to
484	cells	for	system	complexities	up	to	1000	gates",	indeed,	the	5L000	device	has
a	 matrix	 size	 of	 22×22×1	 cells,	 but	 this	 RTL	 device	 has	 a	 structure	 entirely
different	 to	 the	 ZNA5000	 device.	 Examining	 a	 closeup	 of	 the	 ZNA5000	 photo
shows	the	matrix	cell	to	contain	three	resistors,	a	dual	transistor,	a	single	transistor
and	a	current	source.	The	expectation	was	that	this	would	be	an	RTL	device,	and
would	not	contain	a	current	source.	The	peripheral	cells	too	were	unusual	in	that
they	contain	three	or	four	resistors,	and	three	transistors.

My	suspicion	is	that	the	5000	device	is	in	fact	an	early	5000	series	CML	ULA,	as
the	5N000	and	5C000	devices	contain	four	matrix	cell	transistors	and	many	more
components	in	their	peripheral	cells.	Therefore	the	'normal'	device	type	in	Table	5-
1	may	be	CML	for	the	5000	device.	See	Table	5-2.
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Chapter	6

Sinclair	and	the	ULA

Sinclair's	first	home	computer,	the	ZX80,	was	launched	as	a	kit	in	February	1980
at	a	price	of	just	£79.99,	equivalent	to	£227.97	in	2010.	To	meet	this	price	target
its	designer	Jim	Westwood	used	just	17	off-the-shelf	logic	chips,	1K	of	RAM	and
4K	 of	 ROM,	 which	 contained	 the	 BASIC	 interpreter	 written	 by	 Nine	 Tiles
Information	Handling.	 It	was	 simple	 in	 design	 and	made	 clever	 use	 of	 specific
Z80	instruction	fetch	cycles	to	maintain	the	output	of	the	television	picture.

There	was	little	improvement	that	could	be	made	to	the	ZX80	hardware	within	the
£79.99	price	tag,	so	with	Sinclair's	decision	to	produce	a	more	advanced	follow-
up	machine,	came	the	need	to	reduce	production	costs.

The	First	Sinclair	ULA

The	design	of	the	ZX80's	successor,	the	ZX81,	started	in	the	September	before	the
ZX80	was	released.	The	cost	associated	with	the	proposed	ZX81's	larger	and	more
functional	ROM,	 again	 from	Nine	Tiles,	 and	 its	 increased	 hardware	 complexity
meant	 it	would	not	be	commercially	viable	and	meet	Clive	Sinclair's	strict	price
point	 unless	 the	 chip	 count	 could	 be	 minimised	 to	 reduce	 costs.	 By	 this	 time
Ferranti	 and	 their	 CML	ULA	were	 well	 established	 in	 the	 semi-custom	 device
market,	 and	 being	UK	based	were	 ideally	 placed	 to	 provide	 Sinclair	 the	means
with	which	to	achieve	its	goal.

Westwood	 took	what	was	 basically	 a	modification	 of	 the	ZX80	 and	 turned	 this
into	 a	 Ferranti	 ULA	 2000	 series	 logic	 design,	 which	 he	 wire-wrapped	 into	 a
prototype	but	had	little	success	in	getting	it	to	work.	In	frustration,	Westwood	was
forced	to	leave	it	in	the	hands	of	the	new	recruit,	Richard	Altwasser,	while	he	took
a	week	 away	 from	 the	office	 on	business.	Altwasser	 says	he	doesn't	 know	who
was	 more	 surprised	 when	 Westwood	 returned	 and	 unexpectedly	 found	 him	 in
possession	of	a	working	prototype.

From	this	design	Westwood	created	an	interconnect	layer	for	the	Ferranti	2C000
ULA,	 producing	 the	 2C184E	 and	 later	 the	 2C210E.	 Around	 this	 he	 added	 the
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same	Z80A	as	 the	ZX80,	 the	 larger	8K	of	ROM	and	again	1K	RAM,	creating	a
machine	with	just	four	ICs.

This	drastic	reduction	in	chip	count	significantly	reduced	the	power	consumption
that	was	exhibited	 in	comparison	with	 the	ZX80,	which	reduced	 the	heat	output
and	made	the	computer	much	more	stable	in	operation.	The	lower	chip	count	and
manufacturing	costs	ultimately	meant	that	in	1981,	Sinclair	could	sell	the	ZX81	in
kit	form	for	just	£49.99,	equivalent	to	£134.47	in	2010.

With	 the	 Ferranti	 ULA	 at	 hand	 through	 which	 to	 realise	 their	 future	 technical
designs,	Sinclair	had	set	the	stage	for	the	grand	entrance	of	the	ZX	Spectrum.

Figure	6-1:	Sinclair	ZX81	2C210E	ULA

The	ZX	Spectrum	ULA

Having	 completed	 the	 ZX81,	 Westwood's	 experience	 with	 television	 saw	 him
move	 on	 to	 television	 research	 and	 development,	 leaving	 the	 clearly	 capable
Altwasser	 to	 head	 development	 of	 the	 ZX81's	 successor,	 the	 ZX82,	 as	 the	 ZX
Spectrum	was	originally	 called.	Work	on	 the	 specification	 for	 the	ZX	Spectrum
began	 in	 September	 1981,	 and	 was	 mostly	 compiled	 from	 internal	 discussions
between	 Altwasser,	Westwood	 and	 Nine	 Tiles.	 There	 was	 little	 question	 that	 it
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should	 inherit	much	 from	 the	 ZX81,	 notably	 the	 TV	UHF	 output	 and	 reuse	 of
code	from	the	ZX81	ROM.	This	meant	employing	the	same	Z80	processor,	which
was	 also	 a	 good	 cost	 choice.	 The	 design	 of	 the	 ZX	 Spectrum	 was	 further
constrained	by	Clive	Sinclair's	desire	to	launch	the	machine	at	the	IPC	Computer
Fair	at	Earls	Court	on	23	April	1982,	as	well	as	his	customarily	low	price	target.

Altwasser	 wrote	 and	 agreed	 the	 technical	 specification	 quite	 quickly,	 and	 very
little	 changed	 during	 subsequent	 development.	 One	 of	 the	 requirements	 of	 the
design	was	for	it	to	feature	sound	and	colour,	and	it	was	television	text	standards
that	influenced	the	decision	to	use	a	single	colour	attribute	per	character	which,	as
a	design	benefit,	reduced	the	amount	of	memory	required.	Clive	Sinclair	took	the
decision	 to	 use	 Ferranti	 CML,	 having	 been	 convinced	 that	 this	 was	 a	 superior
technical	 decision	 for	 the	 ZX81,	 and	 strongly	 guided	 Rick	 Dickinson's	 case
designs.	Overall,	cost	drove	the	choice	of	CML	ULA	and	the	memory	chips	used,
and	the	need	for	minimal	silicon	real	estate.

Having	 visited	 Ferranti	 to	 understand	 the	 CML	 ULA	 technology	 and	 its
constraints,	Altwasser	produced	the	logic	design	entirely	on	paper	and	prototyped
it	using	wire	wrapped	SSI	748	and	74LS	TTL	logic	chips,	all	in	just	a	few	weeks.
The	 logic	 design	 required	 a	 good	 understanding	 of	 the	 capacity	 and	 analogue
capabilities	of	 the	 chosen	5000	 series	ULA,	 since	very	 few	gates	would	 remain
unused,	and	 the	analogue	video	output	made	use	of	peripheral	cells	 intended	by
Ferranti	 for	 digital	 interfacing.	 Compromise	 had	 to	 be	 made	 throughout	 as	 the
ULA	did	not	have	the	gate	capacity	to	realise	a	fully	synchronous	design,	and	the
interface	signals	had	to	be	kept	to	a	minimum	by	reducing	functionality	or	through
multiplexing	 to	 keep	 the	 total	 pin	 count	 from	 exceeding	 40.	 The	 design	 made
extensive	use	of	the	Ferranti	component	library,	providing	many	of	the	necessary
building	blocks	such	as	flip-flops	and	TTL	outputs.	Critical	paths	were	identified
by	design	analysis	and	considering	gate	loading,	and	mainly	focused	on	memory
access	 timing	 and	 the	 video	 output	 signals.	 Altwasser	 defends	 the	 lack	 of
computer	 simulation,	 arguing	 that	 the	 simplicity	 of	 the	 design	 meant	 that	 the
analysis	 and	 understanding	 of	 all	 the	 critical	 paths	was	within	 the	 grasp	 of	 one
engineer.

When	the	logic	design	and	prototype	were	complete,	the	placement	of	functional
units	within	 the	ULA	and	 layout	of	 the	 interconnection	 layer	on	mylar	 film	was
carried	out	by	Ferranti	engineers	at	their	offices	in	Oldham,	Manchester.	This	was
done	jointly	with	Altwasser,	who	occasionally	returned	to	Oldham	to	make	layout
decisions,	 and	 considered	 pin-out	 requirements	 that	 simplified	 PCB	 layout	 and
minimised	 high	 speed	 signal	 tracks.	 Once	 the	 interconnection	 layout	 was
complete,	 critical	 path	 analysis	 was	 repeated.	 Altwasser	 notes	 that	 although	 all
done	manually,	 the	 steps	 were	 entirely	 in	 keeping	 with	 modern	 day	 automated
post-routing	simulation.	He	and	the	Ferranti	engineer	would	study	the	mylar	film
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and	measure	track	lengths	for	the	critical	signals,	calculate	parasitic	capacitances
and	the	resulting	signal	delays	and	slew	rates,	and	manually	plot	timing	curves	to
ensure	 they	were	within	 limits.	Where	necessary,	Altwasser	would	 request	 track
routing	 changes	 or	 even	 change	 the	 logic,	 perhaps	 adding	 buffers	 to	 meet	 the
timing	constraints.

Altwasser	 used	 both	 the	 clock	 and	 varying	 amounts	 of	 propagation	 delay	 to
establish	the	desired	signal	timings.	Because	the	propagation	delay	of	a	matrix	cell
logic	 gate	 is	 predictable	 and	 tunable	 within	 a	 range,	 he	 was	 able	 to	 delay	 and
stretch	signal	pulses	with	far	less	complexity	than	by	using	synchronous	flip-flops
or	counters.

Having	 finalised	 the	 interconnect	 layout,	 it	 was	 optically	 reduced	 to	 a	 10×
magnification	 light-field	 mask	 and	 used	 to	 create	 a	 complete	 multi-chip	 wafer
mask	using	an	optical	step-and-repeat	procedure,	as	discussed	in	the	section	called
Generate	Interconnect	Pattern	in	Chapter	5,	The	Ferranti	ULA.	From	this	Ferranti
produced	an	initial	batch	of	prototype	wafers	and	invited	Altwasser	to	functionally
test	and	verify	the	chips	in-situ,	before	they	were	diced	and	packaged.

Altwasser	was	provided	with	a	wafer	probe	that	allowed	connection	to	individual
bond	pads	and	made	it	possible	to	attach	external	circuitry	with	which	to	test	the
devices.	Altwasser	and	Ferranti	were	under	extreme	 time	pressure,	 and	carrying
out	tests	during	this	stage	saved	a	few	precious	days.	However,	while	performing
these	tests	and	visually	inspecting	the	interconnection	tracks	under	a	microscope,
it	 was	 discovered	 that	 the	 Ferranti	 layout	 engineer	 had	 made	 an	 error	 in	 the
interconnect	layer	whereby	the	clock	output	from	the	early	counter	stages	was	not
connected	to	the	later	stages.	Fortunately,	and	against	all	odds,	a	tiny	fleck	of	dust
had	 fallen	 onto	 one	 of	 the	 devices	 of	 the	multi-chip	wafer	mask	 at	 exactly	 the
point	at	which	the	missing	interconnect	should	have	been,	despite	the	usual	clean
room	conditions	of	a	semiconductor	plant.	This	artificial	bridge	prevented	etching
of	the	aluminium	at	that	point,	connecting	the	clock	to	the	later	counter	stages	and
allowing	 Altwasser	 to	 complete	 his	 full	 test	 suite	 on	 this	 one	 die,	 successfully
proving	the	entire	chip	design	of	the	5C102E	ZX	Spectrum	ULA.

The	 first	 two	 issues	 of	 the	ULA	were	 based	 on	 the	 largest	 version	 of	 the	 array
used	for	the	ZX81,	which	provided	twice	the	number	of	gates.	The	later	issues	of
the	 ULA	 used	 a	 new,	 and	 larger	 still,	 6000	 series	 array,	 which	 in	 the	 main
provided	a	reduced	power	consumption.
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Chapter	7

The	ZX	Spectrum	Overview

Before	looking	at	the	ZX	Spectrum	ULA	in	any	detail	it	is	useful	to	consider	the
design	of	the	ZX	Spectrum	at	a	high	level,	introducing	the	main	functional	units
and	the	relationship	between	them.	These	may	be	summarized	as	follows:

1.	 Z80A	CPU
2.	 16K	ROM
3.	 16K	RAM
4.	 32K	RAM	(Optional)
5.	 Clock	Generator
6.	 Colour	Video	Generator	at	a	resolution	of	256×192
7.	 Colour	Encoder
8.	 Keyboard	Input	Port
9.	 Cassette	I/O	Ports
10.	 Internal	Speaker

The	complexity	of	these	units	varies,	some	containing	just	simple	interface	logic,
whilst	others	are	made	up	of	complicated	state	machines	and	a	 large	number	of
precisely	timed	signals.

The	Z80A	CPU

Even	though	the	Zilog	Z80A	CPU	is	in	itself	the	most	complicated	component	in
the	ZX	Spectrum,	its	interface	requirements	are	simple	as	it	requires	nothing	more
than	a	 clock	 signal	of	up	 to	4MHz	and	 some	memory,	 for	which	 it	 provides	 an
address	bus,	a	data	bus	and	read	and	write	control	signals.	 In	 the	ZX	Spectrum,
the	Z80	is	driven	by	a	3.5MHz	clock,	generated	by	the	ULA.

16K	ROM
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The	program	stored	 in	 the	ROM	is	 the	work	of	 John	Grant	and	Steven	Vickers,
contracted	 from	 Nine	 Tiles	 Information	 Handling	 Ltd.	 The	 program	 contained
within	 the	ROM	cannot	be	changed,	and	 is	 the	 first	 thing	 that	 the	Z80	executes
when	it	 is	switched	on.	The	familiar	"©	1982	Sinclair	Research	Ltd"	message	is
generated	by	the	ROM.

Most	importantly,	the	ROM	contains	the	necessary	code	to	get	the	ZX	Spectrum's
hardware	 to	 do	 something	 useful.	 It	 monitors	 the	 cassette	 interface	 with	 such
precision	 that	 it	 is	 able	 to	 differentiate	 between	 binary	 1s	 and	 0s,	 essential	 if
programs	are	to	be	loaded	into	memory.	It	scans	the	keyboard	50	times	a	second
and	works	out	what	key	combinations	have	been	pressed,	and	it	contains	code	that
will	write	the	correct	sequence	of	bytes	to	the	video	display	memory	to	have	the
TV	display	strings	of	text.

Figure	7-1:	ZX	Spectrum	block	diagram

16K	RAM

The	16K	of	RAM	present	 in	both	16K	and	48K	models	of	 the	ZX	Spectrum	 is
used	 by	 the	 ROM	 to	 store	 important	 system	 variables	 and	 user	 programs.	 A
section	of	this	memory	is	reserved	as	the	video	display	memory,	which	is	read	by
the	Video	Generator	50	times	a	second	in	Europe	(60	times	a	second	in	the	U.S.
and	Canada.
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The	16K	RAM	is	of	the	dynamic	variety	and	consists	of	eight	1-bit	4116	DRAM
chips	[DS4116].	Internally,	the	4116	16K	RAM	devices	contain	16384	locations,
organized	as	a	matrix	of	128	rows	by	128	columns	and	fed	by	a	7-bit	multiplexed
address	bus.	The	Z80	CPU	does	not	have	a	multiplexed	address	bus	itself,	so	the
ZX	 Spectrum	 splits	 the	 fourteen	 CPU	 address	 lines	 required	 for	 16K	 memory
access	into	two	7-bit	addresses	with	a	pair	of	4-bit	multiplexers,	and	then	routed	to
the	dynamic	RAM.	Which	of	the	7-bit	addresses	is	presented	to	the	DRAM	at	any
one	 time	 is	 determined	 by	 one	 of	 the	 many	 dynamic	 RAM	 control	 signals
generated	by	 the	ULA.	See	Chapter	13,	Video	Memory	Access,	 and	Chapter	 17,
CPU	Memory	Access,	for	further	details.

32K	RAM

The	upper	32K	of	RAM	is	present	in	48K	models	of	the	ZX	Spectrum,	and	was
available	as	an	upgrade	 to	16K	models.	As	with	 the	16K	RAM,	 this	memory	 is
also	of	 the	dynamic	variety	and	requires	a	multiplexed	address	bus,	provided	by
two	 additional	 4-bit	 multiplexers	 and	 some	 control	 logic	 not	 present	 in	 16K
models.	The	RAM	itself	consists	of	eight	1-bit	4532	DRAM	chips.

Clock	Generator

The	 clock	 generator	 is	 a	 sub-component	 of	 the	 ZX	 Spectrum.	 It	 is	 the	 14MHz
master	 clock	 signal	 from	which	 all	 the	other	 timing	 signals	used	within	 the	ZX
Spectrum	are	derived.	The	master	clock	 is	divided	by	 two	 to	provide	 the	7MHz
pixel	clock,	and	divided	by	four	to	provide	the	3.5MHz	CPU	clock.

Video	Generator

The	video	generator	 reads	 the	 first	 7K	or	 so	of	 the	16K	RAM,	 and	generates	 a
video	signal	at	a	resolution	of	256	pixels	wide	and	192	pixels	high	containing	the
display	information	it	found	there.	The	video	output	consists	of	a	luminance	and
synchronisation	signal,	Y,	and	two	colour	difference	signals,	U	and	V.
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Colour	Encoder

The	colour	encoder	takes	the	Y,	U	and	V	video	signals	from	the	video	generator
and	 combines	 them	 into	 a	 single	 composite	 video	 signal.	 The	 colour	 encoding
may	be	PAL	or	NTSC,	depending	on	the	local	video	standard	in	use,	and	is	set	at
the	time	of	manufacture.

Keyboard	Input	Port

The	 keyboard	 input	 port	 samples	 the	 keyboard	 matrix	 and	 calculates	 what
combination	of	keys	are	been	pressed.

Cassette	I/O	Ports

The	 cassette	 I/O	 ports	 are	 analogue	 circuits	 which	 associate	 voltages	 with	 the
binary	states	0	and	1.	A	very	low,	or	zero,	voltage	is	associated	with	state	0,	and	a
higher	positive	voltage	with	state	1.	These	voltages	are	sent	to	and	received	from
an	 external	 cassette	 recorder,	 and	 forms	 the	 basis	 of	 program	 and	 data	 storage.
The	 ROM	 program	 processes	 the	 data	 it	 is	 writing	 to	 cassette	 with	 a	 clever
algorithm	 to	 determine	 the	 exact	 sequence	 of	 high	 and	 low	 voltages	 needed	 to
unambiguously	represent	each	data	byte.	It	does	this	to	ensure	that	the	data	may
be	accurately	read	back	from	cassette	at	a	later	date.

Internal	Speaker

The	speaker	is	a	small,	high	impedance	speaker	whose	coil	may	be	energized	by
sending	a	binary	1	to	the	output	port	it	is	connected	to,	and	deactivated	by	sending
a	binary	0.	Alternating	between	binary	1	and	0	at	a	particular	frequency	causes	the
speaker	to	oscillate	at	that	frequency,	and	produce	the	related	tone.

The	ULA	Chip
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The	ULA	is	the	core	of	the	ZX	Spectrum.	It	performs	the	role	of	video	generator,
CPU	clock	generator,	memory	access	governor,	keyboard	controller,	cassette	I/O
and	 speaker	 controller.	 It	 coordinates	CPU	access	 to	 these	 resources	 so	 that	 the
television	 display	 is	 never	 interrupted,	 and	 performs	 the	 necessary	 conversion
between	the	analogue	television	and	interface	signals	and	the	digital	signals	used
by	the	processor.

How	the	ULA	achieves	all	this	is	explained	in	the	following	chapters.
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Chapter	8

The	Memory	Map

The	ZX	Spectrum	employs	the	Zilog	Z80	CPU,	an	8-bit	microprocessor	having	an
8-bit	wide	data	bus	and	a	16-bit	wide	address	bus.	It	therefore	transfers	eight	bits
at	a	time	from	any	one	of	65536	memory	locations	(216	=	65536).

The	Z80	 reads	 from	memory	 the	 instructions	 that	 it	 is	 to	 execute,	one	byte	 at	 a
time,	starting	at	memory	address	zero.	After	each	byte	fetch	the	Z80	increments
its	 'current	memory	 location'	address	by	one,	and	reads	 the	next	byte.	Without	a
program	to	execute,	the	Z80	does	not	know	what	to	do	and	becomes	nothing	more
than	a	useless	collection	of	transistors.

To	 avoid	 this,	 computers	 provide	 a	 built	 in	 program	 that	 immediately	 gives	 the
processor	something	constructive	to	do.	In	this	respect,	the	ZX	Spectrum	contains
a	program	written	by	Steven	Vickers	and	John	Grant	that	initialises	its	hardware,
sets	all	of	the	available	RAM	locations	to	contain	the	byte	zero,	clears	the	screen
and	 displays	 the	 familiar	 copyright	 message	 before	 going	 on	 to	 perform	 other
tasks.	For	such	an	initialisation	process	to	be	reliable,	the	first	instruction	of	this
program	must	be	located	at	memory	address	zero,	so	that	it	is	the	first	thing	that
the	Z80	executes	when	its	power	is	applied.

Normally	memory	forgets	whatever	it	was	storing	when	power	is	removed,	so	to
ensure	that	the	initialisation	program	is	always	available	at	power	on,	it	is	stored
in	non	volatile	ROM.	This	has	led	to	the	program	being	affectionately	called	"The
ROM",	as	 featured	 in	 the	 title	of	 the	Dr.	 Ian	Logan	and	Dr.	Frank	O'Hara	book
"The	Complete	Spectrum	ROM	Disassembly",	although	they	refer	to	the	program
within	 the	 book's	 opening	 pages	 as	 "the	 monitor".	 The	 ROM	 program	 is	 16
kilobytes	in	length,	and	extends	from	address	location	0	through	to	16383.

The	remainder	of	 the	ZX	Spectrum's	memory	map	contains	RAM.	This	starts	at
address	16384	and	continues	to	32767	in	the	16K	model,	65535	in	the	48K	model.
This	memory	 is	used	 to	 store	 the	video	display	 information,	 temporary	variable
storage	for	the	ROM	program,	user	programs	and	data.

The	complete	memory	map	of	a	ZX	Spectrum	is	shown	in	Figure	8-1.

The	 lower	16K	of	RAM	 is	 provided	by	 a	 dedicated	bank	of	RAM	chips	 and	 is
present	 in	 all	models	 of	 the	 ZX	 Spectrum,	 and	 the	 first	 6912	 bytes	 of	 this	 are
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reserved	for	and	used	by	the	ZX	Spectrum's	video	display	circuitry.

Figure	8-1:	ZX	Spectrum	48K	memory	map

The	 upper	 32K	 of	 RAM	 is	 provided	 by	 its	 own	 dedicated	 set	 of	 RAM	 chips,
which	are	only	present	in	48K	models.

As	 there	 are	 three	 distinct	 memory	 devices	 connected	 to	 the	 Z80	 (ROM,	 16K
RAM	and	32K	RAM),	 the	ZX	Spectrum	must	ensure	that	 the	appropriate	one	is
selected	 for	 the	 memory	 address	 required.	 Memory	 devices	 provide	 an	 enable
signal	 for	 this	 purpose,	 which	 are	 activated	 by	 the	 ULA,	 depending	 on	 what
location	the	CPU	is	addressing.	If	the	upper	32K	is	being	accessed	the	ULA	does
nothing,	 as	 this	memory	 is	 enabled	 by	 on-board	 logic	 associated	 with	 the	 32K
RAM.

No	other	memory	mapping	is	carried	out	by	the	48K	ZX	Spectrum 	as	the	ROM,
16K	and	32K	RAM	fill	the	entire	64K	memory	space	accessible	by	the	Z80	CPU.

1.	The	ZX	Spectrum	128,	+2	and	so	forth	divide	128K	into	16K	pages,	and	with
additional	logic	allows	up	to	four	pages	to	be	mapped	into	the	64K	address	space.

1
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Chapter	9

The	Video	Display

Television	and	Display	Basics

A	television	works	by	scanning	an	electron	beam	horizontally	across	 the	screen.
When	 it	 reaches	 the	 right	 hand	 side,	 it	 is	 blanked	 and	 flies	 back	 to	 the	 left	 and
descends	by	one	 line,	where	 the	process	 repeats.	When	 it	 reaches	 the	bottom	of
the	screen,	it	is	blanked	and	sent	back	to	the	top.	The	picture	is	created	by	varying
the	intensity	of	the	electron	beam	as	it	scans	the	screen.

In	a	UK	PAL	television	receiver	the	electron	beam	takes	a	fixed	time	of	64µs	to
travel	from	the	left	of	the	screen	to	the	right	and	back	to	the	start	of	the	next	line,
and	a	complete	PAL	picture	frame	contains	approximately	312	such	scan-lines.	At
a	horizontal	 scan	period	of	64µs,	 15625	 scan-lines	will	 be	drawn	every	 second,
and	at	312	lines	per	frame,	the	screen	will	be	updated	50	times	in	that	second.

To	be	used	as	a	computer	display	the	television	screen	must	be	divided	into	a	grid
of	pixels.	The	number	of	vertical	pixels	may	not	exceed	the	number	of	scan-lines
in	 the	 display,	 and	 the	 number	 of	 horizontal	 pixels	 that	 may	 be	 achieved	 is
determined	by	 the	 rate	at	which	 the	electron	beam	intensity	 is	adjusted	 for	each
pixel;	that	is,	the	frequency	of	the	pixel	clock.	In	order	for	pixels	to	appear	square,
the	horizontal	to	vertical	ratio	should	be	as	close	to	4:3	as	possible,	the	ratio	of	the
dimensions	of	a	television	tube.

As	 the	 television	 has	 no	 memory,	 it	 requires	 a	 continuous	 stream	 of	 pixel
information	to	keep	the	display	stable,	so	either	the	CPU	must	divert	a	great	deal
of	 its	 time	 to	 this	 task,	 or	 dedicated	 electronics	 provided	 to	 keep	 the	 supply	 of
display	 information	 flowing	 to	 the	 television.	 In	 either	 case	 the	 display	 pixel
patterns	must	be	stored	 in	memory,	 from	where	 they	are	 fetched	by	 the	CPU	or
video	electronics	when	 required.	Using	dedicated	electronics	allows	 the	CPU	 to
get	on	with	other	tasks	and	increases	the	resolution	that	is	possible	with	the	CPU
alone,	as	higher	screen	resolutions	require	faster	CPUs.
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Choosing	a	Display	Resolution

If	 a	 scan-line	were	 divided	 into	 1000	 pixels,	 they	would	 have	 to	 be	 sent	 to	 the
television	at	a	frequency	of	15.625MHz.	If	the	CPU	were	used	to	update	the	video
directly,	it	would	have	to	operate	in	excess	of	this	frequency	and	have	little	time	to
do	 anything	 else.	 Such	 a	 method	 of	 television	 update	 would	 therefore	 be
inappropriate	for	a	high	resolution	display.	Even	with	dedicated	electronics,	where
a	pixel	clock	of	this	frequency	is	quite	achievable,	 the	amount	of	video	memory
required	 to	 hold	 a	 display	 of	 this	 resolution	 would	 be	 excessive.	 For	 instance,
assuming	 one	 bit	 of	 memory	 per	 pixel,	 then	 at	 1000	 pixels	 a	 single	 scan-line
would	require	125	bytes	of	memory	to	be	stored,	which	at	a	full	vertical	television
resolution	of	approximately	312	lines,	the	whole	display	would	occupy	more	than
38K	 of	 RAM.	 This	 is	 more	 than	 half	 the	 memory	 available	 to	 an	 8-bit
microprocessor,	and	the	high	pixel	clock	would	demand	expensive	fast	memory.

Clearly	 a	 screen	 resolution	 consuming	 nearly	 all	 of	 the	 ZX	 Spectrum's	 RAM
would	not	have	been	an	option,	and	Altwasser's	solution	is	 two-fold	in	that	they
use	 a	 lower	 frequency	 for	 the	 pixel	 clock	 and	 reduce	 the	 display	 area	 size	 by
introducing	 a	 non-display	 border	 around	 a	 central	 pixel	 display	 rectangle,
concepts	inherited	from	the	earlier	ZX80	and	ZX81.

The	ZX81	had	an	effective	display	resolution	of	256×192	pixels,	but	because	of
its	limited	1K	of	RAM,	was	essentially	character	ROM	driven	and	had	no	video
memory	at	this	granularity.	Instead,	the	display	was	divided	into	a	grid	of	32×24
character	cells,	with	768	bytes	of	memory	reserved	to	store	the	ASCII	code	of	the
character	at	each	cell	position.	A	simple	and	cheap	hybrid	video	system	was	used
where	 the	 Z80	 CPU	 played	 a	 part	 in	 the	 display	 update	 by	 reading	 the	 pixel
pattern	 for	 each	 cell	 from	 a	 character	ROM,	 and	 sent	 them	 to	 the	 video	 output
circuitry	at	the	appropriate	time.

The	ZX	Spectrum	adopts	the	same	resolution	as	the	ZX81,	but	assigns	one	bit	of
display	memory	to	each	pixel,	so	that	256÷8=32	bytes	are	required	per	scan	line,
and	a	total	of	32×192=6144	bytes	for	the	entire	screen.	It	has	dedicated	electronics
to	maintain	the	video	display,	relieving	the	CPU	from	this	responsibility.

Vertical	Interlace

A	broadcast	UK	PAL	 television	 picture	 actually	 consists	 of	 625	 interlaced	 scan
lines	 split	 between	 two	 frames	 of	 312.5	 lines	 each.	 The	 frames	 are	 alternately
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displayed	50	times	a	second,	with	the	second	vertically	offset	by	half	a	scan	line
so	 that	 it	 fills	 the	 gaps	 between	 the	 lines	 of	 the	 first	 frame.	 These	 frames	 are
referred	to	as	frame	1	and	frame	2.	Due	to	persistence	of	vision,	and	the	relatively
slow	 emission	 decay	 of	 phosphorus,	 interlacing	 has	 the	 effect	 of	 doubling	 the
vertical	resolution	without	increasing	the	bandwidth	per	frame.

Producing	a	stable	interlaced	computer	display	is	difficult	as	interlacing	tends	to
produce	 a	 visible	 vertical	 jitter,	 so	most	machines,	 including	 the	 ZX	 Spectrum,
only	generate	a	 single	312	 line	 frame	50	 times	a	 second.	A	single	 frame	should
contain	312.5	lines,	however	as	half	lines	are	of	little	use,	 it	 is	usual	for	just	 the
whole	lines	to	be	used.

Positioning	the	Display

The	192	lines	of	the	ZX	Spectrum's	pixel	display	rectangle	are	vertically	aligned
centrally	on	the	screen	creating	a	visible	top	border	of	56	lines.	This	is	preceded
by	eight	invisible	lines	during	which	the	electron	beam	is	in	its	vertical	fly-back.
The	 remaining	 56	 lines	 provide	 the	 bottom	 border	 and	 an	 invisible	 off-screen
region.

Once	 an	 appropriate	memory-conservative	 screen	 resolution	 had	 been	 agreed,	 a
suitable	pixel	clock	frequency	needed	to	be	established	to	maintain	a	4:3	display
ratio.	 If	 it	 were	 too	 high,	 the	 pixels	 would	 be	 drawn	 on	 the	 screen	 before	 the
electron	beam	had	moved	very	far,	creating	a	display	that	would	be	squashed	over
to	the	left	hand	side.	If	the	clock	were	too	low,	the	electron	beam	would	reach	the
right	hand	side	of	 the	screen	before	all	 the	pixels	had	been	displayed,	creating	a
display	that	was	wider	than	the	width	of	the	television.

Some	 of	 the	 scan-line	 lies	 outside	 the	 visible	 portion	 of	 the	 screen,	 and
approximately	6.9µs	is	taken	by	the	electron	beam	returning	to	the	left	hand	side
of	 the	 screen.	 Similarly	 not	 all	 scan-lines	 are	 visible,	 as	 some	 exist	 above	 and
below	the	visible	screen	area	including	the	vertical	fly-back.

To	determine	the	pixel	clock	that	would	create	a	square	pixel,	some	calculations
are	 required.	 As	 the	 horizontal	 to	 vertical	 ratio	 of	 256:192	 matches	 the	 screen
aspect	ratio	of	4:3	the	scaling	factor	is	1:1.	Therefore	the	percentage	of	a	scan-line
used	 horizontally	 for	 pixel	 display	will	 equal	 the	 percentage	 of	 scan-lines	 used
vertically.
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Figure	9-1:	PAL	horizontal	and	vertical	screen	dimensions

First	 the	 percentage	 of	 non	 vertical	 retrace	 scan-lines	 that	 are	 used	 for	 pixel
display	is	calculated:

Second	the	same	percentage	of	the	64µs	scan	period,	minus	the	horizontal	flyback
time	(figures	from	Chapter	11,	Video	Synchronisation),	is	calculated

And	finally	the	frequency	at	which	256	cycles	take	36.0632µs:
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At	 a	 pixel	 clock	 of	 7MHz,	 the	 time	 to	 display	 a	 row	 of	 pixels	 is	 36.56µs	 or
57.14%	of	the	total	scan-line	period.	On	an	average	television	this	pixel	area	takes
up	 approximately	 74%	 of	 the	 visible	 screen	 width,	 allowing	 for	 left	 and	 right
borders	of	22%	including	the	non	visible	area.	As	expected,	these	proportions	give
a	display	dimension	that	produces	square	pixels,	is	aesthetic	and	fits	comfortably
within	the	screen.

At	 this	 pixel	 clock	 there	 are	 448	 cycles	 in	 a	 64µs	 scan	 line	 period,	 and	 a	 pixel
display	 row	 consumes	 256	 of	 these,	 one	 for	 each	 pixel.	 Due	 to	 design
simplifications	in	the	ZX	Spectrum	the	pixel	display	is	offset	towards	the	left	hand
side	of	the	screen,	as	the	left	and	right	borders	are	slightly	different	widths	of	32
and	 64	 cycles	 respectively.	 The	 remaining	 96	 cycles	 are	 used	 off-screen	 and
during	the	horizontal	fly-back.	See	Figure	9-1.

The	NTSC	Display

The	NTSC	specification	defines	a	 television	frame	as	containing	525	scan	 lines,
split	across	two	interlaced	fields;	therefore	a	single	field	contains	262.5	scan	lines.
As	 an	 NTSC	 scan	 line	 takes	 63.55µs	 to	 cross	 the	 screen,	 the	 frame	 rate	 is
approximately	60Hz.
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Figure	9-2:	NTSC	horizontal	and	vertical	screen	dimensions

By	using	264	scan	lines	of	63.5µs	each,	a	frame	rate	of	59.65Hz	is	produced.	This
is	acceptably	close	to	the	NTSC	specification,	and	allowed	the	Sinclair	engineers
to	 use	 same	 horizontal	 control	 circuits	 in	 both	 PAL	 and	 NTSC	 versions.	 See
Figure	9-2	for	the	ZX	Spectrum	NTSC	screen	dimensions,	and	the	section	called
The	 NTSC	 Line	 Counter	 in	 Chapter	 10,	 The	 Internal	 Clocks	 for	 details	 of	 the
NTSC	scan	line	period.
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Chapter	10

The	Internal	Clocks

The	primary	task	of	 the	ULA	is	 to	keep	the	video	display	updated	and	as	this	 is
such	 as	 precise	 and	 exacting	 requirement	 as	 far	 as	 timing	 is	 concerned,	 the
internal	state	machine	provides	video	orientated	time	events,	from	which	all	other
system	states	and	time	points	are	derived.

The	Oscillator

At	the	heart	of	the	ULA	is	its	crystal	controlled	oscillator.	Because	the	ULA	does
not	contain	any	capacitors,	the	oscillator	design	departs	from	convention	and	uses
transistors	 in	 an	 inherently	 unstable	 configuration	 to	 achieve	 oscillation,	 the
resonant	frequency	of	which	is	controlled	by	an	external	crystal.

Figure	10-1:	14MHz	oscillator

The	basic	operation	of	Figure	10-1	is	as	follows.	Two	transistors,	Q1	and	Q2,	are
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configured	 to	 oscillate,	 the	 frequency	 of	 which	 is	 moderated	 by	 the	 14MHz
crystal.	The	sine	wave	produced	 is	 then	amplified	and	processed	by	Q3	and	Q4
into	a	clean	square	wave.

With	Q1	initially	off,	its	collector	and	the	base	of	Q2	will	be	at	Vcc.	Current	will
flow	 in	 the	 base	 of	 Q2	 switching	 it	 on,	 raising	 the	 voltage	 at	 its	 emitter	 to
approximately	Vcc.	The	 current	 now	 flowing	 through	Q2	 and	R3	 causes	Q1	 to
turn	on,	lowering	the	potential	at	Q1's	collector	which	reduces	the	current	flowing
through	 Q2's	 base,	 causing	 it	 to	 switch	 off.	 This	 reduces	 the	 voltage	 at	 Q2's
emitter	and	 therefore	 the	current	 in	Q1's	base,	 switching	off	Q1.	The	cycle	 then
repeats.

The	crystal	placed	between	the	base	of	Q1	and	ground	tunes	the	oscillation	to	its
14MHz	resonance	frequency,	R3	buffering	the	crystal	from	the	signal	output	at	the
emitter	of	Q2.

The	collector-follower	Q3	provides	 some	gain	and	 inverts	 the	oscillating	 signal,
feeding	the	output	emitter-follower	Q4.	One	would	expect	the	final	signal	output
to	be	taken	from	the	emitter	of	Q4,	its	point	of	highest	impedance,	but	instead	it	is
taken	 after	 the	 emitter	 resistor	 R6.	 This	 is	 to	 allow	 some	 signal	 shaping	 to	 be
performed,	 as	 a	 square	 wave	 and	 not	 a	 sine	 wave	 is	 desired.	 This	 action	 will
become	apparent	after	we	have	discussed	the	current	mirrors	Q7-10.

Q7	and	Q8	are	configured	as	a	classic	current	mirror,	in	that	the	current	flowing	in
the	emitter	of	Q8	will	mirror	the	current	flowing	in	the	emitter	of	Q7,	which	is	set
by	R4.	Thus	R4	indirectly	controls	the	maximum	current	flowing	in	the	emitters
of	Q1	and	Q3.

Q9	 and	 Q10	 are	 similarly	 configured	 as	 a	 current	 mirror,	 however	 the	 current
being	 mirrored	 is	 not	 constant	 as	 it	 is	 modified	 by	 the	 current	 flowing	 in	 the
emitter	of	Q2.	This	is	how	the	signal	shaping	into	a	square	wave	is	applied.

When	Q2	is	on,	the	maximum	current	allowed	by	R5	flows	in	the	emitter	of	Q9.
Q3	will	be	on,	holding	Q4	off.	The	output	CLK14	therefore	goes	low	and	sinks	up
to	 the	 mirrored	 current	 through	 Q10.	When	 Q2	 is	 off,	 no	 current	 flows	 in	 the
current	mirror.	Q3	 is	also	off,	 leaving	R2	 to	pull	Q4	on.	As	no	current	can	now
flow	 through	Q10	 of	 the	 current	mirror,	 CLK14	 goes	 high	 by	 sourcing	 current
through	R6,	which	 is	why	 the	 output	 is	 taken	 after	 emitter	 resistor	 R6	 and	 not
before.	As	R5	and	R6	have	the	same	value	the	current	sourced	or	sunk	by	CLK14
will	be	 the	 same.	This	ensures	 that	 the	positive	and	negative	edges	of	 the	clock
pulse	 are	 symmetrical,	 as	 a	 transistor's	 switching	 speed	 is	 related	 to	 the	 current
flowing	through	it.

The	remaining	two	transistors	Q5	and	Q6	are	configured	as	reverse	biased	diodes
connected	 between	 the	 collectors	 of	 Q1,	 Q3	 and	 ground	 to	 introduce	 some
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temperature	stability.

This	 circuit	 is	 implemented	 by	 peripheral	 cells	 21	 and	 22,	 the	 former	 being
connected	to	the	crystal	via	pin	39.

The	7MHz	Clock

By	 driving	 the	 ULA	 with	 a	 master	 clock	 at	 twice	 the	 required	 frequency	 and
dividing	 internally	 to	7MHz,	Altwasser	achieved	an	accurate	and	stable	clock	at
the	 required	 matrix	 cell	 voltage	 of	 Vs,	 and	 any	 frequency	 drift	 or	 duty	 cycle
irregularities	 in	 the	 master	 clock	 are	 halved.	 The	 inverter	 on	 the	 output	 of	 the
7MHz	clock	divider	in	Figure	10-2	is	configured	to	have	a	large	fan-out	and	fast
switching	speed	in	order	to	drive	the	many	circuits	that	require	the	clock,	without
any	deterioration	in	the	shape	of	the	signal.

Figure	10-2:	7MHz	clock

This	high-drive	/CLK7	signal	is	routed	to	the	multitude	of	circuits	that	require	it.
Routing	the	inverted	clock	allows	circuits	to	either	invert	it	back	to	CLK7	or	NOR
gate	it	with	other	signals	and	still	remain	synchronous	with	each	other.	/CLK7	is
never	used	directly.	Figure	10-3	illustrates	this,	showing	a	gate	in	line	with	/CLK7
before	each	flip-flop.

All	ULA	timing	states	are	synchronized	to	this	internal	7MHz	clock,	and	through
its	division	all	other	clocks	are	generated.
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The	Master	Counter

As	 discussed	 previously,	Altwasser's	 choice	 of	 7MHz	 pixel	 clock	 produces	 448
cycles	 in	 a	 64µs	 display	 scan	 line	 period.	 The	 master	 horizontal	 counter	 is
configured	 to	 count	 through	 these	 448	 distinct	 states,	 providing	 the	 timing
reference	 for	 display	 control	 signals	 such	 as	 the	 horizontal	 sync	 and	 all	 other
internal	system	signals.

The	 counter	 is	 split	 into	 two	 stages,	 the	 first	 as	 a	 free	 running	 6-bit	 counter
consisting	 of	 negative	 edge	 triggered	 D-type	 flip-flops	 (see	 Appendix	 B,
Component	Library),	 the	 most	 significant	 bit	 of	 which,	 /C5,	 clocks	 the	 second
stage,	 a	 3-bit	 synchronous	 counter	 of	 negative	 edge	 triggered	 T-type	 flip-flops
with	reset,	carry	and	enable.

Figure	10-3:	The	master	horizontal	counter

The	two	stage	counter	is	a	compromise	between	the	ideal	design	and	conservation
of	space.	The	simplest	text-book	counter	consists	of	D-type	flip-flops	configured
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to	toggle	between	0	and	1	at	each	clock	pulse.	The	output	of	each	such	flip-flop
feeds	the	clock	input	of	the	next	so	that	when	it	switches	from	0	to	1	and	back	to
0,	 it	 causes	 the	 following	 flip-flop	 to	 toggle.	 These	 are	 called	 ripple-counters,
referring	 to	 the	 propagation	 of	 the	 clock	 along	 the	 chain	 of	 flip-flops.	 The
disadvantage	with	 these	counters	 is	 the	delay	 incurred	between	 the	source	clock
and	each	flip-flop	switching,	which	doubles	for	each	successive	bit.

Such	counters	are	undesirable	for	state	machines,	as	the	propagation	delay	ripple
across	the	counter	bits	can	cause	glitches	in	the	subsequently	driven	logic.	What	is
sought	 is	a	 synchronous	counter	where	all	 flip-flops	switch	simultaneously	on	a
common	clock.

Synchronous	 counters	 are	 more	 complicated	 than	 ripple-counters	 and	 consume
more	components,	so	the	limited	space	within	the	ULA	forced	Altwasser	to	strike
a	 balance	 between	 complexity	 and	 gate	 count	 by	 allowing	 the	 clock	 to	 ripple
between	just	two	of	the	eighteen	counter	flip-flops.

The	 first	 stage	 is	 a	6-bit	 counter	 consisting	of	D-type	 flip-flops	 that	 are,	 all	 but
one,	 connected	 in	 a	 synchronous	 configuration,	 such	 that	 each	 bit	 clocks	 only
when	all	 the	 less	significant	bits	are	high.	Each	flip-flop	 is	 therefore	clocked	by
the	common	clock,	in	this	case	the	7MHz	CLK7	signal,	which	is	NOR	gated	with
the	 invert	 of	 the	 preceding	 bits.	 This	 makes	 conservative	 use	 of	 matrix	 cells,
requiring	only	 three	for	a	D-type	flip-flop	and	between	half	and	one	cell	 for	 the
clock	gate .

However,	as	each	successive	bit	of	the	counter	uses	an	additional	clock	gate	input,
the	number	of	matrix	cells	 required	 increases	every	four	bits.	To	avoid	using	an
increasing	number	of	matrix	cells,	Altwasser	breaks	the	synchronism	between	C3
and	C4	and	allow	C3	to	ripple	forward	as	the	clock	of	bits	C4	and	C5,	which	are
configured	 to	 be	 synchronous	 with	 this	 new	 clock;	 thus	 bits	 C4	 and	 C5	 are
synchronous	with	 respect	 to	 each	other,	 but	 asynchronous	with	 respect	 to	C3-0,
and	clock	around	24ns	 later.	The	final	bit	C5	 is	gated	by	 /TCLKA,	discussed	 in
Chapter	 23,	Hidden	Features	 and	Errors,	 which	may	 always	 be	 assumed	 to	 be
low,	producing	clock	CLKHC6	which	drives	the	second	counter	stage.	This	clock
is	delayed	with	respect	to	CLK7	as	it	transitions	around	48ns	later.

State C8-0
0 000	000000
31 000	111111
32 001	000000
447 110	111111
448 000	000000

1
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Table	10-1:	Horizontal	clock	states

The	 second	 counter	 stage	 is	 a	 true	 3-bit	 synchronous	 counter	 which	 is	 reset
immediately	 on	 reaching	 binary	 111.	 As	 the	 first	 counter	 stage	 counts	 from	 0
through	 to	 31,	 the	 second	 stage	 counts	 from	 0	 through	 to	 6	 to	 give	 32×7=448
states	 in	 total;	 0	 to	 447.	 Table	 10-1	 shows	 these	 states	 in	 terms	 of	 their	 binary
counter	bits	C8	to	C0.	As	the	T-type	flip-flops	have	synchronous	reset,	the	reset	is
generated	and	held	while	C7	and	C8	are	high,	forcing	a	reset	of	this	stage	at	the
next	clock	transition	which,	had	it	not	been	for	the	reset,	would	have	advanced	the
counter	to	7	(111	binary).

There	is	no	reset	required	for	bits	C5-0,	as	they	will	already	be	at	zero	when	the
reset	of	C8-6	occurs.

The	Vertical	Line	Counter

The	PAL	Line	Counter

In	addition	to	keeping	track	of	how	far	through	a	scan-line	it	is,	the	ZX	Spectrum
ULA	also	keeps	track	of	how	many	scan-line	periods	have	occurred	and	therefore
which	line	it	is	currently	displaying.
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Figure	10-4:	PAL	vertical	line	counter

This	 vertical	 line	 counter	 is	 a	 9-bit	 synchronous	 counter	 utilising	 the	 carry	 and
enable	inputs	of	the	T-type	flip-flops	from	which	it	is	constructed.	The	flip-flops
share	a	common	clock,	which	is	the	same	as	that	driving	the	second	stage	of	the
master	 horizontal	 counter,	 making	 the	 line	 counter	 synchronous	 with	 the
horizontal	counter	second	stage.

The	 enable	 input	 of	 the	 least	 significant	 counter	 bit	 acts	 as	 the	 overall	 count
enable	for	the	counter,	and	is	held	disabled	until	the	horizontal	counter	reaches	the
end	of	its	sequence.	Recall	that	the	horizontal	counter's	second	stage	synchronous
reset,	HCrst,	is	activated	one	CLKHC6	period	prior	to	the	desired	reset	point,	so
that	the	second	stage	is	immediately	reset	at	the	next	CLKHC6	transition,	as	the
counter	advances	to	448.	Since	the	vertical	counter	is	also	clocked	by	CLKHC6,
controlling	 the	 counter	 enable	 with	 HCrst	 ensures	 that	 the	 vertical	 counter
increments	at	the	exact	moment	that	the	horizontal	counter	resets	to	zero.

The	PAL	variant	of	the	ZX	Spectrum	ULA	develops	312	scan	lines	per	television
frame,	and	so	the	vertical	line	counter	is	reset	as	it	advances	from	311	(100110111
binary).	 The	 upper	 six	 flip-flops	 of	 the	 counter	 therefore	 have	 an	 additional
synchronous	reset	for	this	purpose.	As	the	reset	is	synchronous	with	the	clock,	it	is
applied	 while	 the	 counter	 reads	 311	 so	 that	 the	 reset	 occurs	 at	 the	 next	 clock
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transition	when	the	counter	steps	to	312;	thus	the	reset	is	generated	from	the	NOR
of	/V8,	/V5,	/V4,	/V2-0:

Interestingly,	 instead	 of	 using	 the	 three	 least	 significant	 counter	 lines	 V2-0,
Altwasser	uses	the	invert	of	the	carry	from	V2,	which	is	high	whenever	V2-0	are
high,	as	is	the	case	when	the	counter	prepares	to	advance	from	311.

This	 greatly	 simplifies	 the	 reset	 logic,	 resulting	 in	 the	 following	 equations,	 as
implemented	in	Figure	10-4:

The	NTSC	Line	Counter

The	 NTSC	 version	 of	 the	 ZX	 Spectrum	 ULA	 is	 clocked	 by	 a	 slightly	 faster
14.11MHz	crystal.	This	shortens	the	time	taken	for	a	complete	cycle	of	the	master
counter,	and	thus	scan	line,	to	63.5µs,	complying	with	the	NTSC	specification.

The	 NTSC	 ULA	 generates	 264	 scan	 lines	 per	 television	 frame,	 and	 resets	 the
vertical	 line	counter	as	 it	advances	from	263	(100000111	binary).	This	produces
the	NTSC	frame	rate	of	59.65	frames	per	second.

As	described	by	the	section	called	The	PAL	Line	Counter,	 the	vertical	counter	 is
synchronously	 reset.	 Therefore,	 by	 applying	 the	 reset	 signal	 while	 the	 counter
reads	263,	the	counter	is	reset	as	it	advances	to	264.

The	 differences	 between	 the	 PAL	 vertical	 counter	 reset	 of	 100110111	 and	 the
NTSC	counter	 reset	of	100000111	are	at	bits	V4	and	V5,	 leaving	V8	and	V2-0;
therefore	the	reset	signal	of	the	NTSC	ULA	contains	only	/VCA2	and	/V8:
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Figure	10-5:	NTSC	vertical	line	counter

1.	For	comparison,	the	alternative	synchronous	counter	consisting	of	T-type	flip-
flops	would	require	five	matrix	cells	per	bit.
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Chapter	11

Video	Synchronisation

To	 produce	 a	 display	 on	 a	 television,	 the	motion	 of	 the	 electron	 beam	must	 be
synchronized	 to	 the	 ULA	 state	 machine.	 To	 achieve	 this	 the	 video	 feed	 must
contain	 two	 synchronization	 signals:	 the	 horizontal	 sync	 that	 sends	 the	 electron
beam	back	to	the	left,	and	the	vertical	sync	that	returns	the	beam	to	the	top.

Horizontal	Timing

The	PAL	standard	specifies	that	during	the	horizontal	sync	and	fly-back,	the	video
signal	must	be	blanked	for	a	period	of	at	least	12µs.	The	horizontal	sync	pulse	that
initiates	the	fly-back	is	4.7µs	in	duration	and	occurs	within	the	blank	period,	after
approximately	1.5µs	of	front-porch	delay.

Figure	 11-1	 shows	 the	 ZX	 Spectrum	 video	 components,	 with	 timing	 given	 in
microseconds	and	 the	associated	pixel	 clock	 states.	Each	period	 is	derived	 from
multiples	 of	 16	 clock	 states,	 or	 2.29µs.	 The	 blank	 and	 front-porch	 periods	 are
therefore	slightly	longer	than	standard,	at	13.7µs	and	2.29µs	respectively.

Figure	11-1:	ZX	Spectrum	horizontal	timing	and	clock	states

The	 front-porch	 timing	 differs	 between	 revisions	 of	 the	 ZX	 Spectrum,	 the	 5C
ULA	 found	 in	 issue	1	 and	2	machines	 has	 a	 front-porch	of	 2.2µs,	 the	6C	ULA
found	 in	 later	 issues	 has	 a	 front-porch	 of	 3.4µs.	 This	 longer	 front-porch	 and
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consequently	 later	 horizontal	 sync	 has	 the	 effect	 of	 shifting	 the	 display	 slightly
further	to	the	left	of	the	screen,	as	the	time	between	the	sync	and	the	start	of	the
video	output	is	thus	shorter.	Note	also,	that	the	left	and	right	hand	borders	are	of
different	widths,	contributing	to	the	display	being	offset	to	the	left.

Description Cycle	Start Cycle	End C8-0	at	Start
Pixel	Output 0 255 000	000	000
Right	Border 256 319 100	000	000
Blanking	Period 320 415 101	000	000
Horizontal	Sync 336	(5C) 367	(5C) 101	010	000	(5C)

344	(6C) 375	(6C) 101	011	000	(6C)
Left	Border 416 447 110	100	000
Synchronous	Counter	Reset 447 448 110	111	111

Table	11-1:	Horizontal	time	points	for	the	5C	and	6C	ULA

The	exact	division	of	the	horizontal	scan	line	in	terms	of	master	counter	states	is
given	by	Table	 11-1.	Counter	 states	 0	 to	 255	define	 the	 region	of	 pixel	 display,
such	 that	 C8	 may	 be	 used	 to	 determine	 whether	 pixels	 or	 right-to-left	 border
colours	are	to	be	output.	During	the	horizontal	sync,	the	blanking	period	prevents
any	video	output.

Horizontal	Blanking

The	blanking	period	of	13.7µs	is	enabled	when	C8-5	equals	1010,	and	continues
until	it	reaches	1101.	C8	is	the	active-low	pixel	enable	signal	and	thus	will	be	high
during	the	horizontal	blank.	The	most	significant	bits	C8-6	of	the	period	remain	at
101	for	9.1µs,	after	which	they	become	1	0	with	C5	low	for	a	further	4.6µs.	The
combination	of	the	high	state	of	C6	followed	by	the	low	state	of	C5,	selected	by
considering	C8	and	C7,	generates	the	13.7µs	blanking	period.	The	two	horizontal
blank	components	are	shown	visually	in	Figure	11-2,	and	are	defined	by:
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Giving	/HBlank	as:

Horizontal	Synchronization

The	horizontal	 sync	pulse	occurs	within	 the	blanking	period,	 after	 a	 front-porch
delay	 of	 2.29µs	 or	 3.43µs,	 depending	 on	 ULA	 version.	 A	 number	 of	 internal
signals	 are	 generated,	 the	 combination	 of	 which	 produces	 the	 4.6µs	 horizontal
synchronisation	pulse.

First	 a	 train	 of	 horizontal	 sync	 pulses	 is	 generated,	 delayed	with	 respect	 to	 the
horizontal	blank	start	to	give	the	desired	front-porch	period.

C5	 forms	 the	basis	of	 the	horizontal	 sync	pulse	as	 it	 changes	 state	 every	4.6µs.
However,	without	any	 further	 treatment	 it	 is	aligned	 to	 the	horizontal	blank	and
gives	a	front-porch	of	0	or	4.6µs,	depending	on	which	half	cycle	of	C5	is	taken.

The	 5Cxxx	ULA	uses	 half	 the	 period	 of	C4,	 at	 2.29µs,	 to	 set	 the	 length	 of	 the
front-porch.	C5	is	modified	by	C4	to	create	two	signals,	the	first	contains	pulses
derived	from	the	high	state	of	C4	when	C5	is	low,	the	second	from	the	low	state	of
C4	when	C5	is	high.	When	combined	these	two	signals	produce	a	train	of	pulses
of	4.6µs,	offset	by	2.29µs	with	respect	to	the	clock.

From	Figure	11-2	and	Table	11-1	it	may	be	shown	that	the	horizontal	sync	of	the
5Cxxx	ULA	is	given	by:

The	later	6C001	ULA	increases	the	front-porch	slightly	to	3.43µs	by	introducing
C3	into	its	production,	adjusting	the	pulse	alignment	by	1.14µs.
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Where:
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Figure	11-2:	Horizontal	blank	and	sync	generation

Figure	11-3	 shows	 the	 horizontal	 blank	 and	 sync	 captured	 from	 a	 6C001	ULA.
Note	the	glitch	in	the	sync	pulse,	4.6µs	from	the	start	of	the	blank	period,	which	is
an	artefact	of	the	master	counter.	As	discussed	in	Chapter	10,	The	Internal	Clocks,
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C3-0	are	synchronous	with	the	pixel	clock	and	C3	ripples	forward	to	clock	C4	and
C5,	which	are	synchronous	with	each	other.	C3	therefore	goes	low	approximately
24ns	before	C4	and	C5	go	low	and	high	respectively,	causing	a	momentary	glitch
in	HSync,	1.14µs	after	its	start.

The	appropriate	horizontal	sync	pulse	 is	selected	from	the	 train	of	pulses	by	 the
first	part	of	the	horizontal	blank	signal,	comprised	of	C6,	C7	and	C8	such	that:

giving:

Figure	11-3:	ULA	6C001	blank	and	horizontal	sync	with	glitch

Vertical	Timing
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Referring	to	Figure	9-1	we	see	 that	 the	ZX	Spectrum's	PAL	display	 is	 split	 into
four	vertical	sections,	comprising	56	lines	of	top	border,	192	lines	of	pixel	display,
56	 lines	of	bottom	border	and	8	 lines	of	vertical	 sync	period.	These	periods	are
broken	 down	 into	 the	 vertical	 counter	 states	 shown	 in	 Table	 11-2,	 where	Lines
represent	 the	 internal	 counter	 values	 and	 not	 the	 actual	 scan-lines,	 such	 that
counter	line	0	is	the	first	pixel	display	row	at	scan	line	56.	Scan	line	0	begins	at
the	vertical	sync	pulse.

The	 main	 function	 of	 the	 line	 counter	 is	 to	 generate	 the	 vertical	 sync	 pulse
precisely	 when	 required,	 and	 for	 the	 appropriate	 duration.	 In	 addition	 it
determines	whether	the	ZX	Spectrum	should	be	generating	pixel	display	lines,	or
the	 top	 and	 bottom	 borders.	 Referring	 to	 Table	 11-2	 it	 is	 clear	 that	 whenever
(V6⋅V7)+V8	 is	 false	 then	 pixel	 display	 rows	 are	 generated,	 otherwise	 the	 ZX
Spectrum	generates	vertical	borders	or	vertical	sync.

Block	Description Lines Length V8-0	at	Block	Start
Display 000-191 192 0	00	000	000
Bottom	Border 192-247 56 0	11	000	000
Sync	Period 248-255 8 0	11	111	000
Sync	Pulse 248-251 4 0	11	111	000
Top	Border 256-311 56 1	00	000	000
Clock	Reset 312-312 0 1	00	111	000

Table	11-2:	PAL	vertical	counter	states	and	associated	display	regions

The	ZX	Spectrum	ULA	logic	defines	the	vertical	border	as:

Giving:

This	is	combined	with	the	horizontal	border	signal,	C8,	into	a	single	border	signal
that	 is	 low	 whenever	 the	 electron	 beam	 is	 within	 the	 border	 or	 during
synchronisation:
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Vertical	Synchronization

A	PAL	television	controls	 the	vertical	position	of	 its	electron	beam	with	a	50Hz
(60Hz	 for	NTSC)	 saw-tooth	 oscillator.	At	 the	 beginning	 of	 the	 oscillator	 cycle,
when	its	output	is	maximum,	the	electron	beam	is	at	the	top	of	the	screen.	As	its
output	drops	 the	beam	descends	until,	at	 the	end	of	 the	cycle,	 the	electron	beam
reaches	 the	 bottom.	 The	 cycle	 then	 repeats.	 Video	 signals	 contain	 a	 vertical
synchronization	 component	 that	 resets	 this	 oscillator	 at	 the	 start	 of	 each	 frame,
guaranteeing	that	 the	vertical	position	of	 the	electron	beam	is	synchronized	with
the	incoming	video	lines.

The	PAL	and	NTSC	specifications	describe	two	vertical	sync	pulse	sequences	to
be	used	for	interlaced	video	signals.	The	first	sequence	is	used	when	preparing	an
odd	numbered	video	frame,	or	field	1,	the	other	is	for	even	numbered	frames.

Figure	11-4	compares	these	two	pulse	sequences.	Field	1	synchronization	consists
of	 a	 5-5-5	 sequence	 of	 five	 short	 pre-equalising	 pulses,	 five	 long	 vertical	 sync
pulses	and	five	short	post-equalising	pulses.	A	short	pulse	is	low	for	2µs	followed
by	 a	 30µs	 delay,	 and	 a	 long	 pulse	 is	 low	 for	 30µs	 followed	 by	 a	 2µs	 delay;
therefore	 there	 are	 two	 vertical	 sync	 pulses	 per	 scan	 line.	 See	 Figure	 11-4
sequence	A.
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Figure	11-4:	Comparison	of	Sinclair	and	specification	vertical	synchronisation

Field	 2	 synchronization	 is	 a	 5-5-4	 sequence	 but	 similar	 in	 all	 other	 respects	 to
field	1.	Being	one	pulse	shorter,	the	HSync	is	brought	forward	by	half	a	line	and
becomes	180	degrees	out	of	phase	with	 the	start	of	 the	 long	VSync	pulses.	This
forces	 the	scan	 lines	 to	be	offset	vertically,	and	 thus	a	 field	2	 frame.	See	Figure
11-4	sequence	B.

Sequence	C	shows	a	general	non-interlaced	single	frame	vertical	sync.	It	is	a	6-5-
5	 sequence	 containing	 an	 additional	 pre-equalising	 pulse	 so	 that	 a	 complete
number	of	lines	are	used	for	the	synchronization,	but	is	otherwise	identical	to	that
of	field	1.	The	important	similarity	of	the	two	is	that	VSync	is	coincident	with	the
start	 of	 the	 line,	 establishing	 the	 frame	 as	 field	 1.	 This	 sequence	 is	 easier	 to
generate	 than	 the	 official	 field	 1	 sequence	 as	 it	 contains	 no	 partial	 lines,	 and	 is
often	used	by	many	video	games	consoles	and	home	computers.

The	ZX	Spectrum	departs	from	the	specification	in	the	interest	of	simplicity,	and
performs	 a	 cheat	 in	which	 it	 generates	 one	 long	 256µs	VSync	 pulse	 that	 spans
four	scan	lines,	as	shown	in	Figure	11-4	sequence	D.	This	is	enough	to	reset	the
television	saw-tooth	oscillator	and	maintain	sync	lock.	Table	11-2	shows	that	this
pulse	sequence	begins	at	the	start	of	an	eight	line	sync	period.

This	simple	vertical	synchronization	component	of	the	ZX	Spectrum	video	signal
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exploits	 the	 analogue	 nature	 of	 the	 vertical	 control	 oscillator	 in	 contemporary
televisions.	 However,	 some	modern	 digital	 and	 LCD	 televisions	 have	 problems
locking	 onto	 this	 vertical	 sync,	 as	 they	 process	 the	 signal	 digitally	 and	 do	 not
recognise	the	fake	VSync	pulse.

As	with	the	horizontal	sync,	the	video	output	must	be	blanked	during	the	vertical
sync	-	normally	for	a	period	of	eight	lines.	In	the	ZX	Spectrum	this	blank	occurs
only	while	the	256µs	VSync	pulse	is	active,	given	by	the	following	equation	for
the	PAL	version	of	the	ULA:

V2	ensures	that	the	vertical	sync	lasts	for	no	more	than	four	scan	lines,	and	there
is	evidence	that	this	was	not	part	of	the	original	design	prototype,	which	may	have
had	an	eight	line	vertical	sync.	See	the	section	called	The	ZX	Spectrum	Maskable
Interrupts	in	Chapter	21,	Interrupts	for	further	information.

Note	 that	because	 the	vertical	counter	 is	clocked	by	CLKHC6,	 the	counter	does
not	 increment	with	 the	 start	of	each	 scan	 line,	 as	defined	by	HSync,	but	6.86µs
later	when	CLKHC6	goes	low.	This	leads	to	a	misalignment	of	the	vertical	sync
with	respect	to	the	HSync,	following	6.86µs	later,	as	shown	in	Figure	11-4.

Figure	11-5	 shows	 the	ZX	Spectrum	ULA	 implementation	of	 the	Border,	Blank
and	Sync.	Border	is	used	internally	to	switch	the	video	generation	between	pixel
and	border	output,	VSync	and	HSync	are	used	by	the	video	output	multiplexer	to
switch	off	RGB	colour	generation	(Figure	12-10),	Blank	and	combined	Sync	are
passed	 to	 the	YUV	colour	difference	encoding	circuit,	where	 they	are	combined
with	 the	 colour	 information	 and	 passed	 out	 of	 the	ULA	 to	 the	 composite	 video
encoder.
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Figure	11-5:	ULA	6C001	Border,	Blank	and	PAL	synchronisation	schematic

NTSC	Vertical	Synchronisation

The	 NTSC	 version	 of	 the	 ZX	 Spectrum	 has	 a	 slightly	 shorter	 vertical	 display
period,	containing	just	24	lines	for	the	bottom	border	and	40	lines	for	the	top.	This
means	 that	 the	 vertical	 synchronisation	 pulse	 occurs	 earlier	 than	 on	 a	 PAL
machine,	at	216	scan	lines	from	the	start	of	the	pixel	display	area.	See	Table	11-3.

The	 engineers	 at	 Sinclair	 inverted	V5	 in	 the	 generation	 of	 the	NTSC	VSync	 to
bring	the	synchronisation	pulse	forward	by	32	scan	lines.	This	reduced	the	number
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of	lines	in	both	the	top	and	bottom	borders,	adjusting	the	vertical	position	of	pixel
display	rectangle	towards	the	centre	of	the	shorter	screen.

Signal	V5	is	routed	within	one	matrix	cell	of	the	VSync	NOR	gate,	making	this	a
simple	 design	 modification	 that	 did	 not	 require	 the	 re-routing	 of	 any	 other
interconnect	tracks.	The	NTSC	VSync	is	defined	as:

The	NTSC	VSync	schematic	is	given	in	Figure	11-6	and	should	be	compared	 to
the	PAL	schematic	of	Figure	11-5.

Block	Description Lines Length V8-0	at	Block	Start
Display 000-191 192 0	00	000	000
Bottom	Border 192-215 24 0	11	000	000
Sync	Period 216-223 8 0	11	011	000
Sync	Pulse 216-219 4 0	11	011	000
Top	Border 224-263 40 0	11	100	000
Clock	Reset 264-264 0 1	00	001	000

Table	11-3:	NTSC	vertical	counter	states	and	associated	display	regions

Figure	11-6:	ULA	6C011	vertical	synchronisation	schematic
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Chapter	12

Generating	The	Display

The	 ZX	 Spectrum	 display	 has	 a	 resolution	 of	 256×192	 pixels,	 organised	 as	 a
virtual	32×24	character	grid	in	which	a	character	is	one	byte	wide	and	eight	bytes
high.	This	geometry	 is	 identical	 to	 the	ZX81,	 except	 that	 direct	 access	 to	video
memory	is	allowed	where	the	ZX81	used	a	character	ROM ,	and	each	character
cell	may	be	assigned	a	background	and	 foreground	colour	where	 the	ZX81	was
black	and	white.

The	 colour	 information	 follows	 the	 display	 bytes	 in	 memory	 and	 divides	 the
display	 into	 a	 grid	 of	 32×24	 colour	 cells.	 This	 colour	 overlay	 is	 applied	 to	 the
black	 and	white	 pixel	 display	 such	 that	 a	 cell	 defines	 a	 single	 background	 and
foreground	 colour	 for	 the	 eight	 display	 bytes	 within	 that	 cell	 position.	 When
working	 at	 a	 character	 level	 this	 colour	 layout	 is	 simple	 and	 flexible,	 however
when	 working	 at	 a	 pixel	 level	 the	 two	 colours	 per	 character	 cell	 restriction
becomes	apparent,	an	effect	known	as	attribute-clash

Some	 viewed	 this	 restriction	 negatively,	 seeing	 it	 as	 a	 design	 flaw	 and	 an
oversight.	However	that	could	not	have	been	further	from	the	truth.	In	April	1982,
Richard	 Altwasser	 and	 Sinclair	 Research	 filed	 an	 international	 patent
[ALTWASSERDC]	 citing	 the	 reduction	 in	 both	memory	 and	 complexity	 of	 the
Sinclair	colour	display,	when	compared	to	conventional	displays,	as	the	object	of
invention.	It	also	states	as	an	advantage	that	the	colour	information	is	at	a	lower
resolution	 than	would	usually	be	 the	case,	demonstrating	 that	 the	attribute-clash
effect	 was	 intentional.	 For	 some	 this	 clash	may	 have	 detracted	 from	 the	 visual
ability	 of	 the	ZX	Spectrum,	 but	 the	memory	 that	was	 saved	 gave	 programmers
more	freedom	than	with	competitor	machines,	which	paid	dividends	when	it	came
to	writing	high	quality	software	and	games.	The	best	programmers	became	apt	at
concealing	 the	 colour	 limitation	 by	 clever	 graphic	 sizing 	 or	 by	 reducing	 the
colour	content	of	the	screen .

To	keep	 the	 display	 updated	 the	ZX	Spectrum	 repeatedly	 fetches	 pairs	 of	 bytes
from	memory,	one	containing	pixel	information,	the	other	colour.	It	feeds	the	pixel
display	byte	 through	a	shift	 register	 to	extract	each	 individual	pixel	 in	 turn,	and
uses	 them	 to	 select	 whether	 a	 foreground	 or	 background	 colour	 is	 sent	 to	 the
television.	The	foreground	and	background	colours	themselves	are	determined	by

1

2

3
4

126



the	pixel's	associated	colour	byte.

Pixel	Display	Generation

There	 are	 three	 sources	 of	 data	 required	 to	 generate	 the	ZX	Spectrum's	 display,
depending	on	where	the	electron	beam	is	at	a	given	time:	Border	colour,	display
byte	containing	pixel	information	and	its	colour	attribute	byte.	Figure	12-1	shows
the	 relationship	between	byte,	pixel	and	character	cell,	and	 it	 should	be	 recalled
that	a	single	attribute	byte	provides	the	foreground	and	background	colour	for	all
display	bytes	within	a	character	cell.

Each	bit	of	a	display	byte	represents	one	pixel,	with	bit	seven	being	the	leftmost
pixel	of	the	eight.	When	a	display	byte	is	to	be	output	to	the	screen,	it	is	shifted
one	bit	at	a	time	into	the	colour	circuit	by	the	7MHz	pixel	clock.

Figure	12-1:	Byte,	character	cell	and	pixel	relationship

Once	eight	bits	have	been	shifted	to	 the	display,	 the	next	byte	needs	to	be	made
available.	At	142ns,	the	time	between	each	pixel	shift	is	insufficient	to	allow	this
new	byte	to	be	loaded	from	memory	on	demand	[DS4116].	To	resolve	this,	the	ZX
Spectrum	employs	a	double	byte	buffer	in	the	load	and	shift	circuit.

The	 required	 display	 byte	 is	 first	 fetched	 from	 the	 comparatively	 slow	memory
into	 a	 temporary	 eight	 bit	 latch,	 from	where	 it	 is	 loaded	 into	 the	 eight	 bit	 shift
register	 when	 required.	 This	 theoretically	 allows	 up	 to	 1.14µs	 for	 the	 ULA	 to
fetch	a	display	byte	from	memory	while	the	shift	register	is	serialising	the	current
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display	byte,	so	that	the	next	display	byte	is	available	when	the	shift	register	needs
it.

Figure	12-2	illustrates	the	double	buffer	mechanism	where	the	Data	Latch	signal
loads	 a	 byte	 from	memory	 via	 the	 data	 bus	D7-0	 into	 the	 eight	 bit	 transparent
latch,	signal	Data	Load	 synchronously	 transfers	 the	byte	 from	 the	 latch	 into	 the
shift	register	at	the	next	negative	edge	of	the	pixel	clock,	and	signal	Pixel	Clock
shifts	the	byte	in	the	register	out	through	Serial	Out,	bit	seven	first.

Figure	12-2:	Pixel	data	latch	and	shift	register	block	diagram

The	 serial	 pixel	 stream	 generated	 by	 the	 shift	 register	 is	 not	 fed	 directly	 to	 the
display,	 as	 this	would	 produce	 a	 black	 and	white	 image,	 but	 instead	 switches	 a
colour	generation	circuit	between	a	 foreground	and	background	colour	specified
by	 the	 attribute	 byte	 associated	 with	 the	 pixel's	 screen	 position,	 the	 choice
depending	on	whether	the	pixel	is	set	or	not.
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Figure	12-3:	Attribute	byte	bit	assignments

The	ZX	Spectrum	has	a	three	bit	RGB	colour	palette,	so	six	bits	of	the	attribute
byte	 are	 require	 to	 represent	 both	 the	 foreground	 and	 background	 colours.	 The
remaining	 two	 bits	 are	 designated	 colour	modifiers,	 such	 that	 bit	 six	 enables	 a
highlight	 or	 brightness	 increase	 for	 the	 attribute,	 and	 bit	 seven	 enables	 a	 flash
mode	 for	 the	 attribute,	 where	 the	 foreground	 and	 background	 colours	 are
cyclically	swapped	every	half	second	or	so.

The	 lower	 six	 bits	 of	 the	 attribute	 byte,	 giving	 the	 foreground	 and	 background
colours,	are	passed	to	a	three	channel,	2-to-1	multiplexer	which	is	switched	by	the
serial	pixel	stream.	When	the	serial	pixel	output	is	high,	indicating	that	a	pixel	is
set,	the	foreground	colour	is	selected	(bits	D2-0	through	channel	A	in	Figure	12-
4),	 otherwise	 it	 selects	 the	 background	 colour	 (D5-3	 through	 channel	 B).	 The
selected	 RGB	 colour	 is	 then	 passed	 to	 the	 analogue	 video	 generation	 circuit,
discussed	in	Chapter	16,	Analogue	Video.

Each	time	a	display	data	byte	 is	 loaded	into	 the	shift	 register,	 the	corresponding
attribute	byte	is	presented	to	the	colour	output	multiplexer,	where	it	remains	while
the	 eight	 pixels	 are	 shifted	 to	 the	 display.	 The	 timing	 of	 the	 attribute	 byte
presentation	is	critical.	The	pixel	shift	register	loads	data	at	the	next	negative	edge
of	the	pixel	clock,	and	the	attribute	byte	must	appear	at	the	multiplexer	at	exactly
the	 same	 time.	 Too	 early	 and	 the	 last	 pixel	 of	 the	 preceding	 display	 byte	 will
change	to	the	new	colours	before	it	has	finished	being	displayed,	too	late	and	the
new	pixel	will	begin	to	be	displayed	with	the	colour	of	the	previous	attribute.
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Figure	12-4:	Double	buffered	attribute	byte	fetch	block	diagram

To	ensure	that	the	new	attribute	byte	appears	at	the	multiplexer	at	the	same	time	as
the	 first	 shifted	 bit	 of	 the	 new	 display	 byte,	 the	 ZX	 Spectrum	 feeds	 the	 colour
output	 multiplexer	 from	 an	 eight	 bit	 attribute	 output	 latch	 that	 is	 loaded	 by	 a
signal	 that	 is	 synchronous	 with	 the	 loading	 of	 the	 shift	 register.	 Figure	 12-5
illustrates	 this	 timing	 and	 shows	 a	 new	 data	 byte	 being	 loaded	 into	 the	 shift
register	every	eight	pixel	clock	cycles	by	the	combination	of	the	SLoad	signal	and
negative	 clock	 edge,	while	 simultaneously	 loading	 a	 new	attribute	 byte	 into	 the
attribute	output	latch	with	the	/AOLatch	signal.
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Figure	12-5:	Attribute	output	latch,	SLoad	and	clock	relationship

Fetching	 the	 attribute	 byte	 from	 memory	 directly	 into	 the	 output	 latch	 is	 not
possible	 due	 to	 the	 demanding	 timing	 requirements	 discussed	 previously,	 so
Altwasser	employed	the	same	double	buffering	technique	used	with	the	data	byte,
shown	 in	 Figure	 12-4.	 An	 attribute	 byte	 is	 first	 fetched	 from	 memory	 into	 an
intermediate	attribute	data	latch,	from	where	the	attribute	output	latch	is	loaded	as
described	above.	This	relaxes	the	constraints	on	when	the	data	and	attribute	bytes
must	be	fetched	from	memory,	so	long	as	the	two	memory	data	latches	are	loaded
before	the	bytes	are	required	for	output,	which	is	a	1.14µs	window	(the	time	taken
to	shift	out	eight	pixels).

The	Flash	Mode

When	the	flash	mode	bit	of	the	attribute	byte	is	set,	the	ULA	swaps	the	foreground
and	 background	 colours	 that	 are	 sent	 to	 the	 screen	 for	 that	 attribute	 byte	 at
approximately	 half	 second	 intervals.	 See	 Chapter	 14,	Video	 Control	 Clocks	 for
further	details	of	the	flash	rate.

The	ULA	does	 this,	not	by	physically	exchanging	RGB	values,	but	by	 inverting
the	pixel	stream	that	is	sent	to	the	colour	output	multiplexer.	By	taking	the	flash
enable	attribute	bit	and	NOR	gating	this	with	the	flash	clock,	the	ULA	creates	a
signal	that	is	low	when	the	flash	enable	bit	is	reset	or	oscillating	at	the	flash	clock
rate	when	the	enable	is	set.	The	serial	pixel	stream	is	XNOR	gated	with	this	flash
control	 signal,	 causing	 it	 to	 invert	 and	 revert	with	 each	 cycle	of	 the	 flash	 clock
when	the	flash	mode	is	enabled.

The	 flash	modification	 of	 the	 serial	 pixel	 stream	 output	 by	 the	 shift	 register	 is
illustrated	by	the	following	equation:

131



Border	Generation

When	 the	 ZX	 Spectrum	 is	 not	 generating	 the	 pixel	 display	 area,	 the	 coloured
border	around	it	is	produced,	see	Figure	9-1.	During	this	period	no	data	is	fetched
from	the	memory	and	no	pixels	are	shifted	out	of	the	shift	register;	therefore	the
last	 background	 colour	 held	 by	 the	 attribute	 output	 latch	 would	 be	 sent	 to	 the
screen.

To	allow	the	border	to	be	set	to	a	specific	colour,	the	ULA	provides	an	additional
three	bit	 latch	to	hold	the	RGB	value	for	 the	border	colour.	The	value	stored	by
the	 latch	 is	 set	 by	 software	 writing	 to	 an	 input	 port	 assigned	 to	 the	 ULA;	 see
Chapter	19,	Input-Output	Devices.

As	the	ZX	Spectrum	video	controller	falls	back	to	producing	a	background	colour
in	 the	 absence	 of	 a	 serial	 pixel	 stream,	 the	 RGB	 value	 provided	 by	 the	 border
colour	register	needs	to	be	selected	instead,	whenever	the	pixel	display	area	is	not
being	generated.

The	VidEN	signal,	which	is	active	while	the	pixel	display	area	is	being	produced,
switches	 a	 five	 channel	 2-to-1	 multiplexer	 to	 select	 between	 the	 background
colour	and	border	colour.	Note	 that	both	highlight	and	 flash	are	disabled	during
the	 border	 region,	which	 accounts	 for	 channels	 four	 and	 five	 in	 addition	 to	 the
three	RGB	channels.	Theoretically,	there	are	two	places	where	this	border	colour
multiplexing	could	occur	in	Figure	12-4;	either	between	the	attribute	output	latch
and	multiplexer	or	between	the	attribute	data	latch	and	output	latch.

If	 the	 border/background	 colour	 multiplexer	 were	 placed	 between	 the	 attribute
output	 latch	 and	 output	 multiplexer,	 additional	 propagation	 delay	 would	 be
introduced	 into	 the	 background	 channel,	 which	 would	 not	 be	 present	 in	 the
foreground	channel.	This	asymmetric	delay	would	cause	the	background	colour	of
each	screen	attribute	cell	to	bleed	into	the	cell	to	its	right,	as	the	transition	to	the
new	background	colour	would	be	slower	than	to	the	new	foreground	colour.

Therefore	 Altwasser	 placed	 the	 border/background	 colour	 multiplexer	 between
the	 data	 and	 output	 latches,	 so	 that	 the	 output	 latch	 hides	 the	 additional
propagation	 delay.	 See	 Figure	 12-6.	 This	 is	 the	 more	 complicated	 of	 the	 two
placements,	as	the	output	latch	now	needs	to	be	clocked	whenever	a	switch	from
the	pixel	display	 to	border	 is	made,	and	whenever	 the	border	colour	 is	changed.
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For	this	reason	the	ULA	attribute	output	latch	signal	contains	a	continuous	chain
of	 pulses,	 one	 every	 eight	 cycles	 of	 the	 7MHz	 clock.	 See	 Chapter	 14,	 Video
Control	Clocks	and	Figure	12-5.

Figure	12-6:	Attribute	output	latch	and	border	select	multiplexer

The	consequence	of	this	multiplexer	placement	is	that	it	is	not	possible	to	change
the	 border	 colour	 more	 frequently	 than	 once	 every	 eight	 pixel	 clock	 cycles.
Carefully	written	code	can	choose	where	 the	electron	beam	will	be	when	 it	 sets
the	border	colour	register,	but	the	border	itself	will	not	change	until	the	attribute
output	latch	is	triggered.

Control	Signals

The	 timing	 of	 the	 byte	 fetches	 from	 memory	 must	 be	 carefully	 chosen	 to	 fall
within	 the	 specifications	 laid	 out	 by	 the	 dynamic	 RAM	 data	 sheet	 [DS4116].
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There	are	minimum	periods	that	the	memory	control	signals	RAS	and	CAS	must
be	active	before	 the	 requested	byte	on	 the	data	bus	 is	 stable	enough	 to	be	 read;
therefore	the	set	up	time	for	each	byte	read	is	expensive.

The	time	between	the	display	and	attribute	byte	fetches	is	minimised	by	utilising	a
page	mode	read	[DS4116],	where	a	row	address	is	presented	once	to	the	memory,
followed	by	two	successive	column	addresses.	This	results	in	two	bytes	being	read
from	 the	 same	 row	 in	 the	 memory	 and	 avoids	 the	 set	 up	 time	 of	 supplying	 a
second	row	address.	To	enable	this	type	of	read,	the	memory	structure	of	the	ZX
Spectrum	is	carefully	arranged	so	that	an	attribute	byte	is	in	the	same	memory	row
as	its	display	byte,	leading	to	the	peculiar	screen	byte	order	and	the	characteristic
way	 that	 screen	 pictures	 appear	 on	 the	 television	 when	 loading	 software	 from
cassette.	 See	 Chapter	 15,	 Video	 Addressing	 for	 further	 details	 of	 this	 memory
layout.

As	the	display	controller	shares	the	video	memory	with	the	CPU,	there	is	a	small
set	up	delay	while	it	assumes	control.	To	make	access	more	efficient	the	controller
reads	two	complete	pairs	of	bytes	each	time	it	has	control;	 therefore	halving	the
number	of	memory	claims	and	reducing	the	set	up	delays	necessary.

To	perform	this	operation,	once	 the	display	controller	has	 loaded	a	pair	of	bytes
into	 the	memory	 latches	 and	 transferred	 them	 to	 the	 shift	 register	 and	 attribute
output	 latch,	 it	 immediately	 loads	 the	 next	 pair	 into	 the	 now	 empty	 memory
latches,	making	effective	use	of	the	limited	time	window	available.

Before	 the	 specifics	 of	 video	 control	 signal	 generation	 can	 be	 discussed,	 an
understanding	 of	 the	 video	 memory	 access	 timing	 implemented	 by	 the	 ZX
Spectrum	 is	 required,	which	 is	 presented	 in	Chapter	 13,	Video	Memory	 Access.
Chapter	 14,	 Video	 Control	 Clocks	 then	 describes	 the	 video	 control	 signal
generation	in	detail.

At	this	point	the	control	signals	may	be	usefully	summarised	as:

1.	 CLK	7.	The	7MHz	pixel	clock	that	controls	when	pixels	are	output	to	the
display	by	driving	the	shift	register.

2.	 VidEN.	This	active	high	signal	indicates	when	the	pixel	display	is	being
generated,	otherwise	the	border	is	generated.

3.	 DataLatch.	The	active	low	signal	that	transfers	the	byte	on	the	ULA	data
bus	into	the	display	data	latch.

4.	 AttrLatch.	The	active	low	signal	that	transfers	the	byte	on	the	ULA	data	bus
into	the	attribute	data	latch.

5.	 SLoad.	The	active	high	signal	that	instructs	the	shift	register	to	load	the
display	byte	from	the	data	latch	at	the	next	negative	edge	of	the	pixel	clock.

6.	 AOLatch.	The	active	low,	pixel	clock	synchronous	signal	that	transfers	an
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attribute	byte	from	the	attribute	data	latch	(or	border	colour	register)	into
the	attribute	output	latch.	This	signal	goes	low	every	eight	cycles	of	the
7MHz	pixel	clock.

These	control	signals	activate	in	a	carefully	choreographed	sequence	that	fetches
and	 passes	 display	 and	 attribute	 bytes	 through	 the	 display	 circuitry.	 How	 this
timing	is	achieved	is	described	in	Chapter	14,	Video	Control	Clocks,	and	results	in
the	following	sequence	of	events:

1.	 DataLatch	reads	the	display	byte	on	the	memory	data	bus	and	stores	it	in	the
display	data	latch.

2.	 AttrLatch	reads	the	attribute	byte	on	the	memory	data	bus	and	stores	it	in
the	attribute	data	latch.

3.	 The	shift	register	clocks	the	last	pixel	of	the	previous	display	byte	through
its	serial	output.	Following	this,	SLoad	goes	high	ready	to	reload	the	shift
register	from	the	display	data	latch	at	the	next	pixel	clock.

4.	 With	the	next	transition	of	the	pixel	clock	the	shift	register	loads	display
data	from	the	data	latch	and	AOLatch	goes	low,	reloading	the	attribute
output	latch	which	feeds	the	colour	output	multiplexer.

5.	 Once	the	clock	transition	is	complete	and	the	shift	register	has	been	loaded,
SLoad	returns	low	and	AOLatch	high.	DataLatch	then	reads	and	stores	a
second	display	byte	from	the	data	bus	into	the	display	data	latch.

6.	 AttrLatch	reads	and	stores	a	second	attribute	byte	from	the	data	bus	into	the
attribute	data	latch.

7.	 After	several	more	transitions	of	the	pixel	clock,	when	the	last	pixel	of	the
current	data	byte	has	been	clocked	through	the	shift	register	output,	SLoad
goes	high	to	reload	the	shift	register	from	the	preloaded	display	data	latch,
at	the	next	downwards	transition	of	the	pixel	clock.

8.	 The	next	transition	of	the	pixel	clock	reloads	the	shift	register	while
AOLatch	goes	low,	transferring	the	next	attribute	byte	into	the	output	latch
which	feeds	the	colour	output	multiplexer.	When	the	downward	transition	is
complete	SLoad	returns	low,	followed	a	little	later	by	AOLatch	going	high.

The	 sequence	 restarts	 a	 little	 before	 the	 shift	 register	 sends	 the	 last	 pixel	 of	 the
display	byte	to	the	television,	so	that	the	reload	of	the	shift	register	(3)	occurs	as
soon	as	it	is	empty.

Circuit	Operation
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Display	Byte	Latch	and	Shift	Register

At	 its	 most	 fundamental	 level,	 the	 ZX	 Spectrum	 ULA	 updates	 the	 screen	 by
serialising	bytes	representing	the	on/off	states	of	pixels,	where	one	bit	represents
one	 pixel,	 into	 a	 stream	 of	 bits	 which	 are	 encoded	 and	 sent	 to	 the	 television.
Figure	12-7	shows	the	data	latch	and	shift	circuit	that	performs	this	serialisation.

The	 data	 latch	 consists	 of	 eight	 gated	D	 transparent	 latches,	 sharing	 a	 common
latch	 enable.	When	 the	 enable	 is	 pulled	 low	 by	 /DataLatch,	 the	 latch	 becomes
transparent	and	the	value	on	the	data	bus	is	seen	at	the	latch	output	Q7-0.	When
/DataLatch	returns	high,	the	value	at	the	latch	output	is	stored.	Display	bytes	are
loaded	into	the	data	latch	by	/DataLatch,	the	exact	timing	of	which	is	discussed	in
Chapter	14,	Video	Control	Clocks,	 suffice	 it	 to	 say	 that	 a	display	byte	 is	 loaded
into	the	latch	ahead	of	being	required	by	the	shift	register.

Figure	12-7:	Data	latch	and	shift	register	schematic

The	display	data	latch	feeds	an	eight	bit	shift	register	(described	in	Appendix	B,
Component	Library),	which	clocks	bits	out	of	 its	serial	output	on	 the	downward
transition	 of	 the	 7MHz	 pixel	 clock.	 After	 eight	 bits,	 and	 therefore	 pixels,	 have
been	shifted	out,	the	shift	register	will	be	empty	and	require	reloading.

The	SLoad	signal	therefore	goes	high	for	the	first	of	every	eight	downward	pixel
clock	transitions,	forcing	the	shift	register	to	load	a	new	byte	from	the	display	data
latch	and	transfer	the	first	bit	to	its	output.

Note	that	the	schematic	in	Figure	12-7	shows	an	inverted	value	being	passed	from
the	latch	to	the	shift	register.	For	efficiency	the	ULA	implementation	of	the	shift
register	 inverts	 the	value	passed	 to	 it;	 therefore	 the	 register	 requires	an	 inverted
value	 to	 be	 supplied	 to	 correct	 this	 behaviour.	 Since	 the	 transparent	 latches
provide	both	 inverted	and	non-inverted	outputs,	passing	an	 inverted	value	 to	 the
shift	register	requires	no	additional	logic.
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Attribute	Data	Latch	and	Border	Multiplexer

Like	the	display	data	latch,	the	attribute	data	latch	also	consists	of	eight	gated	D
transparent	 latches	with	a	common	enable.	As	 /AttrLatch	goes	 low,	 the	attribute
value	 on	 the	 data	 bus	 is	 transferred	 to	 the	 latch	 output	 and	 is	 stored	 when
/AttrLatch	returns	high.	Both	the	latch	signal	and	memory	read	are	carefully	timed
so	that	the	attribute	byte	is	latched	and	made	available	to	the	output	latch	before
being	required.

Figure	12-8:	Attribute	data	latch	and	paper/border	multiplexer	schematic

Bits	Q7-3	of	the	latched	byte,	containing	the	background	RGB	value	and	attribute
modifier	bits,	are	fed	to	the	output	latch	via	five	2-to-1	multiplexers,	where	they
are	 combined	 with	 the	 RGB	 value	 of	 the	 border	 colour	 taken	 from	 the	 border
colour	register.	The	multiplexer	channel	select	is	controlled	by	the	VidEN	signal,
which	 is	 high	 during	 pixel	 stream	 output	 and	 low	 during	 the	 border;	 therefore
replacing	 the	 background	 colour	 with	 that	 of	 the	 border	 whenever	 the	 pixel
display	area	is	not	being	produced.

The	RGB	channels	of	 the	multiplexer	consist	of	 three	NOR	gates,	 two	of	which
gate	 the	 input	channels	with	 the	channel	 select,	 and	a	 third	which	combines	 the
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result	of	the	channel	selection	into	a	single	output,	as	shown	in	Figure	12-8.	The
remaining	two	channels	are	the	flash	and	highlight	channels	which	have	a	single
input	source	fed	from	the	attribute	data	latch.	While	the	border	is	being	produced,
the	outputs	of	 these	 two	multiplexers	are	explicitly	 forced	 to	zero,	disabling	 the
highlight	and	flash	mode.

Flash	Control	of	Pixel	Stream

The	flash	control	circuit	inverts	the	flash	mode	select	bit	and	NOR	gates	this	with
the	flash	clock,	so	that	when	the	flash	mode	bit	is	reset,	the	flash	clock	is	blocked
and	the	output	of	the	NOR	is	forced	low.	When	the	flash	mode	bit	is	set,	the	flash
clock	is	passed	through	the	NOR	gate	where	it	is	inverted.	See	Chapter	14,	Video
Control	Clocks	for	details	of	the	flash	clock	generation.	The	flash	mode	select	is
taken	 from	 the	 attribute	 output	 latch	 described	 in	 the	 section	 called	 Attribute
Output	 Latch	 and	 Output	 Multiplexer,	 because	 this	 is	 synchronised	 with	 the
change	 in	 attribute	 colour	 for	 the	 current	display	byte,	 and	 the	 switch	 to	border
colour	generation.

Figure	12-9:	Flash	control	of	pixel	stream	schematic

This	flash	control	signal	is	combined	with	the	serial	pixel	stream	through	a	classic
XNOR	gate	constructed	from	four	NOR	gates,	so	that	while	the	flash	mode	bit	is
set	 -	which	passes	 the	 flash	clock	 to	 the	XNOR	gate	 -	 the	 serial	pixel	 stream	 is
alternately	inverted	and	reverted.	This	provides	the	cyclic	pixel	invert	necessary	to
flash	the	associated	screen	attribute	cell.

Attribute	Output	Latch	and	Output	Multiplexer
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The	 colour	 output	 stage	 show	 in	 Figure	12-10	 combines	 the	 serial	 pixel	 stream
from	the	flash	control	circuit	with	the	output	of	the	attribute	data	latch	and	border
colour	 multiplexer,	 creating	 an	 RGB	 output	 that	 produces	 the	 foreground	 or
background	colour,	depending	on	the	state	of	the	stream.

The	 colour	 and	 modifier	 bits	 from	 the	 attribute	 latch	 and	 paper/border	 colour
multiplexer	are	fed	to	a	gated	D	transparent	latch,	controlled	by	/AOLatch	which
goes	 low	precisely	 as	 the	 shift	 register	 is	 loaded	 and	 the	 first	 bit	 of	 the	 display
byte	appears	in	the	serial	pixel	stream.

The	 colours	 stored	 by	 the	 latch	 are	 multiplexed	 by	 a	 three	 channel,	 2-to-l
multiplexer,	which	switches	between	the	foreground	or	background/border	colour
depending	on	the	state	of	the	serial	pixel	stream,	/DataSelect.

Figure	12-10:	Attribute	output	latch	and	colour	multiplexer	schematic

Each	of	the	three	output	multiplexer	channels	that	together	produce	the	final	RGB
signal,	 consist	 of	 three	 NOR	 gates,	 two	 of	 which	 gate	 the	 foreground	 and
background/border	colour	with	the	/DataSelect	signal,	and	a	third	which	combines
the	gate	outputs	with	the	vertical	synchronisation	and	horizontal	blanking	signals.
Whenever	 these	 synchronisation	 or	 blank	 signals	 are	 active,	 the	 multiplexer
channel	 output	 is	 forced	 low,	 disabling	 or	 blanking	 the	 colour	 output	 during
periods	of	synchronisation.

The	flash	modifier	bit	from	the	output	multiplexer	is	fed	back	to	the	flash	control
circuit	of	Figure	12-9.

Finally,	 the	 RGB	 signals	 are	 fed	 to	 the	 analogue	 video	 circuit,	 discussed	 in
Chapter	16,	Analogue	Video,	along	with	the	highlight	modifier	bit.
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1.	 Because	 the	 ZX81	 display	 is	 updated	 by	 software	 and	 the	 Z80	 processor,
programmers	eventually	discovered	how	to	take	control	of	this	process	to	produce
high	 resolution	 graphics.	 This	 technique	 consumes	 nearly	 all	 of	 the	 CPU's
resources	however.

2.	 The	 colours,	 brightness	 and	 flash	 at	 a	 given	 character	 position	 are	 called
attributes.

3.	Exolon,	developed	by	Raffaele	Cecco,	published	by	Hewson	Consultants

4.	Knightlore,	developed	and	published	by	A.C.G	under	 their	Ultimate	Play	The
Game	label.
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Chapter	13

Video	Memory	Access

The	ULA	generates	control	signals	for	the	lower	16K	dynamic	RAM	for	itself	and
on	 behalf	 of	 the	CPU.	As	 access	 to	 this	memory	 is	 shared,	 the	ULA	 and	CPU
control	signals	must	be	combined.	This	is	performed	within	the	ULA	to	allow	it	to
detect	 when	 the	 CPU	 is	 about	 to	 access	 the	 memory,	 reduce	 duplication	 and
simplify	the	circuit	external	to	the	ULA.

The	operation	of	dynamic	RAM	is	described	in	the	section	called	Dynamic	RAM
in	Chapter	3,	The	Standard	Microcomputer.

The	CPU	address	bus	is	multiplexed	into	two	seven	bit	row	and	column	addresses
by	 two	 external	 multiplexer	 chips,	 and	 fed	 to	 the	 DRAM	 via	 seven	 in-line
resistors.	 The	 resistors	 provide	 isolation	 between	 the	 CPU	 and	 ULA	 address
buses,	 the	ULA	being	 directly	 connected	 to	 the	DRAM,	 so	 that	when	 the	ULA
presents	an	address	to	the	memory,	it	overrides	any	CPU	address	that	may	be	on
the	bus.	This	is	discussed	further	in	the	section	called	16K	DRAM	CPU	Interface
in	Chapter	17,	CPU	Memory	Access.

Video	Access	Control

The	DRAM	control	signal	timing	for	video	access	is	closely	related	to	the	video
fetch	 timing	 discussed	 in	 Chapter	 12,	Generating	 The	Display.	 Remember	 that
bytes	 are	 fetched	 from	 the	 RAM	 in	 pairs,	 with	 two	 pairs	 being	 read	 in	 quick
succession	 via	 a	 page	 mode	 read.	 The	 timing	 of	 the	 byte	 fetches	 are	 carefully
related	 to	 the	 pixel	 stream	 being	 sent	 to	 the	 television	 and	 the	 internal	 buffer
handling,	 so	 that	 each	 pixel	 and	 attribute	 byte	 pair	 is	 ready	 for	 use	 before	 the
display	controller	has	 finished	with	 the	current	pair,	 and	buffers	 are	 reloaded	as
soon	as	they	have	been	emptied.

In	addition	to	the	row	and	column	address	strobe	signals,	the	DRAM	also	requires
a	 row	 and	 column	 address	 to	 be	 placed	 on	 its	 address	 bus.	 As	 the	 ULA	 is
connected	 directly	 to	 the	 DRAM,	 the	 ULA	 keeps	 its	 address	 bus	 in	 a	 high
impedance	state	when	not	performing	a	video	fetch.	When	a	fetch	is	to	be	carried
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out,	its	address	bus	is	enabled	by	an	internal	control	signal	and	the	CPU	address
on	the	bus	is	overridden.

When	 the	 CPU	 requests	 access	 to	 the	 lower	 16K	 of	 memory	 during	 a	 video
memory	fetch,	the	ULA	stops	sending	the	CPU	its	clock	signal;	therefore	halting
time	 for	 the	CPU.	The	video	 fetch	continues	until	 two	pairs	of	bytes	have	been
read,	at	which	time	the	video	controller	disables	its	address	bus	and	re-enables	the
CPU	clock.	The	CPU	will	not	be	aware	that	time	had	stopped,	and	continues	with
the	 read	 or	 write	 operation	 it	 had	 begun.	 See	 Chapter	 18,	 CPU	 Clock	 and
Contention	for	details	on	the	handling	of	memory	contention.

The	generation	of	appropriate	row	and	column	addresses	for	each	RAS	and	CAS
pulse,	when	 the	video	address	bus	 is	 enabled,	 is	discussed	 in	Chapter	15,	Video
Addressing.

Page	Mode	Read

Page	mode	allows	multiple	column	addresses	 to	be	 read	 from	or	written	 to	 in	a
single	 address	 row.	 The	 row	 address	 strobe,	 RAS,	 is	 held	 while	 strobing	 new
column	addresses	with	CAS.	This	avoids	the	set	up	and	hold	times	associated	with
the	row	address	and	allows	faster	access	to	multiple	locations.

Figure	13-1	 and	 Table	 13-1	 give	 the	 page	 mode	 read	 timings	 specified	 by	 the
µPD416	datasheet	 for	 the	150ns	device	used	 in	 the	ZX	Spectrum	[DS4116].	All
times	are	given	in	nanoseconds.
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Figure	13-1:	4116	dynamic	RAM	page	mode	read	signal	waveforms

The	most	important	information	to	derive	from	the	table	is	that	there	must	be	20ns
between	RAS	and	the	first	CAS,	and	60ns	between	each	CAS.	RAS	must	be	held
for	a	minimum	of	100ns	from	the	start	of	 the	last	CAS,	and	data	is	available	on
the	data	bus	after	100ns	from	the	CAS	start,	until	CAS	is	removed.

During	a	read	operation,	the	DRAM	write	enable	line,	/WE,	must	be	high	for	the
duration	of	the	CAS	pulse.

Description Parameter Min Max
Row	address	set-up	time tASR 0
Column	address	set-up	time tASC -10
Row	address	hold	time tRAH 20
RAS	to	CAS	delay	time tRCD 20 50
Page	mode	cycle	time tPC 170
RAS	precharge	time tRP 100
CAS	precharge	time tCP 60
CAS	pulse	width tCAS 100 10000
RAS	hold	time tRSH 100
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Column	address	hold	time tCAH 45
Access	time	from	RAS tRAC 150
Access	time	from	CAS tCAC 100
Output	buffer	turn-off	delay tOFF 0 40

Table	13-1:	4116-150ns	dynamic	RAM	page	mode	read	timing	(ns)

RAS	and	CAS	Timing	Overview

The	 timing	 of	 the	 RAS	 and	 CAS	 signals,	 and	 the	 related	 internal	 latch	 signals
DataLatch	and	AttrLatch,	originate	from	the	need	to	complete	the	byte	fetches	as
quickly	as	possible	to	limit	the	impact	on	the	CPU.	All	signals	are	derived	from
the	 7MHz	 clock	 and	 master	 counter	 and	 therefore	 have	 a	 resolution	 of	 72ns,
which	 is	 half	 the	 7MHz	 clock	 period.	 That	 said,	 some	 signals	 are	 deliberately
subjected	to	propagation	delay	to	tune	their	timing,	usually	in	the	order	of	tens	of
nanoseconds.	Figure	13-2	shows	the	timing	of	the	RAS	and	CAS	pulses	generated
by	the	video	controller,	and	their	relationship	to	the	associated	byte	latch	signals
(which	are	described	fully	in	Chapter	14,	Video	Control	Clocks).

When	the	video	controller	reads	a	byte	pair,	it	generates	a	single	RAS	pulse	along
with	 two	 CAS	 pulses.	 The	 length	 of	 the	 RAS	 pulse	 depends	 on	 the	 RAM
specification	and	the	length	of	each	CAS	pulse,	as	RAS	must	be	active	when	CAS
is	 applied.	 The	 datasheet	 states	 that	 a	 CAS	 pulse	 must	 be	 at	 least	 100ns	 in
duration,	and	that	data	will	be	available	no	sooner	than	100ns	after	its	start.	The
video	controller	must	therefore	wait	100ns	after	it	issues	a	CAS	before	it	can	read
the	data	bus,	and	cannot	remove	the	CAS	until	 the	fetch	 is	complete	(tOFF).	Re-
factoring	 these	 figures	 into	multiples	of	72ns	gives	a	 theoretical	minimum	CAS
duration	of	144ns	which,	with	a	data	bus	fetch	and	latch	period	of	72ns,	gives	an
measured	CAS	width	of	approximately	216ns.
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Figure	13-2:	6C001E-7	video	RAS,	CAS	and	byte	latch	timing

The	second	CAS	cannot	occur	for	another	60ns,	as	specified	by	tCP,	so	the	video
controller	waits	for	72ns	before	it	generates	the	next	216ns	CAS	pulse.

The	RAS	signal	must	be	applied	tRCD	(20ns)	before	the	first	CAS,	and	Altwasser
created	an	appropriate	tRCD	by	combining	 two	techniques;	One,	generating	RAS
and	CAS	at	the	same	time	and	chopping	off	approximately	20ns	from	the	start	of
the	 first	 and	 third	 CAS	 pulses	 with	 some	 intentionally	 delayed	 logic	 (dashed
section	at	the	start	of	CAS	pulse	in	Figure	13-2).	Two,	by	delaying	the	CAS	signal
with	 some	 propagation	 delay.	 This	 creates	 a	 total	 RAS	 to	 CAS	 delay	 of
approximately	78ns,	in	the	case	of	the	6C001E-7	ULA.

The	second	pair	of	byte	 fetches	may	follow	the	 first	after	 the	minimum	RAS	to
RAS	delay	of	tRP	(100ns).	If	RAS	were	to	end	at	the	same	time	as	the	second	CAS
pulse,	then	the	ULA	would	have	to	delay	the	third	CAS	pulse	by	tRP	+	tRCD	(RAS
to	RAS	delay	+	RAS	to	CAS	delay),	which	equates	to	120ns.	To	complete	the	four
byte	read	in	as	short	a	time	as	possible,	Altwasser	required	a	maximum	period	of
72ns	to	separate	each	CAS	pulse,	and	achieved	this	by	exploiting	a	property	of	the
RAS	that	allows	it	to	be	removed	before	the	end	of	the	CAS,	so	long	as	it	has	been
held	for	tRSHns	from	the	CAS	start.

At	 216ns,	 the	 second	CAS	 pulse	 is	 over	 twice	 as	 long	 as	 the	 specified	 tRSH	 of
100ns,	allowing	RAS	to	be	safely	removed	72ns	before	the	CAS	ends.

Figure	13-3	 shows	 a	 capture	 of	 the	 second	RAS	with	 the	 third	 and	 fourth	CAS
pulses	 for	a	6C001E-7	ULA,	showing	 the	RAS	pulse	 to	be	435.6ns	 in	duration.
Grid	divisions	are	at	40ns.
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Figure	13-3:	6C001E-7	Video	RAS	and	CAS	signal	capture

RAS	Generation

The	generation	of	the	RAS	signal	is	carried	out	by	first	creating	a	chain	of	pulses
of	 a	 suitable	 length	 and	 spacing,	 and	 then	 selecting	 pulses	 from	 this	 chain	 as
required.

As	discussed	previously,	a	RAS	pulse	spanning	the	duration	of	both	CAS	pulses
will	be	active	for	504ns.	This	RAS	pulse	is	shortened	by	72ns	to	allow	the	third
CAS	to	go	low	72ns	after	the	second,	giving	a	RAS	duration	of	432ns.

Referring	to	Figure	13-4,	Altwasser	created	a	chain	of	RAS	pulses	of	this	duration
by	taking	the	duration	of	one	half	period	of	C1	and	one	half	period	of	C0,	defining
VidRASPulse	as:
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Figure	13-4:	Video	RAS	and	CAS	generation

The	required	video	RAS	pulse	pairs	are	selected	from	the	VidRASPulse	chain	by
VidC3,	 a	 copy	 of	 C3	 that	 is	 active	 only	 when	 generating	 the	 pixel	 display
rectangle	 and	 described	 in	 the	 section	 called	DataLatch	 in	 Chapter	 14,	 Video
Control	Clocks.	The	VidRAS	signal	is	therefore	defined	as:

Both	the	internal	VidRAS	and	final	output	/RAS	signals	are	shown	in	Figure	13-4,
and	should	be	compared	to	Figure	13-2.

CAS	Generation

Video	CAS	generation	is	similar	to	that	of	RAS,	in	that	a	chain	of	CAS	pulses	of
suitable	length	and	spacing	is	created,	from	which	appropriate	pulses	are	selected.

As	 shown	 previously,	 for	 the	 given	 clock	 and	 DRAM	 speed,	 the	 desired	 CAS
duration	is	216ns.	Referring	to	Figure	13-4,	this	represents	one	and	a	half	periods
of	CLK7	or,	in	terms	of	C0	and	CLK7,	the	VidCASPulse	chain	is	defined	as:
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Two	CAS	pulses	are	selected	from	this	chain	for	each	RAS	pulse.	The	first	occurs
at	the	beginning	of	the	RAS	pulse	to	fetch	the	display	byte	from	the	memory	row,
the	second	at	 the	end	of	 the	RAS	pulse	 to	 fetch	 the	attribute	byte.	See	 the	page
mode	read	timing	in	Figure	13-1.

To	introduce	the	necessary	page	mode	RAS	to	CAS	delay	of	tRCD,	 the	first	CAS
pulse	of	the	pair	needs	to	be	shorter	than	the	second,	and	start	later;	therefore	the
pulses	are	selected	separately	from	the	chain,	modified	and	then	combined	into	a
single	signal.

As	a	display	fetch	cycle	consists	of	two	RAS	pulses,	two	pairs	of	CAS	pulses	are
required,	the	first	and	third	(A	and	C)	CAS	pulses	being	selected	by:

By	using	a	delayed	VidRAS,	the	beginning	of	the	selected	CAS	pulse	is	chopped
off,	 holding	 its	 start	 until	 approximately	 20ns	 (6C001E-7)	 after	 RAS	 has	 gone
low.	 This	 ensures	 that	 RAS	 is	 activated	 first,	 and	 along	with	 the	 later	 delay	 of
VidCAS,	produces	a	RAS	to	CAS	delay	of	78ns,	complying	with	the	specification
tRCD	of	20ns.

The	second	and	fourth	(B	and	D)	CAS	pulses	are	selected	by:

The	combined	video	CAS	signal	is	generated	by	NORing	these	two	compo-	nent
CAS	pulse	signals	together:

RAS	and	CAS	pulse	timings	for	a	6C001E-7	ULA	are	given	in	Figure	13-2.

Circuit	Description

The	video	RAS	and	CAS	generation	circuit	is	shown	in	Figure	13-5.	It	is	split	into
several	sections:	RAS	and	CAS	pulse	generation,	RAS	and	CAS	pulse	selection
and	the	merging	of	these	RAS	and	CAS	signals	with	their	CPU	equivalents	into
combined	/RAS	and	/CAS	outputs.

At	 several	 points	 in	 the	 circuit	 inverters	 have	 been	 used	 to	 provide	 some
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propagation	delay	or	signal	buffering.	This	was	done	to	align	the	timing	of	signals
to	 avoid	 glitches,	 delay	 signals	with	 respect	 to	 one	 another	 or	 to	 counteract	 the
effects	of	 interconnect	 track	 length	and	parasitic	capacitance	on	signal	 transition
times	and	delays.

Some	of	 this	 buffering	 appears	 unnecessary,	 even	 after	 considering	gate	 fan-out
and	 track	 length.	 For	 instance,	 the	 generation	 of	 /VidRASPulse	NOR	gates	 /C0
with	/Cl	and	a	delayed	/C0,	having	been	passed	through	four	inverters.

Altwasser	says	that	he	added	buffers	and	re-routed	interconnect	tracks	to	address
signal	delay	and	slow	rise/fall	times	due	to	track	length	and	parasitic	capacitance,
particularly	in	the	area	of	memory	timing	(see	Chapter	6,	Sinclair	and	the	ULA).
However,	 it	 is	 not	 clear	 why	 combining	 a	 delayed	 /C0	 along	 with	 /C0	 in	 the
/VidRASPulse	 generation	 would	 have	 been	 necessary,	 and	 only	 appears	 to
lengthen	the	RAS	pulse	by	8ns.

The	 selection	 of	 CAS	 pulses	 for	 the	 /VidCASBD	 signal	 uses	 a	 delayed	 /C1,
whereas	 its	companion	signal,	 /VidCASAC,	 uses	 a	 non-delayed	C1.	As	both	use
the	 same	 source	 C1	 signal,	 the	 delay	 does	 not	 appear	 to	 serve	 any	 obvious
purpose.	The	delay	of	/C1	in	/VidCASBD	could	have	been	included	to	mirror	that
of	/VidRAS	in	/VidCASAC,	but	their	effects	are	very	different	in	each	case.

Other	source	and	generated	signals	are	delayed	to	provide	a	functional	benefit.	For
instance,	 the	 generation	 of	 the	 /VidCASPulse	 chain	 uses	 six	 inverters	 to	 delay
/CLK7	 and	 align	 with	 /C0,	 since	 /C0	 will	 have	 undergone	 some	 delay	 in	 its
production,	with	respect	to	CLK7.
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Figure	13-5:	Video	RAS	and	CAS	signal	generation

The	propagation	delay	incurred	by	the	generation	of	VidCASAC	and	VidCASBD	is
increased	by	two	additional	inverters,	creating	a	/CAS	signal	that	is	delayed	with
respect	to	/RAS	by	approximately	58ns,	as	measured	on	a	6C001E-7	ULA.	This
ensures	that	the	data	and	attribute	byte	fetches	complete	before	/CAS	is	removed,
and	 with	 the	 20ns	 chopped	 from	 the	 front	 of	 the	 first	 and	 third	 CAS	 pulses,
increases	tRCD	to	78ns.

The	 consequence	 of	 delaying	 /CAS	 is	 that	 the	 time	 between	 the	CAS	 start	 and
RAS	end	 (tRSH)	 is	 shortened,	which	 in	 the	 case	 of	 the	 6C001E-7	ULA	with	 its
measured	CAS	delay	of	58ns,	reduces	tRSH	from	148ns	to	90ns,	and	does	not	meet
the	DRAM	 specification	 of	 100ns.	Other	 versions	 of	 the	ULA	 have	 a	 different
CAS	 delay	 factor,	 for	 example	 the	 6C001E-6	 ULA	 has	 a	 measured	 delay	 of
approximately	 20ns,	 resulting	 in	 a	 tRSH	 of	 128ns.	 The	 6COOlE-7	 is	 the	 most
common	ULA	used	in	the	ZX	Spectrum,	and	its	out	of	specification	timing	does
not	cause	any	detrimental	effects.

Chapter	22,	Signal	Interfacing	describes	the	peripheral	cell	interface	of	the	ULA
RAS	 and	CAS	 signals	 out	 to	 the	 4116	 16K	DRAM,	 but	 /RAS	deserves	 special
mention	 here	 as	 its	 output	 is	 provided	 by	 a	 tri-state	 totem	 pole	 interface	 that
should	be	enabled	whenever	 the	ULA	video	generator	or	CPU	require	access	 to
the	 16K	 DRAM.	 However,	 due	 to	 a	 design	 error,	 the	 /RAS	 output	 is	 almost
always	enabled,	even	when	the	DRAM	is	not	being	accessed.	Consequently,	this
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enable	signal	is	not	discussed	here,	and	it	is	given	full	consideration	in	the	section
called	 DRAM	 Row	 Address	 Strobe	 in	 Chapter	 22,	 Signal	 Interfacing	 and	 the
section	called	Disabled	16K	DRAM	Refresh	in	Chapter	23,	Hidden	Features	and
Errors.
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Chapter	14

Video	Control	Clocks

Now	 that	 the	 video	 byte	 fetch	 timings	 have	 been	 defined	 and	 understood,	 the
control	 signals	 that	 read	 the	 data	 bus	 and	 process	 the	 information	 through	 the
video	controller	can	be	discussed.

The	 control	 signals	 shown	 in	 Figure	 14-1	 illustrate	 the	 loading	 of	 display	 and
attribute	bytes	from	the	video	memory,	and	the	timing	of	their	transfer	through	the
video	 circuit.	The	 control	 signals	may	be	 divided	 into	 two	groups:	 those	which
transfer	data	from	the	data	bus	into	memory	latches,	and	those	which	transfer	data
from	the	latches	into	the	video	output	circuit.

The	signals	are	closely	related	to	the	video	memory	control	signals,	in	particular
CAS,	so	that	a	byte	on	the	data	bus	is	fetched	into	the	relevant	memory	latch	as
soon	as	it	is	available.	The	close	signal	relationship	allows	the	latched	bytes	to	be
transferred	into	the	video	output	circuit	as	soon	as	they	have	been	loaded,	freeing
the	latches	for	further	bytes,	loaded	while	the	video	generator	still	has	control	of
the	memory.

Sequence	Overview

The	 video	 control	 signals	 are	 choreographed	 in	 such	 a	 way	 as	 to	 produce	 the
following	sequence	of	events:

1.	 The	DataLatch	pulse	labelled	D1	stores	the	first	display	byte	into	the
display	memory	latch,	followed	by	AttrLatch	pulse	A1,	which	stores	the
first	attribute	byte	into	its	memory	latch.

2.	 The	two	latched	bytes	are	transferred	into	the	shift	register	and	attribute
output	latch	respectively	by	AOLatch	and	SLoad,	which	are	aligned	with	the
pixel	clock	at	time-point	Output	Load.

3.	 Immediately	following	this,	a	second	pair	of	bytes	are	loaded	and	stored	in
the	now	empty	memory	latches	by	D2	and	A2.	Here	they	and	held	until	the
second	Output	Load,	eight	pixel	clock	cycles	after	the	first,	when	they	too
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are	transferred	into	the	shift	register	and	output	latch.

It	can	be	seen	therefore,	that	display	and	attribute	bytes	are	loaded	from	memory
in	groups,	spanning	 the	end	of	one	output	period	and	 the	beginning	of	 the	next.
Once	 loaded,	 a	 byte	 pair	 is	 transferred	 to	 the	 output	 circuit	 at	 the	 start	 of	 the
following	period.

Figure	14-1:	Latch	and	shift	register	control	clocks

Circuit	Operation

Figure	14-2	shows	the	circuit	that	implements	the	video	control	signals	illustrated
in	Figure	14-1.	 Its	 operation	 is	 straightforward	 even	 though	 some	 of	 the	 signal
paths	 incorporate	 chains	 of	 inverters	 to	 introduce	 propagation	 delay	 and	 adjust
their	 timing	 relative	 to	 the	 other	 signals.	 Each	 signal	 and	 its	 generation	 is
discussed	in	detail	below.
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Figure	14-2:	6C001	latch	and	shift	register	control	clocks	schematic

CLK7

The	 pixel	 clock	 is	 derived	 directly	 from	 the	 internal	 7MHz	 clock,	 which	 is
distributed	in	an	inverted	state	throughout	the	circuit.	Therefore	the	/CLK7	signal
is	 inverted	 to	produce	 the	actual	pixel	clock,	and	for	 the	generation	of	 the	other
control	signals	described	below	it	is	buffered	through	six	inverters	to	delay	it	by
approximately	40ns.	This	is	necessary	to	re-align	the	clock	with	the	counter	bits
C3-0,	 which	 will	 themselves	 have	 undergone	 some	 propagation	 delay	 in	 the
course	 of	 their	 generation.	 The	 first	 inverter	 in	 the	 chain	 is	 required	 to	 flip	 the
clock	back	to	a	positive	phase,	as	described	in	the	section	called	The	7MHz	Clock
in	 Chapter	 10,	 The	 Internal	 Clocks,	 and	 therefore	 does	 not	 contribute	 to	 the
overall	delay.

VidEN

Counter	bits	C8-0	give	the	horizontal	position	of	the	electron	beam	on	the	screen,
with	zero	occurring	at	the	left	edge	of	the	pixel	display,	such	that	C8	is	low	while
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the	256	pixel	row	is	being	displayed.	As	C8	is	a	component	of	the	Border	signal,
it	too	will	be	low.

/Border	 therefore	 indicates	 that	pixel	generation	has	begun,	but	because	no	data
will	have	been	read	from	memory	at	this	point,	it	cannot	be	used	to	activate	pixel
output;	therefore	it	merely	enables	data	loading.	A	second	signal,	VidEN	is	instead
created	 which	 enables	 pixel	 output	 once	 a	 display	 and	 attribute	 byte	 pair	 have
been	fetched	from	memory.

This	VidEN	signal	is	generated	by	delaying	/Border	with	a	transparent	latch	until
C3	has	gone	high,	a	delay	of	1.14µs.	This	is	sufficient	to	prevent	SLoad,	which	is
controlled	by	 /VidEN,	 from	being	 activated	before	 the	 first	 byte	 pair	 have	been
loaded	into	the	memory	latches	(see	Figure	14-1	and	the	section	called	SLoad).

DataLatch

DataLatch	 transfers	 the	 byte	 present	 on	 the	 ULA	 data	 bus	 into	 the	 eight	 bit
transparent	display	memory	latch.	It	is	an	active	low	signal	that	puts	the	latch	into
transparent	mode	until	it	goes	high,	at	which	point	the	byte	is	held.

DataLatch	is	generated	as	an	active	high	signal	which	is	later	passed	through	three
inverters	to	convert	it	into	an	active	low	signal	and	introduce	approximately	24ns
of	delay.	The	delay	ensures	that	CLK7	goes	low	first,	in	order	to	transfer	the	byte
currently	held	by	the	latch	into	the	shift	register	before	DataLatch	replaces	it	with
the	new	byte.

DataLatch	is	given	by:

Simplifying	this	by	applying	DeMorgan's	Theorems	gives:

Where

Thus	Altwasser's	implementation	of	DataLatch	can	be	shown	to	contain	the	AND
product	of	C0	and	CLK7,	which	can	be	further	shown	to	be	redundant	according
to	the	distributive	law:
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DataLatch	is	closely	related	to	the	dynamic	memory	column	address	strobe,	CAS,
which	completes	the	memory	request	and	causes	the	display	byte	to	be	placed	on
the	 data	 bus.	A	 short	 time	 later,	when	 the	 byte	 is	 stable	 enough	 to	 be	 read	 and
CAS	is	being	removed,	DataLatch	goes	high,	transferring	the	byte	into	the	display
memory	latch.

The	product	(CLK7⋅C0)	is	therefore,	unsurprisingly,	used	in	the	generation	of	the
CAS	 signal,	 the	 full	 equations	 for	 which	 are	 almost	 identical	 to	 those	 for
DataLatch	and	AttrLatch.	Presumably	Altwasser	used	the	same	core	logic	for	the
generation	 of	 the	 latch	 and	 CAS	 signals	 so	 there	 would	 be	 no	 issue	 with	 their
alignment,	 even	 though,	 ultimately,	 DataLatch	 is	 deliberately	 delayed	 by	 24ns.
See	the	section	called	CAS	Generation	 in	Chapter	13,	Video	Memory	Access	 for
further	 details	 of	 the	 CAS	 signal.	 For	 clarity,	 the	 VidCASPulse	 generation	 is
duplicated	on	Figure	14-2	and	Figure	13-5.

The	 inclusion	of	VidC3	 restricts	 the	generation	of	DataLatch	pulses	 so	 that	 two
are	produced	whenever	C3	is	high,	and	only	within	the	pixel	display	rectangle.

AttrLatch

The	AttrLatch	signal	is	similar	to	DataLatch	and	transfers	the	byte	present	on	the
ULA	 data	 bus	 into	 the	 eight	 bit	 transparent	 attribute	 latch.	 It	 is	 an	 active	 low
signal	that	puts	the	latch	into	transparent	mode	until	it	goes	high,	when	the	byte	is
held.

It	 is	 generated	 as	 an	 active	 high	 signal	 that	 is	 then	 inverted	 into	 an	 active	 low.
Unlike	DataLatch,	there	is	no	specifically	introduced	propagation	delay.

AttrLatch	is	given	by:

As	with	DataLatch,	the	redundant	C0	product	with	CLK7	is	used,	borrowing	the
same	 logic	 found	 in	 DataLatch	 and	 CAS	 generation.	 See	 the	 section	 called
DataLatch	and	the	section	called	CAS	Generation	 in	Chapter	13,	Video	Memory
Access	for	further	details	of	the	DataLatch	and	CAS	signal.

As	with	the	DataLatch	signal,	VidC3	is	used	to	restrict	the	generation	of	AttrLatch
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pulses	to	periods	when	C3	is	high,	and	only	while	the	electron	beam	is	within	the
pixel	display	rectangle.

SLoad

The	shift	register	data	load	signal	shown	in	Figure	12-2,	referred	to	as	SLoad	in
the	schematics,	loads	the	currently	latched	display	byte	into	the	shift	register	at	the
negative	edge	of	the	pixel	clock.	It	is	active	once	every	eight	pixel	clock	cycles,
while	/VidEN	is	low,	reloading	the	shift	register	with	a	new	display	byte	as	soon
as	it	is	empty,	precisely	when	the	next	pixel	is	required.

SLoad	is	given	by:

Without	the	inclusion	of	/VidEN,	SLoad	pulses	would	be	generated	every	1.14µs,
and	 not	 restricted	 to	 the	 pixel	 display	 area.	 If	 /Border	 were	 used	 instead	 of
/VidEN,	the	first	SLoad	pulse	would	occur	1.14µs	too	early.	Refer	to	Figure	14-1,
noting	where	the	first	SLoad	pulse	would	occur	if	/Border	had	been	used	instead
of	/VidEN.

Because	of	the	propagation	delay	inherent	in	each	bit	of	the	shift	register,	SLoad
must	be	held	high	long	enough	through	the	downward	transition	of	CLK7	for	the
shift	 register	 to	 successfully	 latch	 the	 new	 byte.	 As	 SLoad	 is	 derived	 from	 the
horizontal	 counter,	 which	 lags	 behind	 CLK7,	 there	 is	 enough	 delay	 in	 its
generation	for	this	to	be	the	case.	See	Figure	14-1.

AOLatch

The	Attribute	Output	Latch	 signal	 (Figure	12-4),	 referred	 to	 as	AOLatch	 in	 the
schematic	of	Figure	14-2,	is	activated	repeatedly	across	the	full	width	of	each	scan
line,	 every	 eight	 pixel	 clock	 cycles.	 It	 is	 not	 restricted	 to	 the	 pixel	 display
rectangle,	 as	 all	 screen	colour	 changes	 are	 synchronised	 to	 it	 through	 the	 single
colour	output	 latch,	 including	those	of	 the	border.	This	explains	why	the	display
output	does	not	and	cannot	switch	between	border	and	pixel	areas	at	/VidEN,	but
at	the	/AOLatch	that	follows	it.

It	is	an	active	low	signal	that	puts	the	eight	bit	colour	output	latch	into	transparent
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mode,	immediately	passing	the	attribute	byte	onto	the	output	multiplexer.	When	it
returns	high	at	the	next	negative	edge	of	CLK7,	the	byte	is	held.

Its	downward	transition	is	synchronous	with	the	negative	edge	of	the	pixel	clock
CLK7,	and	timed	so	that	when	it	occurs	during	a	sequence	of	pixel	output,	it	goes
low	 while	 SLoad	 is	 low.	 This	 presents	 the	 attribute	 byte	 to	 the	 colour	 output
multiplexer	at	the	exact	moment	the	display	byte	is	loaded	into	the	shift	register,
when	the	first	pixel	of	which	is	shifted	out	to	the	multiplexer.

AOLatch	is	given	by:

The	Flash	Clock

The	flash	clock	causes	any	screen	attribute	cell	that	has	its	flash	mode	enabled	to
repeatedly	swap	its	foreground	and	background	colours.	ZX	Spectrum	achieves	a
flash	 rate	 of	 1.56Hz,	 flashing	 the	 attribute	 three	 times	 in	 approximately	 two
seconds,	by	counting	32	display	frames.

The	frequency	of	one	display	frame	is:

The	frequency	of	32	display	frames	is:

Put	another	way,	50.0801	consecutive	frames	take	one	second	to	display,	therefore
32	frames	take	0.639	seconds,	giving	the	period	of	one	flash	cycle.

The	counter	consists	of	a	five	stage	ripple	counter	constructed	from	D-type	flip-
flops,	as	shown	in	Figure	14-3.	Each	flip-flop	output	is	configured	to	toggle	at	the
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downward	transition	of	its	input	clock,	with	each	output	successively	clocking	the
next	flip	flop	in	line.

The	 first	 flip-flop	 is	 clocked	 by	 V8,	 which	 goes	 low	 when	 the	 electron	 beam
reaches	the	first	row	of	pixels,	once	each	frame.	See	Table	11-2.	This	frame	clock
is	NOR	gated	by	/TCLKB	(discussed	in	Chapter	23,	Hidden	Features	and	Errors,
and	which	may	always	be	assumed	to	be	low)	so	the	inverted	signal	/V8	is	taken
instead.

Figure	14-3:	Flash	control	clock
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Chapter	15

Video	Addressing

In	Chapter	12,	Generating	The	Display	we	saw	that	the	ZX	Spectrum	display	has
a	 resolution	 of	 256×192	 pixels,	 with	 one	 byte	 representing	 eight	 pixels
horizontally;	 therefore	 the	 memory	map	 of	 the	 screen	 is	 32	 bytes	 ×	 192	 lines,
occupying	6144	bytes	of	memory.

Along	with	pixel	display	bytes	the	video	memory	also	stores	colour	information,
although	at	a	lower	resolution	of	one	colour	(attribute)	byte	for	every	eight	pixel
lines	in	a	column.	This	gives	a	colour	resolution	of	32×24	colour	cells,	occupying
768	bytes	in	memory.

As	 discussed	 in	 Chapter	 13,	 Video	 Memory	 Access,	 the	 video	 controller	 reads
pixel	 and	 attribute	 bytes	 in	 pairs	 from	 the	 video	 area	 within	 the	 lower	 16K
DRAM.	Due	 to	 the	 limited	 time	with	which	 it	 has	 to	 read	 the	 bytes	 the	 video
controller	uses	a	page-mode	read,	which	allows	multiple	bytes	to	be	read	in	quick
succession,	so	long	as	they	are	read	from	the	same	DRAM	row.

As	the	address	bus	of	DRAM	is	multiplexed,	addresses	must	be	presented	to	it	in
two	stages,	first	a	memory	row	address,	and	second,	a	memory	column	address.	In
the	 case	 of	 the	 16K	 µPD416	 [DS4116]	 DRAM	 used	 in	 the	 ZX	 Spectrum,	 this
means	splitting	the	14-bit	address	into	two	7-bit	addresses,	the	lower	being	used
for	the	DRAM	row	address,	the	upper	for	the	column.	The	design	implication	for
the	ZX	Spectrum	page-mode	read	is	that	both	the	display	byte	and	attribute	byte
addresses	must	share	the	same	7-bit	row	address.

Address	Generation	Theory

There	 are	many	 potential	 display	 and	 attribute	 byte	 arrangements	 that	 could	 be
considered	when	designing	the	video	display	memory	layout,	the	candidates	being
limited	mainly	by	timing	constraints	and	the	complexity	of	their	implementation.
For	 example,	 a	 layout	 of	 nine	 repeating	 bytes	 consisting	 of	 an	 attribute	 byte
followed	by	the	eight	display	bytes	it	covers,	is	simple	to	describe	and	understand.
However,	because	a	display	byte	will	only	be,	at	most,	nine	bytes	away	from	its
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corresponding	 attribute	 byte,	 the	 least	 significant	 four	 bits	 of	 the	 video	 address
will	be	different	for	each	byte	fetched.	This	prevents	the	lower	address	bits	from
being	used	 as	 a	 page-mode	DRAM	row	address	 for	 display	 and	 attribute	 bytes,
making	this	proposal	unsuitable.

Instead,	the	6144	bytes	of	pixel	display	data	can	be	stored	at	the	start	of	the	16K
DRAM,	followed	by	the	768	bytes	of	attribute	data.	In	terms	of	the	CPU	address
space,	 this	 begins	 at	 address	 0x4000	 (16384	 decimal)	 in	 the	memory	map.	The
video	controller	on	the	other	hand	only	has	access	to	this	16K	region	of	memory,
and	thus	sees	it	beginning	at	address	zero	in	its	memory	map,	thereby	simplifying
addressing	 and	 allowing	 it	 to	 generate	 an	 address	 between	 0x0000	 and	 0x17FF
(6143	 decimal)	 when	 reading	 display	 bytes,	 and	 between	 0x1800	 and	 0x1AFF
(6911	decimal)	when	reading	attribute	bytes.	The	attribute	bytes	are	also	at	least
768	 bytes	 away	 from	 their	 corresponding	 display	 bytes,	 allowing	 a	 carefully
constructed	7-bit	DRAM	row	address	to	be	shared	between	them,	since	27<768.

As	 described	 above,	 the	 pixels	 are	 organised	 as	 192×32	 bytes.	 These	 bytes	 are
read	one	 column	after	 the	next,	 one	 line	 after	 another,	 in	 step	with	 the	 electron
beam	as	it	proceeds	left-to-right	and	down	the	screen.	The	position	of	the	electron
beam	 at	 any	moment	 is	 given	 by	 the	master	 (horizontal)	 counter	 C8-0	 and	 the
vertical	 line	 counter	 V8-0,	 and	 it	 is	 from	 these	 two	 counters	 that	 the	 memory
address	of	the	video	byte	to	be	fetched	can	be	created.

Figure	15-1:	Theoretical	display	address	from	horizontal	and	vertical	counters
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The	horizontal	counter	gives	the	position	of	the	electron	beam	at	a	pixel	resolution
as	 it	 scans	 across	 the	 screen,	 with	 its	 origin	 at	 the	 left	 hand	 side	 of	 the	 pixel
display	rectangle.	As	each	fetched	pixel	display	byte	returns	data	for	eight	pixels
at	a	time,	the	horizontal	counter	needs	to	be	divided	by	eight	to	give	a	position	in
terms	 of	 display	 byte	 column.	 Values	 greater	 than	 31	 are	 not	 relevant,	 as	 they
represent	periods	when	the	electron	beam	is	within	the	right,	and	then	left	borders.
See	 Table	 11-1.	 Dividing	 by	 eight	 and	 discarding	 counts	 greater	 than	 31	 is
achieved	by	considering	only	five	counter	bits,	C7-3,	since	25	=	32.

The	 vertical	 counter	 gives	 the	 position	 of	 the	 electron	 beam	 at	 a	 pixel	 row
resolution	as	it	scans	down	the	screen,	with	its	origin	at	the	top	of	the	pixel	display
rectangle.	 Counter	 values	 greater	 than	 191	 represent	 periods	 when	 the	 electron
beam	is	within	the	bottom,	and	then	top	borders.	See	Table	11-2.	A	line	count	of
between	0	 and	191	 can	be	 fully	 represented	by	vertical	 counter	 bits	V7-0,	 after
discarding	V8,	 to	give	a	maximum	range	of	0	 to	255.	As	 this	 still	 exceeds	191,
further	limiting	of	the	count	range	will	be	required.

The	 simplest	 theoretical	 addressing	 scheme	 is	 one	 which	 starts	 at	 zero	 as	 the
electron	beam	enters	 the	 top	 left	hand	corner	of	 the	pixel	display	 rectangle,	and
increments	as	 it	moves	across	each	of	 the	32	eight-pixel	display	columns	for	all
192	lines.

Figure	15-1	illustrates	such	a	scheme	where	the	counters	are	combined	into	a	14-
bit	address,	 the	 lower	significant	 five	bits	being	supplied	by	C7-3,	and	 the	most
significant	 bits	 by	V7-0.	 Some	 of	 the	 addresses	 are	 also	 shown	 in	 their	 binary
form,	revealing	the	contributions	made	by	the	two	counters.

The	 address	 is	 only	 valid	 while	 the	 electron	 beam	 is	 within	 the	 pixel	 display
rectangle,	which	is	described	by	the	following	relationships:

Thus	 the	address	created	from	these	counters	will	be	valid	whenever	 the	Border
signal	 is	zero;	defined	in	 the	section	called	Vertical	Timing	 in	Chapter	 11,	Video
Synchronisation.

We	now	consider	 the	generation	of	 the	 attribute	byte	 address.	A	 single	 attribute
byte	provides	the	colour	 information	for	eight	consecutive	display	lines	within	a
column,	covering	an	8×8	pixel	square;	thereby	reducing	the	vertical	resolution	of
the	display	area	for	an	attribute	row	by	a	factor	of	eight.	To	achieve	this	reduction,
vertical	counter	bits	V2-0	are	excluded	from	the	address	generation.	As	with	the
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display	 byte	 address,	 the	 least	 significant	 five	 bits	 are	 given	 by	 the	 horizontal
counter,	C7-3,	stepping	through	each	of	the	32	columns.

Figure	15-2	shows	 the	 relationship	of	 the	horizontal	and	vertical	counters	 to	 the
attribute	byte	address.	 It	 should	be	noted	 that	because	 the	attribute	bytes	 follow
the	6144	display	bytes	 in	memory,	 they	start	at	a	base	address	of	0x1800	 (6144
decimal),	which	is	easily	implemented	by	pre-loading	the	most	significant	bits	of
the	address,	A13-10,	with	binary	0110.

Figure	15-2:	Theoretical	attribute	address	from	horizontal	and	vertical	counters

Comparing	 the	 addresses	 generated	 for	 the	 display	 bytes	 in	 Figure	 15-1	 and
attribute	bytes	in	Figure	15-2	shows	that	the	lower	seven	bits	of	each	address,	A6-
0,	differ	due	to	the	exclusion	of	V2-0	from	the	attribute	byte	address.	See	Figure
15-3.

Figure	15-3:	Comparison	of	initial	theoretical	display	and	attribute	addresses
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The	ZX	Spectrum	Addressing

To	 establish	 a	 7-bit	DRAM	 row	 address	 that	may	 be	 used	 by	 both	 display	 and
attribute	 byte	 fetches,	 the	 seven	 least	 significant	 address	 bits	 common	 to	 both
addresses	 are	 used.	 These	 turn	 out	 to	 be	 the	 lower	 seven	 bits	 of	 the	 attribute
address	shown	in	Figure	15-2.	The	remaining	bits	of	each	address	create	the	upper
7-bit	 DRAM	 column	 addresses,	 where	 the	most	 significant	 bits	 of	 the	 attribute
byte	address	are	set	 to	0110	binary,	and	 the	display	byte	address	contains	V2-0.
Figure	15-4	 shows	 both	 the	DRAM	 row	 and	 column	 addresses	 for	 the	 attribute
byte,	and	three	possible	options	for	the	display	byte	DRAM	column	address.

Figure	15-4:	Variations	on	7-bit	display	byte	column	address

Because	each	of	the	options	for	the	display	byte	address	shown	in	Figure	15-4	no
longer	contain	vertical	counter	bits	in	their	order	of	significance,	the	display	bytes
will	 not	 be	 fetched	 from	memory	 in	 a	 linear	 sequence.	The	pattern	of	 the	 fetch
sequence	depends	on	where	V1-0,	which	have	been	moved	out	of	the	DRAM	row
address,	 are	placed	within	 the	column	address.	Eight	 consecutive	 lines	make	up
one	 attribute	 row,	 therefore	V2-0	 should	 be	 kept	 together	 so	 that	 the	 processor
sees	 a	 consistent	 offset	 between	 each	 of	 these	 eight	 lines.	 as	 a	 convenience	 to
software.	 If	V2-0	 are	 placed	 at	A9-7.	 then	 the	 offset	 becomes	 27=128	 bytes.	 If
placed	at	A12-10,	the	offset	becomes	210=1024	bytes,	and	if	placed	at	A10-8	the
offset	becomes	28=256	bytes.	A	256	byte	offset	stands	out	from	the	others,	as	 it
allows	 software	 to	 step	 an	 address	 from	 one	 line	 to	 the	 next	 simply	 by
incrementing	the	address	high	byte,	easily	achieved	with	a	single	Z80	instruction.
It	 is	 for	 this	 reason	 that	 the	 ZX	 Spectrum	 ULA	 implements	 the	 third	 address
option.

Analysing	 this	 addressing	 option	 further,	 it	 should	 be	 noted	 that	 when	 the

164



processor	steps	from	the	eighth	to	the	ninth	display	line	by	incrementing	the	high
byte	(A16-A8),	A11	will	become	set	and	A10-8	reset.	However,	the	ninth	line	is
actually	addressed	when	A5	goes	to	1,	since	it	is	associated	with	V3;	therefore	this
high	byte	line	stepping	trick	can	only	be	performed	when	stepping	within	an	eight
pixel	high	row,	defined	when	A10-8	is	not	111	binary.

Generally	the	processor	address	of	any	display	byte	is	calculated	by	setting	A4-0
to	the	column	number,	A12-5	to	the	line	number	and	swapping	A10-8	with	A7-5.
The	next	line	may	be	stepped	to	by	incrementing	the	high	address	byte	until	A10-
8	 are	 111	 binary,	 at	 which	 point	 the	 next	 line	 address	 may	 be	 found	 be
recalculating	the	whole	address	or	by	applying	an	address	adjustment.

Figure	15-5:	The	ZX	Spectrum	display	address	map

Generating	The	Address

The	 address	 lines	 of	 the	 ULA	 are	 multiplexed	 to	 save	 package	 pins,	 and	 also
allows	 the	ULA	 to	 connect	 directly	 to	 the	16K	DRAM	without	 the	need	 for	 an
external	multiplexer.	The	address	that	the	ULA	outputs	when	performing	a	video
fetch	is	governed	by	the	following	factors:

1.	 Whether	the	video	controller	is	about	to	begin	a	page	mode	read.
2.	 Whether	it	is	about	to	fetch	a	display	byte.
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3.	 Whether	it	is	about	to	fetch	an	attribute	byte.

A	video	fetch	occurs	when	the	Border	signal	is	low	and	C3	is	high,	as	shown	by
Figure	13-4	and	Figure	15-6.	Because	the	DRAM	row	address	must	be	present	on
the	 address	bus	before	 /RAS	goes	 low,	 the	ULA	must	generate	 the	 row	address
early,	before	C3	goes	high.	It	does	this	by	AND	gating	C0,	C1	and	C2	to	identify
the	high	transition	of	C0	prior	to	C3	going	high,	adding	142ns	to	the	front	of	C3's
high	 duration.	 This	 produces	 an	 address	 enable	 signal	 /AE,	 which	 enables	 the
ULA	address	bus	tri-state	outputs,	passing	the	address	to	the	DRAM.

Considering	/AE	on	its	own	is	insufficient	to	decide	whether	to	produce	a	row	or
column	address.	However,	once	/RAS	has	gone	low,	 the	row	address	on	the	bus
must	 be	 changed	 to	 a	 column	 address	 before	 /CAS	 goes	 low;	 therefore,	 while
/RAS	is	high,	a	row	address	should	be	generated	(/RSel),	and	when	low,	a	column
address.	 Additionally,	 because	 the	 video	 controller	 is	 performing	 a	 page-mode
read	of	 two	bytes,	 two	different	column	addresses	need	 to	be	generated	per	 row
access,	 one	 for	 the	 display	 byte	 (/CDataSel),	 another	 for	 the	 attribute	 byte
(/CAttrSel).
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Figure	15-6:	Clock	lines	C3-0	in	relation	to	RAS	and	CAS

Examining	Figure	15-6	reveals	 that	C1	is	high	for	 the	duration	of	the	first	 /CAS
pulse,	 responsible	 for	 fetching	 the	 display	 byte,	 and	 low	 for	 the	 second	 /CAS
pulse,	which	 fetches	 the	 attribute	 byte.	 Thus	 by	 considering	C1	 along	with	 the
/RAS	signal,	the	ULA	is	able	to	correctly	produce	either	a	row	address	or	one	of
the	two	column	addresses.
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These	 equations	 show	 that	 when	VidRAS	 goes	 low	 prior	 to	 the	 second	 pair	 of
bytes	being	fetched,	a	row	address	will	be	generated	as	appropriate.	Internally	the
video	 generator	 will	 always	 produce	 one	 of	 the	 three	 addresses,	 but	 will	 only
output	them	to	the	address	bus	while	/AE	is	high.

Figure	15-7:	Comparison	of	ZX	Spectrum	row	and	column	DRAM	addresses

The	 ULA	 generates	 the	 required	 address	 by	 combining	 the	 row	 and	 column
address	 selects,	 defined	above,	with	 the	 three	 counter	bits	 given	 for	 each	of	 the
columns	A6	to	A0	in	Figure	15-7.	Where	a	binary	0	is	required,	the	invert	of	the
appropriate	 column	 select	 is	 taken	 on	 its	 own,	 as	 this	 being	 high	will	 force	 the
combining	 NOR	 gate	 for	 the	 address	 line	 to	 output	 0.	 Where	 a	 binary	 1	 is
required,	 the	 select	 signal	 is	 omitted	 altogether	 as	 all	 inputs	 of	 the	output	NOR
will	be	zero,	forcing	its	output	to	1.
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Interestingly,	Altwasser	did	not	use	the	logical	choice	of	C3	for	the	generation	of
row	address	bit	A0,	as	shown	 in	 the	above	equation,	but	 instead	used	a	delayed
/C2.	To	understand	why	this	was	necessary,	an	appreciation	of	 the	signal	 timing
involved	is	required.
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Figure	15-8:	Video	address	generation	schematic

Referring	to	Figure	14-1,	the	video	controller	delays	the	output	of	the	serial	pixel
stream	to	give	itself	time	to	fetch	the	first	pair	of	display	and	attribute	bytes	from
memory.	As	a	consequence	of	this	delayed	timing,	the	byte	fetches	occur	one	C2
period	later	than	they	would	have	otherwise,	and	the	first	/RAS	goes	low	while	C3
is	high.

Because	the	generation	of	A0	requires	C3	to	be	low	at	this	point,	/C3	could	have
been	 used	 instead,	 had	 it	 not	 been	 for	 the	 second	 byte-pair	 being	 fetched
immediately	after	the	first,	within	the	same	half-period	of	C3.	Thus,	the	use	of	C3
or	 /C3	 will	 always	 see	 A0	 being	 set	 to	 the	 same	 state	 for	 every	 DRAM	 row
address.	 C2	 on	 the	 other	 hand,	 gives	 the	 expected	 value	 for	 A0	 at	 each	 /RAS
pulse.
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Nevertheless,	 it	 is	 likely	 that	 Altwasser	 would	 have	 suffered	 additional	 timing
issues	 with	 the	 use	 of	 C2,	 due	 to	 the	 internal	 propagation	 delay	 of	 the	 master
counter	between	C3	and	C4	(see	the	section	called	The	Master	Counter	in	Chapter
10,	The	Internal	Clocks).	 /RAS	is	generated	from	C0	and	C1	and	will	be	almost
synchronous	with	C2	and	C3	as	 they	change	state.	C8-4,	 in	comparison,	change
state	 after	C3-0	 and	 /RAS,	 and	 it	 is	 this	 slight	 delay	 that	 keeps	C7-4	 and	V7-0
stable	on	the	address	bus	while	the	DRAM	responds	to	/RAS.	In	contrast,	C2	and
C3	will	be	in	a	state	of	change	as	/RAS	goes	low;	therefore	their	participation	in
the	generation	of	A0	would	lead	to	an	unstable	address.

Consequently,	C2	is	delayed	and	inverted	by	seven	inverters	before	being	used	for
the	generation	of	A0,	as	shown	in	Figure	15-8.	This	ensures	that	C2	changes	state
after	/RAS	has	been	asserted,	and	more	than	makes	up	for	the	propagation	delay
within	the	master	counter.	The	inversion	is	necessary	to	correct	the	state	of	C2,	as
the	 delay	 causes	 its	 previous	 state	 to	 be	 placed	 on	 the	 address	 bus.	 The	 other
counter	bits	involved	in	the	address	generation,	C4	and	above,	do	not	need	to	be
inverted	since	they	change	state	on	the	downward	transition	of	C3,	which	occurs
after	the	four	bytes	have	been	fetched,	and	therefore	during	a	safe	zone.

Ironically,	 if	 the	same	delay	and	inversion	had	been	applied	 to	C3,	 then	it	could
have	 been	 used	 in	 the	 generation	 of	A0.	Either	 it	wasn't	 obvious	 that	C3	 could
become	a	valid	candidate,	or	 its	high	fan-out	and	consequently	slower	 transition
time	precluded	it	from	being	used	reliably.
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Chapter	16

Analogue	Video

Internally	the	ULA	processes	colour	information	as	separate	red,	green,	blue	and
bright	 signals.	 As	 the	 ZX	 Spectrum	 is	 designed	 to	 operate	 with	 a	 television
receiver	 which	 requires	 a	 single	 composite	 video	 signal	 mixed	 with	 a	 UHF	 or
VHF	 carrier	 frequency,	 the	 colour	 and	 synchronisation	 components	 must	 be
combined.

Composite	 video	 generation	 and	 RF	 modulation	 is	 a	 complicated	 analogue
process,	 for	which	 the	analogue	capability	of	 the	5C000	and	6C000	ULA	is	not
sufficient.	 However,	 low	 cost	 specialised	 microchips	 and	 modulators	 were
available	to	perform	the	task.

The	ZX	Spectrum	uses	the	National	Semiconductor	LM1889	to	modulate	colour
signals	 into	 a	 PAL	 (or	 NTSC	 with	 a	 different	 ULA	 and	 minor	 circuit
modifications)	 chroma	 sub-carrier.	 This	 is	 combined	with	 the	 raw	 video	 output
into	a	composite	video	signal	that	is	further	modulated	onto	an	RF	carrier	by	the
UM1233	RF	modulator,	producing	a	TV	compatible	UHF	aerial	signal.

Composite	Video

A	 composite	 video	 signal	 combines	 the	 three	 video	 components	 of	 brightness,
colour	 and	 synchronisation	 into	 one,	 making	 them	 simple	 to	 transmit.	 The
combination	is	done	in	such	a	way	that	the	receiving	television	can	easily	separate
the	components	back	out	again.

Before	the	arrival	of	colour	television,	a	black	and	white	composite	video	signal
consisted	 of	 just	 brightness	 and	 synchronisation.	 In	 a	 colour	 video	 signal	 these
two	 components	 are	 still	 present,	 and	 are	 together	 referred	 to	 as	 luminance	 or
symbolically	as	Y.

The	 colour	 information	 is	 added	 to	 the	 luminance	 component	 of	 a	 composite
video	signal	in	a	way	that	makes	it	invisible	to	a	black	and	white	television.	At	the
introduction	of	colour,	a	majority	of	television	programmes	were	still	produced	in
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black	 and	 white,	 and	 as	 most	 viewers	 owned	 the	 cheaper	 black	 and	 white
television	set,	 the	addition	of	the	colour	component	had	to	allow	programmes	to
be	viewed	by	all.

In	 1939,	 Georges	 Valensi	 [VALENSI]	 invented	 the	 method	 of	 analogue	 colour
encoding	 used	 today	 that	 allows	 the	 transparent	 transmission	 of	 colour
information	alongside	the	black	and	white	luminance	signal.	The	mechanism	uses
colour	difference	signals,	which	reduces	the	amount	of	information	or	bandwidth
needed	to	transmit	a	full	colour	picture.	Together	with	the	luminance	Y,	there	are
two	colour	difference	signals,	U	and	V,	together	referred	to	as	chrominance.

YUV

The	colour	difference	encoding	used	in	PAL,	NTSC	and	SECAM	composite	video
standards	are	all	based	on	the	YUV	colour	space,	which	consists	of	the	black	and
white	luminance	Y,	and	chrominance	colour	differences	U	and	V.

YUV	takes	 into	account	 the	human	eyes	 sensitivity	 to	different	colours	and	 this
enables	 it	 to	 encode	 a	 fixed	 percentage	 of	 each	 primary	 colour,	 significantly
reducing	the	amount	colour	information	that	will	be	transmitted.

The	 luminance	 Y	 is	 calculated	 from	 the	 weighted	 sum	 of	 RGB	 colours,	 with
weights	reflecting	the	proportion	of	each	primary	colour	that	gives	the	luminance
of	reference	white	[VIDEODM],	according	to	the	ITU-R	BT.601	specification:

The	colour	difference	signals	U	and	V	are	defined	as:

which,	when	expressed	in	terms	of	RGB,	become:

YUV	signal	generation	is	described	as	being	lossy	because	colour	information	is
discarded,	and	at	the	television	receiver	the	reconstituted	RGB	values	will	never
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be	 the	 same	 as	 those	 before	 YUV	 conversion.	 In	 the	 early	 days	 of	 colour
television,	 viewers	 would	 not	 have	 been	 aware	 of	 this	 limitation	 due	 to	 the
inaccurate	picture	reproduction	of	the	domestic	television.	However,	the	quality	of
modern	 television	 and	monitor	 equipment	 highlights	 the	 inadequacies	 of	 such	 a
lossy	 analogue	 encoding,	 and	 direct	 analogue	 RGB	 or	 digital	 signals	 are	 now
preferred	instead.

PAL	Chrominance	Modulation

PAL	colour	encoding	amplitude	modulates	two	orthogonal	sub-carriers	(being	90
degrees	out	of	phase	with	one	another),	with	the	two	weighted	colour	difference
signals.	 This	 Suppressed	 Carrier	 Quadrature	 Modulation	 produces	 a	 single
amplitude	and	phase	modulated	signal	that,	when	added	to	the	luminance,	gives	a
composite	video	signal.	Being	amplitude	modulated,	the	magnitude	of	the	carrier
is	 proportional	 to	 the	magnitude	 of	 the	modulating	 signals,	which	 are	 therefore
said	 to	 suppress	 the	 carrier.	 This	 ensures	 compatibility	 with	 black	 and	 white
television	 receivers	 by	 confining	moments	 of	 high	 carrier	 amplitude	 to	 areas	 of
high	colour	saturation.

Figure	16-1:	"Colour	Burst"	synchronisation	-	10	cycles	of	sub-carrier

At	the	receiver,	the	suppressed	sub-carrier	must	be	regenerated	before	the	colour
difference	signals	can	be	demodulated.	Usually	with	quadrature	modulation	a	pilot
signal	 is	 continuously	 transmitted	 to	 allow	 the	 receiver	 to	 lock	 on	 to	 the	 sub-
carrier	 frequency,	 but	 with	 television,	 such	 a	 signal	 would	 create	 visible
interference	 due	 to	 the	 limited	 bandwidth	 available.	 However,	 unlike	 most
quadrature	 modulated	 signals,	 a	 television	 transmission	 is	 divided	 into	 discrete
chunks	of	information,	where	a	frame	consists	of	287	repetitions	of	scan	line	and
horizontal	 synchronisation	 information,	 followed	 by	 25	 vertical	 synchronisation
pulses.	 This	 makes	 it	 possible	 to	 provide	 the	 receiver	 with	 the	 necessary	 sub-
carrier	synchronisation	without	a	continuous	pilot,	by	adding	a	sine	wave	"Colour
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Burst"	 signal	 to	 the	 video	 signal	 during	 the	 line	 blanking	 period,	 as	 shown	 in
Figure	16-1.

Distortions	 or	 phase	 errors	 in	 the	 modulated	 chrominance	 signal	 reduce	 the
orthogonality	of	the	signals	and	results	in	crosstalk	between	the	V	and	U	channels.
The	 PAL	 or	 "Phase	 Alternating	 Line"	 system	 designed	 by	 Bruch	 [BRUCH]
reverses	 the	 phase	 of	 the	V	 sub-carrier	 on	 alternate	 lines,	 so	 that	when	 the	 line
phase	 is	 restored	 at	 the	 receiver,	 any	 induced	 phase	 error	will	 also	 be	 inverted,
cancelling	out	errors	between	adjacent	lines.	Analogue	television	receivers	use	a
chrominance	delay	line	to	store	the	colour	information	for	a	line	so	that	it	may	be
averaged	against	the	next	to	remove	the	phase	error.	Even	though	this	reduces	the
vertical	 colour	 resolution	 of	 the	 image,	 it	 deliberately	 causes	 phase	 errors	 to
manifest	 themselves	 instead	 as	 subtle	 changes	 in	 saturation,	 both	 of	 which	 are
undetected	by	the	human	eye,	being	far	more	sensitive	to	hue	and	intensity	 than
saturation.

An	 understanding	 of	 how	 quadrature	 modulation	 combines	 the	 chrominance
signals	U	and	V	with	a	carrier	is	not	required	to	understand	how	Y,	U	and	V	are
generated	 from	 RGB.	 That	 said,	 it	 is	 important	 to	 understand	 the	 effect	 of
quadrature	 modulation	 on	 the	 phase	 and	 amplitude	 of	 the	 carrier	 signal,	 when
considering	how	to	generate	the	colour	synchronisation	burst	during	the	horizontal
blank.	 The	 modulator	 adds	 the	 burst	 to	 the	 video	 signal,	 but	 its	 location,
amplitude,	and	crucially,	its	phase	are	dictated	by	the	YUV	generator.

Quadrature	Amplitude	Modulation

Quadrature	 modulation	 amplitude	 modulates	 two	 carrier	 signals	 with	 two
information	 signals.	One	 carrier	 is	 90	 degrees	 out	 of	 phase	with	 the	 other,	 and
both	are	typically	sinusoidal.	In	other	words,	one	carrier	is	a	function	of	sine,	the
other	 a	 function	 of	 cosine.	 Once	 modulated,	 the	 two	 signals	 are	 summed	 to
produce	 a	 single	 signal	 that	 is	 both	 phase	 and	 amplitude	 modulated.	 The
modulation	and	summation	is	shown	diagrammatically	in	Figure	16-2.
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Figure	16-2:	Quadrature	amplitude	modulator

Assume	 that	 the	U	 signal	 is	modulated	by	 the	 cosine	 carrier,	 and	V	by	 the	 sine
carrier.	 The	 effect	 of	 the	 modulation	 on	 the	 output	 carrier	 can	 be	 shown	 by
plotting	 the	 vector	 sum	 of	 these	 two	 quadrature	 components,	 U	 and	 V,	 for	 an
example	colour.	As	V	will	be	modulated	90	degrees	out	of	phase	with	U,	 the	V
and	U	axes	are	at	90	degrees	to	one	another,	as	presented	in	Figure	16-3.
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Figure	16-3:	Vector	sum	of	V	and	U	showing	phase	shift	and	amplitude

This	diagram	shows	the	vector	sum	of	U	and	V	for	magenta,	as	calculated	by	the
BT.601	 equations	with	 values	 for	 red	 and	 blue	 of	 1.	 The	 point	 plotted	 forms	 a
right-angle	 triangle	with	 the	U-axis,	with	 its	 hypotenuse	 intersecting	 the	 origin,
such	 that	 it	describes	an	angle	α	with	 the	positive	half	of	 the	U-axis.	This	angle
gives	 the	 phase	 shift	 applied	 to	 the	 carrier	 when	 modulating	 U	 and	 V	 for	 this
colour,	and	the	hypotenuse	gives	the	carriers	amplitude.

All	angles	within	the	vector	diagram	are	measured	with	respect	to	the	positive	U-
axis,	and	proceed	in	counter-clockwise	direction.

The	amplitude	of	modulated	carrier	for	magenta	in	Figure	16-3	is	given	by:
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The	phase	shift	of	modulated	carrier	in	degrees	is	given	by:

Thus,	magenta	has	a	modulated	carrier	phase	shift	of	60.6	degrees	and	a	carrier
amplitude	scale	factor	of	0.591.

ULA	Analogue	YUV	Generation

Generation	of	 luminance	and	chrominance	 signals	 requires	a	digital	 to	analogue
converter	(DAC)	that	can	sum	appropriately	weighted	values	for	each	of	the	red,
green	and	blue	digital	inputs.

The	 luminance	 signal	 conveys	 intensity	 and	 synchronisation,	 and	 will	 have	 a
value	that	ranges	from	zero	for	sync,	a	larger	positive	value	for	black	through	to
some	 higher	 value	 for	 bright	 white.	 The	 chrominance	 signals	 U	 and	 V,	 by
comparison,	have	values	that	are	zero	for	both	black	and	white,	as	these	colours
are	represented	by	their	luminance	component	alone.	This	can	be	demonstrated	by
plotting	 the	vector	 sum	of	 the	quadrature	components,	U	and	V,	 for	each	of	 the
primary	colours	and	their	complements,	as	presented	in	Figure	16-5.

The	simplest	digital	to	analogue	converter	is	constructed	from	a	network	of	single
and	double	valued	resistors,	arranged	into	an	array	called	an	R-2R	resistor	ladder.
See	 in	Figure	16-4.	 Each	 resistor	 tap	 along	 the	 length	 of	 the	 array	 provides	 an
input	bit	supplying	0	or	Vref	volts,	depending	on	the	state	of	the	bit.
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Figure	16-4:	R-2R	resistor	ladder
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Figure	16-5:	PAL	vector	diagram	of	UV	colour	space	for	even	numbered	lines

If	the	input	bits	are	numbered	from	0,	an	arbitrary	bit	i	contributes	the	following
to	the	output	voltage:

The	full	scale	output	voltage	for	a	N-bit	ladder	is	given	by:
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The	 R-2R	 ladder	 is	 not	 affected	 by	 the	 value	 of	 R,	 and	 as	 any	 resistance	 drift
during	operation	would	affect	all	resistors,	the	output	voltage	remains	stable.	Even
so,	despite	the	simplicity	and	stability	of	the	resistor	ladder,	 it	 is	not	suitable	for
the	generation	of	non-linear	weighted	voltages	and	difficult	to	implement	within	a
Ferranti	ULA.	The	CML	ULA	has	 limited	 analogue	capabilities	provided	by	 its
peripheral	cells,	as	they	are	intended	for	digital	interfacing,	and	do	not	contain	the
number	 of	 resistors	 necessary	 to	 construct	 an	 R-2R	 resistor	 ladder.	 They	 do,
however,	contain	a	useful	range	of	resistors	in	various	ratios.

The	colour	weight	coefficients	of	 the	 three	YUV	equations	may	be	expressed	as
ratios	of	one	another.	If	these	ratios	are	duplicated	across	a	set	of	resistors	making
up	one	half	of	a	voltage	divider,	then	by	switching	combinations	of	these	resistors
in	and	out	of	the	divider,	the	output	voltage	can	be	made	to	vary	in	proportion	to
the	resistor	ratios,	and	therefore	the	colour	weights.

This	 is	 the	 technique	 used	 in	 the	 ZX	 Spectrum	 ULA,	 creating	 a	 simple	 DAC
implemented	 with	 a	 limited	 number	 of	 transistors	 and	 resistors	 having	 limited
interconnection	 possibilities.	 The	 design	 combines	 resistors	 in	 both	 parallel	 and
serial	configurations	to	achieve	the	values	required,	and	incorporates	a	number	of
features	 that	 provide	 signal	 gain	 and	 temperature	 stability,	 preventing	 the
brightness	from	shifting	as	the	IC	heats	up.

General	Circuit	Overview

The	YUV	signal	generation	consists	of	three	analogue	circuits	which	are	based	on
the	same	core	design,	driven	by	a	 logic	circuit	 that	provides	 the	necessary	RGB
signals	and	timing.

Altwasser	 prototyped	 the	YUV	circuits	 using	discrete	 transistors	 and	 found	 that
when	blue	alone	was	displayed,	it	was	very	dark	and	hardly	visible	on	a	number
of	televisions.	To	address	this	he	increased	the	blue	coefficient	of	 the	luminance
equation:

Each	 of	 the	 YUV	 circuits	 consist	 of	 an	 output	 transistor	 whose	 output	 voltage
depends	on	 the	combination	of	 resistors	connected	 to	 its	emitter.	These	 resistors
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are	switched	in	and	out	of	the	circuit	depending	on	the	combinations	of	red,	green
and	blue	signal	present	at	the	input,	and	their	values	chosen	to	match	the	ratio	of
weight	 coefficients	 in	 the	 corresponding	 luminance	 and	 colour	 difference
equations.	A	similarly	weighted	burst	signal	complements	the	colour	signals	in	the
chrominance	U	and	V	circuits,	controlling	the	synchronisation	colour	burst	pulse
they	generate.

The	 following	 analysis	 assumes	 a	 negligible	 transistor	 base	 current	 and	 that	 the
switching	transistors	either	cut-off	or	saturate,	depending	on	their	control	input.

Luminance	Y	Generation

The	luminance	circuit	takes	single	bit,	red,	green	and	blue	inputs	and	produces	an
output	 voltage	 from	 the	 weighted	 sum	 of	 colour	 inputs.	 The	 luminance
coefficients	determine	how	significant	the	contribution	of	each	input	colour	is	to
the	overall	brightness	of	the	output;	therefore	blue	is	given	the	least	significant	bit,
and	green	the	most.

When	 viewed	 on	 a	 monochrome	 display,	 each	 of	 the	 eight	 possible	 colours
increases	in	lightness	across	a	grey	scale	from	black	to	white.	When	a	colour	is	to
be	 produced	 with	 highlight	 (or	 brightness)	 turned	 on,	 the	 output	 voltage	 is
increased	by	a	 small	 amount.	To	 reduce	 the	 complexity	of	 the	design,	 the	ULA
generates	 an	 inverted	 luminance	 signal,	 /Y,	which	 is	 reverted	 by	 the	 composite
video	circuit	on	the	ZX	Spectrum	PCB.

The	luminance	circuit	for	the	6C001E	ULA	is	shown	in	Figure	16-6.	It	consists	of
an	 output	 transistor,	 Q3,	 connected	 to	 the	 ULA	 pin	 via	 an	 emitter-follower
transistor,	Q4,	 that	 buffers	Q3	 from	a	 large	 external	 circuit	 load	 and	 provides	 a
low	impedance	output.

The	voltage	output	by	Q4	through	/Y,	as	measured	across	the	external	load	resistor
RL,	tracks	the	voltage	at	 its	base,	with	a	base-emitter	voltage	drop	VBE	of	0.7V.
The	voltage	at	the	base	of	Q4	is	determined	by	the	voltage	drop	across	R2,	which
is	controlled	by	the	remainder	of	the	circuit.

Q2	is	the	control	transistor	that	establishes	the	operating	point	of	Q3.	Q1	is	always
on,	switching	R3	into	the	emitter	of	Q2,	and	for	normal	colour	brightness	levels,
Q5	 is	 also	 on,	 adding	 R4	 in	 parallel	 with	 R3.	 The	 total	 emitter	 resistance	 is
therefore:
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This	2210	ohm	resistance	 in	series	with	R1	gives	13010	ohms	across	5V,	minus
the	Q2	base-emitter	drop	of	0.7V.	From	Ohm's	Law,	 the	 emitter	 current	 IEQ2	 is
given	by:

Figure	16-6:	Analogue	/Y	generation

The	 current	 produces	 a	 voltage	 drop	 across	 the	 emitter	 resistance,	 setting	 the
voltage	at	the	emitter:
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As	Q2	and	Q3	both	have	 their	bases	 tied	 to	 the	 same	 low	 impedance	point,	 the
voltage	at	the	emitter	of	Q2	(0.730V)	is	reflected	at	the	emitter	of	Q3.

The	voltage	across	R2,	which	dictates	the	overall	output	voltage,	is	proportional	to
the	current	flowing	through	it,	and	is	determined	by	which	of	the	RedI,	GreenI	and
BlueI	 transistors,	Q6-Q8	are	on.	The	 resistor	values	 they	switch	 into	 the	emitter
circuit	 are	 chosen	 to	 produce	 currents	 in	 the	 same	 ratio	 as	 the	 luminance
coefficients.

As	current	is	inversely	proportional	to	resistance,	the	resistance	ratios	are	likewise
inverted:

In	the	6C001	ULA,	8K1	resistor	is	formed	from	two	4K1	resistors	in	series.

As	the	voltage	at	the	emitter	of	Q3	is	known	and	fixed,	it	is	possible	to	calculate
the	currents	drawn	by	each	of	the	emitter	resistors:

Different	 combinations	 of	 red,	 green	 and	 blue	 input	 results	 in	 different	 currents
being	drawn	through	R2	by	the	emitter	resistors.	During	the	active	region	of	the
display,	 /Sync	will	 be	 high	 and	Q9	on,	 causing	R9	 and	Q10	 to	 draw	 additional
current	 through	R2.	R9	in	series	with	R2	gives	7200	ohms	across	5V,	minus	the
base-emitter	drop	of	0.7V,	giving	a	current	draw	of:
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This	 current	must	 also	 be	 taken	 into	 account	when	 calculating	 the	 voltage	 drop
across	R2	for	each	colour.	White	for	example,	which	is	created	when	Q6-Q9	are
on,	draws	a	 total	of	1.213×10-3A	through	R2,	causing	 it	 to	experience	a	voltage
drop	of:

The	output	produced	by	Q4	for	white	is	the	voltage	at	its	base,	being	5V	minus	the
drop	across	R2,	less	the	base-emitter	voltage	drop:

Highlight	Mode

When	the	highlight	mode	is	enabled,	/HL	is	low,	switching	off	Q5	and	increasing
REQ2	to	3100	ohms	(the	value	of	R3),	causing	an	associated	decrease	of	IEQ2:

This	leads	to	an	increase	in	the	voltage	at	the	emitters	of	Q2	and	Q3:

Consequently,	the	currents	drawn	by	each	of	the	red,	green	and	blue	resistors	are
proportionally	 higher.	 Note	 that	 no	 more	 than	 13.035×10-4A	 may	 be	 drawn
through	R2,	since	the	voltage	at	the	collector	of	Q3	cannot	go	below	0.959V.	At
this	 threshold	 there	 is	 no	 longer	 any	 voltage	 drop	 across	 Q3,	 which	will	 be	 in
saturation;	 therefore	 the	 generation	 of	 bright	white	 drops	 the	maximum	4.041V
across	R2.	The	circuit	currents,	voltage	drop	across	VR2	and	/Y	output	are	given
in	Table	16-1	for	all	16	possible	colours.

Colour IGreen IRed IBlue /ISync R2V /Y
Black 0.597 1.851 2.449
Blue 0.090 0.597 2.131 2.169
Red 0.178 0.597 2.404 1.896
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Magenta 0.178 0.090 0.597 2.683 1.617
Green 0.348 0.597 2.930 1.370
Cyan 0.348 0.090 0.597 3.209 1.091
Yellow 0.348 0.178 0.597 3.482 0.818
White 0.348 0.178 0.090 0.597 3.761 0.539
Bright	Black 0.597 1.851 2.449
Bright	Blue 0.118 0.597 2.218 2.082
Bright	Red 0.234 0.597 2.576 1.724
Bright	Magenta 0.234 0.118 0.597 2.944 1.356
Bright	Green 0.457 0.597 3.267 1.033
Bright	Cyan 0.457 0.118 0.597 3.634 0.666
Bright	Yellow 0.457 0.234 0.597 3.992 0.308
Bright	White 0.457 0.234 0.118 0.597 4.041 0.259
Sync 0.00 4.3

Table	16-1:	Luminance	circuit	currents	(mA),	voltages	and	output	levels

Synchronisation

The	 horizontal	 and	 vertical	 synchronisation	 pulses	 are	 added	 to	 the	 luminance
signal	by	removing	the	voltage	offset	applied	to	the	luminance	output	when	sync
is	 not	 being	 generated.	 This	 causes	 the	 output	 to	 go	 above	 the	 reference	 black
level	of	the	inverted	luminance	signal,	as	required	for	synchronisation	pulses	in	an
inverted	luminance	signal.

Horizontal	 and	vertical	 synchronisation	occurs	during	a	period	of	 line	blanking,
when	active	region	of	the	display	is	not	being	generated;	therefore	the	red,	green
and	blue	signals	will	be	off,	and	the	current	drawn	through	R2	a	result	of	Q9	being
on,	 providing	 the	 black	 offset.	During	 the	 sync	 pulse,	 /Sync	 goes	 low,	 shutting
down	Q9	and	the	associated	current	in	R2.	The	base	of	Q4	is	thus	pulled	up	to	the
5V	rail,	and	4.3V	measured	across	the	load	resistor	in	the	emitter	of	Q4.	During
vertical	synchronisation,	red,	green	and	blue	will	again	be	off,	and	/Sync	will	go
low	for	four	complete	scan	lines.

Temperature	Stability
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The	luminance	circuit	contains	features	that	compensate	for	transistor	fabrication
variances	and	temperature	effects.	As	the	ULA	gets	hot,	the	base-emitter	voltage
drop	will	decrease	for	all	transistors.	The	voltage	at	the	emitter	of	Q2	will	rise	as	a
result,	increasing	the	current	drawn	through	R2	and	the	voltage	dropped	across	it,
which	reduces	the	voltage	at	the	base	of	Q4.	The	lower	base-emitter	voltage	drop
of	 Q4	 increases	 the	 voltage	 at	 its	 emitter	 by	 more	 than	 the	 voltage	 reduction
experienced	at	its	base,	and	so	Q10	is	included	to	offset	this.

The	reduced	base-emitter	voltage	of	Q10	increases	the	current	drawn	through	R2
and	further	lowers	the	voltage	at	the	base	of	Q4.	This	does	not	achieve	complete
cancellation	of	 temperature	 effects	 seen	at	 the	 emitter	of	Q4,	but	 approximately
halves	the	voltage	gain.

Chrominance	U	Generation

The	U	chrominance	circuit	 has	 the	 same	configuration	as	 the	 luminance	circuit,
with	 Q2	 controlling	 the	 emitter	 voltage	 of	 the	 output	 transistor,	 Q3.	 Line	 and
frame	synchronisation	are	not	carried	by	the	colour	difference	signals,	but	they	do
indicate	 where	 the	 chrominance	 modulator	 will	 insert	 the	 colour	 sub-carrier
synchronisation	burst,	and	what	phase	it	will	be.
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Figure	16-7:	Chrominance	U	generation

Technically	an	inverted	signal	is	produced	by	the	ULA,	but	once	modulated	with
the	similarly	inverted	V	chrominance	signal,	a	modulated	sub-carrier	is	produced
with	 the	correct	magnitude	and	phase	when	measured	with	respect	 to	 the	colour
burst;	therefore	the	notion	that	the	signal	is	inverted	is	dropped	so	that	it	becomes
referred	to	as	U.

Figure	 16-7	 shows	 the	 chrominance	 U	 generation	 circuit.	 The	 collector	 and
emitter	 resistors	 of	 Q2	 see	 a	 current	 of	 0.361×10-3A	 being	 developed	 through
them:

This	current	produces	a	voltage	drop	across	R3	that	is	reflected	at	the	emitters	of
Q2	and	Q3:
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The	 current	 drawn	 through	 R2,	 which	 dictates	 the	 overall	 output	 voltage,	 is
determined	by	which	of	 the	 /RedII,	 /GreenII,	BlueII	 and	 /BurstII	 transistors	 (Q5-
Q8)	are	on.	The	resistor	values	they	switch	into	the	emitter	circuit	are	chosen	to
match	 the	 ratio	 of	 chrominance	U	 coefficients,	 but	 are	 inverted	 since	 current	 is
inversely	proportional	to	resistance:

By	definition	the	chrominance	U	signal	can	go	positive	or	negative	with	respect	to
zero,	 as	 shown	by	 the	vector	 sum	diagram	of	Figure	16-5.	NPN	 transistors	will
only	 switch	positive	voltages	between	0	and	 the	 supply	 rail,	here	5V,	 so	 for	 the
signal	 to	 represent	 a	 negative	 value,	 a	 zero	 signal	 level	 DC	 offset	 must	 be
calculated	 by	 considering	 how	 negative	 the	 output	 signal	 may	 become.	 The
LM1889	 colour	 encoder	 on	 the	 ZX	 Spectrum	 PCB	 compares	 the	 U	 and	 V
chrominance	signals	against	this	reference	DC	offset	to	determine	whether	or	not
they	 represent	 a	 negative	 value.	 See	 the	 section	 called	 LM1889	 Modulation
Circuit.

The	 chrominance	U	 equation	 states	 that	 the	 red	 and	 green	 components	make	 a
negative	contribution	to	the	overall	signal	 level;	 therefore	by	adding	them	to	the
output	when	 they	are	 inactive	 effectively	 results	 in	 them	being	 subtracted	when
they	are	active.	The	circuit	design	simply	takes	inverted	signals	for	red	and	green
so	 that	 their	 switching	 transistors	 Q5	 and	 Q6	 are	 off	 whenever	 their	 colour	 is
present.

The	currents	drawn	through	R2	for	each	of	the	three	colour	signals	are	therefore:
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Figure	16-8:	Zero	signal	level	DC	offset	of	the	chrominance	U	signal

The	colour	burst	control	signal,	which	is	discussed	fully	in	the	section	called	Burst
Generation,	 also	 makes	 a	 negative	 contribution	 to	 the	 U	 output;	 therefore	 its
weight	 is	 included	 in	 the	 output	 total	 whenever	 /BurstII	 is	 inactive,	 drawing
0.587×10-3A	through	R2:

Finally,	 some	 adjustment	 of	U	 is	 required	 to	 align	 its	 value	 of	white	 and	 black
with	that	of	chrominance	V.	This	is	performed	by	introducing	a	fixed	current	draw
through	R2	via	R9:

For	example,	when	magenta	is	sent	to	the	television	during	the	active	part	of	the
display,	Q6	to	Q8	will	be	on,	and	Q5	off,	drawing	1.905×10-3A	through	R2:
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This	produces	a	voltage	of	2.95V	across	R2:

The	output	produced	by	Q4	is	the	voltage	at	its	base,	which	is	5V	minus	the	drop
across	R2,	minus	the	base-emitter	voltage	drop:

The	chrominance	U	output	for	each	of	the	eight	colours	and	the	colour	burst	are
similarly	derived	by	summing	the	relevant	R2	currents	and	calculating	the	voltage
drop	across	R2.	These	are	presented	in	Table	16-2.	Note	that	the	RGB	inputs	for
black,	including	the	burst	period,	are	mapped	to	those	of	white	to	ensure	that	the
quadrature	modulation	of	U	and	V	for	both	white	and	black	produce	the	same	zero
phase	 and	 amplitude	 modulation	 of	 the	 colour	 subcarrier.	 This	 mapping	 is
explained	in	the	section	called	YUV	Control	Signals.

Colour /IGreen /IRed IBlue /IBurst R2V U
Black 0.090 0.587 2.284 2.016
Blue 0.348 0.178 0.090 0.587 3.287 1.013
Red 0.348 0.587 1.942 2.358
Magenta 0.348 0.090 0.587 2.953 1.347
Green 0.178 0.587 1.608 2.692
Cyan 0.178 0.090 0.587 2.619 1.681
Yellow 0.587 1.273 3.027
White 0.090 0.587 2.284 2.016
Burst 0.090 1.374 2.926

Table	16-2:	Chrominance	U	circuit	currents	(mA),	voltages	and	output	levels

Chrominance	V	Generation

The	chrominance	V	generation	is	very	much	like	that	of	chrominance	U,	but	has
the	 added	 complexity	 of	 inverting	 the	 phase	 of	 the	 signal	 on	 alternate	 lines.	To
control	 this	 inversion	 the	ULA	generates	a	 timing	signal	 that,	when	 low,	 inverts
the	 RGB	 signals	 and	 reverses	 the	 polarity	 of	 the	 Burst	 signal.	 See	 the	 section
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called	YUV	Control	Signals.

Figure	16-9:	Chrominance	Vgeneration

Figure	 16-9	 shows	 the	 chrominance	 V	 generation	 circuit.	 The	 collector	 and
emitter	 resistors	 of	 Q2	 see	 a	 current	 of	 0.309×10-3A	 being	 developed	 through
them:

This	current	produces	a	voltage	drop	across	R3	that	is	reflected	at	the	emitters	of
Q2	and	Q3:

The	voltage	across	R2,	which	dictates	the	overall	output	voltage,	is	determined	by
which	of	the	Red*,	/Green*,	/Blue*,	Burst*	and	/Burst*	transistors	(Q5-Q9)	are	on.
Once	 again,	 the	 resistor	 values	 switched	 into	 the	 emitter	 circuit	 are	 chosen	 to
match	 the	 inverse	 ratio	 of	 chrominance	 V	 coefficients,	 given	 that	 current	 is
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inversely	proportional	to	resistance:

As	with	the	chrominance	U	signal,	V	can	go	positive	or	negative	with	respect	to
zero.	 Thus	 for	 the	 signal	 to	 represent	 a	 negative	 value,	 a	 zero	 signal	 level	 DC
offset	must	be	established.

The	currents	drawn	through	R2	for	each	of	the	three	colour	signals	are	therefore:

In	addition	to	the	RGB	colour	signals,	the	colour	burst	control,	which	is	discussed
fully	 in	 the	 section	called	Burst	Generation,	 also	makes	 a	 contribution	 to	 the	V
output	during	the	active	region	of	the	display,	as	/Burst*	will	be	high	and	Burst*
low;	 therefore	I/Burst*	 is	 included	in	the	output	 total	whenever	 the	colour	burst	 is
not	being	generated,	drawing	an	additional	0.309×10-3A	through	R2:

When	the	colour	burst	is	being	generated,	either	2×IBurst	or	0×IBurst	contributes	to
the	 current	drawn	 through	R2,	depending	on	whether	 an	 even	or	odd	numbered
scan	 line	 is	being	produced.	For	 further	 information	see	 the	section	called	Burst
Generation.

For	example,	magenta	is	sent	to	the	television	during	the	active	part	of	the	display,
Q5,	Q6	 and	Q9	will	 be	 on,	 drawing	 1.149×10-3A	 through	R2.	 This	 produces	 a
voltage	of	3.56V	across	R2:
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The	output	produced	by	Q4	is	the	voltage	at	its	base,	which	is	5V	minus	the	drop
across	R2,	minus	the	base-emitter	voltage	drop:

During	 odd	 numbered	 scan	 lines,	 numbering	 from	 1,	 the	 single	 bit	 RGB	 input
signals	 are	 inverted	 to	 produce	 an	 inverted	 V	 output,	 discussed	 in	 the	 section
called	YUV	Control	Signals.	Both	the	true	and	inverted	output	levels	are	shown	in
Table	 16-3.	Note	 that	 the	RGB	 inputs	 for	 black,	 including	 the	 burst	 period,	 are
mapped	to	those	of	white	to	ensure	that	the	quadrature	modulation	of	U	and	V	for
both	white	and	black	produce	the	same	zero	phase	and	amplitude	modulation	of
the	 colour	 sub-carrier.	 This	 mapping	 is	 explained	 in	 the	 section	 called	 YUV
Control	Signals.

Colour /IGreen IRed /IBlue IBurst R2V V
Black 0.457 0.309 2.375 1.925
Blue 0.383 0.309 2.147 2.153
Red 0.383 0.457 0.078 0.309 3.805 0.495
Magenta 0.383 0.457 0.309 3.563 0.737
Green 0.078 0.309 1.201 3.099
Cyan 0.309 0.959 3.341
Yellow 0.457 0.078 0.309 2.616 1.684
White 0.457 0.309 2.375 1.925
Burst 0.457 0.309 3.334 0.966
Black	Inverted 0.383 0.078 0.309 2.389 1.911
Blue	Inverted 0.457 0.078 0.309 2.616 1.684
Red	Inverted 0.309 0.959 3.341
Magenta	Inverted 0.078 0.309 1.201 3.099
Green	Inverted 0.383 0.457 0.309 3.563 0.737
Cyan	Inverted 0.383 0.457 0.078 0.309 3.805 0.495
Yellow	Inverted 0.383 0.309 2.147 2.153
White	Inverted 0.383 0.078 0.309 2.389 1.911
Burst	Inverted 0.383 0.078 1.188 3.112
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Table	16-3:	Chrominance	V	circuit	currents	(mA),	voltages	and	output	levels

The	vector	sum	of	U	with	V	for	an	inverted	scan	line	produces	the	vector	diagram
shown	in	Figure	16-10.

Figure	16-10:	PAL	vector	diagram	of	UV	colour	space	for	odd	numbered	lines

Burst	Generation
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For	a	PAL	video	signal,	the	colour	burst	is	generated	by	setting	U	and	V	to	values
that	 produce	 a	 phase	 shift	 of	 the	 colour	 sub-carrier,	 generated	 by	 the	 LM1889
modulator,	 of	 135	 degrees	 (225	 degrees	 on	 inverted	 V	 lines).	 This	 sub-carrier
burst	 lasts	 for	 2.29µs,	 approximately	 10	 cycles,	 and	 is	 added	 to	 the	 luminance
signal	during	the	blanking	period,	following	the	horizontal	sync.

A	burst	phase	shift	of	135	degrees	is	produced	by	a	negative	U	and	positive	V	of
the	same	magnitude.	A	phase	shift	of	225	degrees	is	produced	by	a	negative	U	and
V	of	the	same	magnitude.	Compare	Figure	16-5	and	Figure	16-10.

During	 the	 colour	 burst	 the	 colour	 output	multiplexer	 will	 be	 producing	 black,
therefore	transistors	Q6	and	Q7	of	the	chrominance	U	generator	will	be	on,	with
Q8	 off.	 For	 the	 colour	 burst	 enable	 signal	 to	 produce	 a	 negative	 U,	 it	 must
contribute	 to	 the	 overall	 voltage	 offset	 when	 it	 is	 not	 active.	 The	 colour	 burst
enable	is	therefore	an	active	low	signal,	/BurstII,	which	removes	the	burst	current
component	when	it	is	enabled.

The	colour	burst	component	of	the	chrominance	V	signal	is	more	complicated	in
its	generation.	For	even	numbered	 lines,	chrominance	V	must	 include	a	positive
burst	component	to	produce	a	phase	shift	of	135	degrees.	For	odd	numbered	lines,
it	 must	 include	 a	 negative	 burst	 component.	 The	 chrominance	 V	 generator
manages	this	by	using	two	burst	control	signals,	Burst*	and	/Burst*.

During	 the	 active	 region	of	 the	display,	 signals	 /Burst*	 and	Burst*	 are	 high	 and
low	respectively,	drawing	a	consistent	0.309×10-3A	through	R2.	When	generating
the	burst	period	for	odd	numbered	lines,	both	Burst*	and	/Burst*	are	deactivated,
removing	 the	 burst	 current	 completely	 from	 that	 drawn	 through	 R2.	 For	 even
numbered	 scan	 lines	 both	Burst*	 and	 /Burst*	 are	 activated	 for	 the	 burst	 period,
doubling	the	burst	current	drawn	through	R2.	This	is	illustrated	in	Figure	16-11,
and	demonstrated	in	Table	16-3.
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Figure	16-11:	V	Burst*	and	/Burst*	for	odd	and	even	lines

The	burst	and	chrominance	V	timing	signals	are	created	by	 the	circuit	shown	in
Figure	 16-12.	 Burst	 is	 generated	 from	 the	 combination	 of	 /C8,	 /C7,	 C6-4,
producing	a	signal	that	is	active	for	16	pixel	clock	transitions	or	2.29µs.	The	PAL
specification	defines	the	period	between	the	rising	edge	of	the	horizontal	sync	and
the	colour	burst	as	the	breezeway,	and	gives	it	a	reference	duration	of	0.9µs.	The
5C	 ULA	 generates	 a	 breezeway	 of	 2.29µs,	 which	 is	 more	 than	 double	 the
specification	value	and	is	known	to	cause	picture	stability	problems	with	Hitachi
and	 Grundig	 televisions	 [SM48].	 Consequently	 the	 breezeway	 timing	 was
shortened	 to	 1.14µs	with	 the	 6C	ULA	 by	 delaying	 the	 horizontal	 sync	 (see	 the
section	called	Horizontal	Synchronization	in	Chapter	11,	Video	Synchronisation).

Description Cycle	Start Cycle	End C8-0	at	Start
Blanking	Period 320 415 101	000	000
Horizontal	Sync 336	(5C) 367	(5C) 101	010	000	(5C)

344	(6C) 375	(6C) 101	011	000	(6C)
Colour	Burst 384 399 110	000	000

Table	16-4:	Burst	period	within	horizontal	blanking

Deciding	 whether	 an	 even	 or	 odd	 scan	 line	 is	 being	 generated	 is	 achieved	 by
considering	the	lowest	bit	of	the	vertical	scan	line	counter,	V0,	at	the	start	of	each
new	scan	line,	as	defined	by	the	horizontal	sync.	V0	cannot	be	used	directly	as	the
odd/even	timing	signal,	as	it	changes	state	when	the	electron	beam	passes	the	left
hand	 edge	 of	 the	 pixel	 display	 rectangle.	 As	 scan	 line	 numbering	 is	 purely
arbitrary,	Altwasser	defined	an	even	scan	line	as	being	one	where	V0	equals	zero
at	 the	 horizontal	 sync.	 This	 effectively	 numbers	 scan	 lines	 from	 one,	 and
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maintains	the	convention	of	inverting	the	chrominance	V	for	odd	scan	lines.

Figure	16-12:	PAL	V	burst	and	control	signal	timing

The	circuit	shown	in	Figure	16-12	takes	V0	and	stores	it	in	a	gated	D	transparent
latch,	 triggered	 by	 the	 composite	 /Sync.	 The	 complement	 of	 the	 latch	 output	 is
taken	as	the	odd/even	scan	line	indication	signal,	referred	to	as	Timing	by	the	ZX
Spectrum	display	generation	patent	 [ALTWASSERDC],	 so	 that	 the	 current	 scan
line	is	considered	even	when	it	is	high.

In	 addition,	 two	 chrominance	V	burst	 signals	 are	 generated,	Burst*	 and	 /Burst*.
When	Timing	is	high,	no	inversion	of	the	chrominance	V	will	be	performed,	and
therefore	/Burst*	is	held	high	for	the	duration	of	the	scan	line,	with	Burst*	going
high	during	the	colour	burst	period.	When	Timing	is	low,	chrominance	V	will	be
inverted,	and	 therefore	Burst*	 is	held	 low	for	 the	duration	of	 the	scan	 line,	with
/Burst*	going	low	during	the	colour	burst	period.	This	forces	the	chrominance	V
generator	 to	 create	 a	 positive	 going	 burst	 component	 for	 even	 scan	 lines,	 and	 a
negative	going	burst	 for	 odd	 scan	 lines.	Figure	16-11	 illustrates	 the	 state	 of	 the
burst	signals	for	odd	and	even	lines.

Timing RGB Burst	Output
1 Normal <	DC	offset
0 Inverted >	DC	offset

Table	16-5:	Effect	of	the	PAL	odd/even	Timing	signal	on	RGB	and	Burst

YUV	Control	Signals
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The	YUV	signal	generation	circuits	each	require	different	forms	of	the	red,	green
and	blue	colour	signals,	in	addition	to	various	timings	of	burst	signal.

The	RGB	 signals	 from	 the	 colour	 output	multiplexer	 are	 duplicated	 three	 times
and	 processed	 specifically	 for	 each	 of	 the	 Y,	 U	 and	 V	 generation	 circuits.	 In
particular,	 the	 circuits	 processing	 the	 RGB	 signals	 for	 the	 U	 and	 V	 generators
monitor	the	input	looking	for	the	colour	black.	When	present,	the	RGB	signals	are
forced	 high	 to	 represent	white	 before	 the	 relevant	RGB	 signals	 are	 inverted,	 as
required	by	their	intended	U	and	V	generator.

Referring	to	Figure	16-13,	the	/Y	generator	takes	the	RGB,	HL	and	/Sync	signals
straight	from	the	colour	output	multiplexer,	inverting	HL	before	it	is	passed	to	the
/HL	input	of	Figure	16-6.	These	signals	are	labelled	RedI,	GreenI,	BlueI	and	/HL.
Buffers	 are	 added	 to	 these	 signals	 to	 align	 them	with	 the	 slightly	 delayed	 input
signals	of	the	U	and	V	generators.

For	the	U	generator,	the	RGB	signals	from	the	colour	output	multiplexer	are	NOR
gated	 together	 to	 create	 the	 BLACKII	 signal	 that	 goes	 high	 whenever	 black	 is
being	 produced.	 This	 black	 signal	 is	NOR	gated	 back	with	 the	RGB	 signals	 to
force	 them	 to	 produce	 white	 when	 black	 is	 present,	 forming	 signals	 /RedII,
/GreenII	and	/BlueII.	/BlueII	is	inverted	to	give	BlueII	before	being	passed	to	the	U
generator.

The	Red,	Green	and	Blue	 signals	 intended	 for	 the	chrominance	V	generator	 are
first	 XNOR	 gated	 with	 the	 Timing	 signal	 to	 create	 an	 RGB	 signal	 set	 that	 is
inverted	for	even	numbered	scan	lines.	These	signals	are	then	NOR	gated	to	create
the	BLACK*	signal	that	goes	high	whenever	black	is	being	generated.	This	black
signal	 is	NOR	gated	 back	with	 the	XNOR	gated	RGB	 signals	 to	 force	 them	 to
produce	white	when	black	is	present,	forming	signals	/Red*,	/Green*	and	/Blue*.
/Red*	is	inverted	to	give	Red*	before	being	passed	to	the	V	generator.

199



Figure	16-13:	YUV	red,	green	and	blue	control	signals

NTSC	Chrominance	Modulation

NTSC	 chrominance	 modulation	 is	 very	 similar	 to	 that	 of	 PAL,	 and	 the	 ITU-R
BT.601	specification	of	YUV	used	 in	 the	ZX	Spectrum	 is	compatible	with	both
video	formats.
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Figure	16-14:	NTSC	vector	diagram	showing	UV	colour	space

The	 NTSC	 video	 standard	 defines	 a	 colour	 sub-carrier	 frequency	 for	 colour
transmission	 of	 approximately	 3.58MHz,	 and	 does	 not	 invert	 the	 phase	 of	 the
chrominance	 V	 component	 on	 alternate	 scan	 lines.	 Television	 pictures	 in	 this
format	also	contain	fewer	scan	lines	per	frame,	which,	at	64µs	per	line,	produce
60	frames	per	second.

The	 colour	 burst	 phase	 for	 an	NTSC	video	 signal	 is	 180	 degrees,	which	means
that	there	is	no	burst	component	of	the	chrominance	V	signal.	See	Figure	16-14.

201



The	6C011E	ULA	generates	an	NTSC	compatible	colour	signal	by	removing	the
burst	component	from	the	chrominance	V	signal,	and	disabling	the	inversion	of	V
on	odd	scan	lines.	It	does	this	by	ensuring	that	the	Timing	signal	is	always	high,
and	that	both	Burst*	and	/Burst*	are	held	inactive.

Figure	16-15	illustrates	the	simplest	design	change	that	achieves	this.	The	matrix
cells	for	 the	gated	D	transparent	 latch	are	interconnected	such	that	 the	Q	and	/Q
output	 signal	 tracks	 cross	 over	 one	 another,	making	 it	 a	 simple	modification	 to
join	them	together	and	disconnect	 them	from	latch.	This	combined	signal	would
then	be	pulled	high	by	one	of	the	unused	matrix	cell	load	resistors,	forcing	Burst*

to	be	low	and	both	/Burst*	and	Timing	to	be	high.

Figure	16-15:	NTSC	V	burst	and	control	signal	timing

LM1889	Modulation	Circuit

The	 circuit	 presented	 in	 Figure	 16-16	 shows	 a	 simplified	 configuration	 of	 the
LM1889	colour	sub-carrier	modulator	and	composite	video	generator	on	the	ZX
Spectrum	PCB,	in	this	case	for	the	issue	2	model.	It	is	provided	here	to	illustrate
how	 the	YUV	signals	 are	processed	and	combined	 to	 form	 the	composite	video
signal	passed	to	the	UM1233	RF	modulator.	The	LM1889	generates	a	PAL	colour
sub-carrier	 from	 a	 4.4336Mhz	 crystal,	 and	 an	 NTSC	 colour	 sub-carrier	 from	 a
3.579545MHz	crystal.

A	 voltage	 divider	 comprised	 of	 R40	 and	 R41	 sets	 the	 zero	 signal	 level	 for	 the
chrominance	modulator	to	4.8V.	U	or	V	signals	dropping	below	this	value	will	be
considered	 negative.	 Variable	 resistors	VR1	 and	VR2	 form	 part	 of	 two	 voltage
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dividers	that	allow	the	zero	signal	levels	of	the	ULA	U	and	V	chrominance	output
to	be	adjusted	to	4.8V.

Figure	16-16:	A	simplified	issue	2	composite	video	circuit

TR1	operates	in	a	collector-follower	mode,	and	therefore	inverts	and	amplifies	the
luminance	signal	/Y	before	passing	it	to	the	emitter-follower	output	stage,	TR2.

The	 modulated	 chroma	 sub-carrier	 is	 AC	 coupled	 to	 the	 output	 stage	 of	 the
modulator	driver,	superimposing	the	colour	signal	onto	the	reverted	luminance.

Later	issues	of	the	ZX	Spectrum	use	a	more	elaborate	U	and	V	chrominance	bias
circuit	 that	 does	 not	 require	 setting	 manually.	 A	 simplified	 issue	 2	 version	 is
presented	here	as	it	is	the	easiest	to	understand.
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Chapter	17

CPU	Memory	Access

The	ULA	generates	control	signals	for	the	ROM	and	lower	16K	dynamic	RAM	on
behalf	of	the	CPU,	and	combines	them	with	those	it	generates	while	performing	a
video	update.	External	circuitry	on	 the	ZX	Spectrum	circuit	board	generates	 the
memory	control	signals	for	the	(optional)	upper	32K	RAM .	See	Chapter	8,	The
Memory	Map,	for	further	details	on	the	ZX	Spectrum's	memory	arrangement,	and
the	section	called	Dynamic	RAM	in	Chapter	3,	The	Standard	Microcomputer,	for
an	overview	of	dynamic	memory	devices.

The	CPU	provides	a	16-bit	address	bus	that	must	be	multiplexed	before	it	can	be
connected	 to	 dynamic	 RAM.	 Dynamic	 RAM	 address	 bus	 multiplexing	 takes	 a
complete	set	of	signals	and	divides	them	in	two,	so	that	only	one	half	of	the	bus	is
available	at	any	one	time.	A	select	signal	determines	which	half	of	the	address	bus
the	multiplexer	is	outputting.

The	DRAM	and	multiplexer	control	signals	are	directly	influenced	by	the	state	of
the	Z80	memory	control	signals	and	address	bus,	and	a	full	understanding	of	these
is	necessary	to	understand	the	CPU	DRAM	interface.

Z80	CPU	Read	and	Write	Cycle

A	 Z80	 instruction	 consist	 of	 a	 number	 of	 M	 (machine)	 cycles,	 each	 of	 which
consist	of	between	four	and	six	clock	cycles,	or	T-states.	The	first	M-cycle,	or	M1,
is	the	instruction	fetch	cycle	during	which	the	Z80	loads	the	next	instruction	to	be
executed	 from	 memory.	 Further	 M-cycles	 may	 follow	 if	 it	 is	 a	 multi-byte	 Op
Code,	or	to	complete	the	memory	and	I/O	activity	required	by	the	instruction.

The	 Z80	 CPU	 provides	 a	 number	 of	 control	 signals	 through	 which	 it	 accesses
memory	 devices.	 The	 Z80	 was	 designed	 by	 Zilog	 Inc.	 in	 1976,	 a	 time	 when
dynamic	RAM	was	much	cheaper	than	static	RAM.	Zilog	engineers	deliberately
arranged	 for	 the	 Z80s	 signal	 timing	 to	 closely	 match	 those	 of	 dynamic	 RAM,
simplifying	the	interface	and	giving	it	the	edge	on	its	competitors.	It	even	went	as
far	 as	 to	 provide	 an	 on-chip	 refresh	 controller,	 removing	 the	 additional

1
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components	 required	 by	 other	 CPUs.	 See	 the	 section	 called	Dynamic	 RAM	 in
Chapter	3,	The	Standard	Microcomputer	for	further	information	on	dynamic	RAM
refresh.

Figure	17-1:	Z80	machine	and	time	state	relationship

Z80	Instruction	Fetch

The	Z80	control	signals	reflect	which	machine	cycle	and	T-state	is	currently	being
performed	by	the	processor.	For	the	M1	instruction	fetch	cycle,	the	control	signal
sequence	is	shown	in	Figure	17-2	[Z80UM].

Figure	17-2:	Z80	instruction	fetch
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The	Z80	begins	by	placing	the	address	of	the	required	Op	Code	on	the	address	bus
shortly	after	the	start	of	T-state	T1.	Half	a	clock	cycle	later,	midway	through	T1,
the	/MREQ	signal	becomes	active	indicating	that	the	address	on	the	bus	is	stable
enough	 to	 be	 read	 by	 the	memory,	 and	may	 be	 used	 directly	 as	 a	RAM	enable
signal.	At	 the	 same	 time,	 the	 /RD	 signal	 becomes	 active,	 indicating	 that	 a	 byte
should	be	fetched	and	placed	on	the	data	bus.	The	CPU	samples	its	data	bus	at	the
rising	clock	edge	at	 the	start	of	T3,	and	 then	 immediately	disables	both	 /MREQ
and	 /RD	 signals.	 The	 /M1	 signal	 is	 active	 during	T1	 and	T2	 to	 indicate	 that	 an
instruction	fetch	is	being	performed.

During	cycles	T3	and	T4	the	instruction	is	decoded	and	executed,	and	while	this	is
taking	place	no	other	operation	 can	occur;	 therefore	 the	CPU	buses	 and	control
signals	are	free,	and	the	CPU	uses	them	during	this	period	to	perform	a	memory
refresh.	A	seven	bit	refresh	address	is	placed	on	the	address	bus	at	the	start	of	T3
and	the	/RFSH	signal	goes	low,	indicating	that	all	dynamic	RAM	should	prepare
to	 perform	 a	 refresh	 read.	 Halfway	 through	 T3,	 when	 the	 address	 bus	 has
stabilised,	 /MREQ	goes	 low	to	 indicate	 that	 it	 is	safe	 to	use	 the	refresh	address.
/MREQ	is	removed	at	the	downward	clock	transition	of	T4,	followed	half	a	cycle
later	by	/RFSH.

Z80	Memory	Read	Or	Write

A	memory	read	or	write	cycle	is	normally	three	T-states	in	length.	A	read	cycle	is
similar	 to	 the	 instruction	 fetch	 cycle	 in	 that	 /MREQ	 indicates	when	 the	 address
bus	is	stable,	and	may	be	used	as	a	RAM	enable.	/RD	goes	low	at	the	same	time
as	/MREQ	and	indicates	that	the	memory	should	place	the	byte	to	be	read	on	the
data	bus.
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Figure	17-3:	Z80	Memory	read	and	write	cycles

In	a	write	cycle,	/MREQ	also	goes	low	once	the	address	bus	is	stable,	however	the
/WR	signal	becomes	active	halfway	through	T2	when	the	byte	on	the	data	bus	has
stabilised,	allowing	it	to	be	used	directly	as	a	memory	read/write	select.	The	/WR
signal	 is	 removed	 midway	 through	 T3,	 half	 a	 cycle	 before	 the	 values	 on	 the
address	 and	 data	 bus	 are	 removed,	 so	 that	 the	 CPU	 complies	 with	 the
specifications	of	most	memory	devices	[Z80UM].

Dynamic	RAM	Timing	Considerations

The	 DRAM	 signal	 timing	 for	 the	 µPD416	 [DS4116]	 DRAM	 used	 in	 the	 ZX
Spectrum	is	presented	in	Figure	17-4.
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Figure	17-4:	4116	dynamic	RAM	read	and	write	signal	timings

DRAM	Read

As	 with	 all	 DRAM	 operations,	 a	 read	 begins	 by	 presenting	 the	 DRAM	 row
address	of	the	location	to	be	read	to	the	DRAM	(usually	the	lower	half	of	the	full
address),	 and	 when	 stable	 activating	 the	 row	 address	 strobe,	 or	 /RAS.	 Once
sufficient	time	has	elapsed	for	the	DRAM	to	register	this	row	address,	the	column
address	 (usually	 the	 upper	 half	 of	 the	 full	 address)	 is	 presented	 to	 the	DRAM,
followed	shortly	after	by	activation	of	the	column	address	strobe,	or	/CAS.

For	the	µPD416	16K	DRAM	used	in	the	ZX	Spectrum,	after	/RAS	has	gone	low,
the	 row	 address	 must	 be	 held	 for	 20ns	 before	 the	 column	 address	 is	 supplied
(tRAH)	and	/CAS	is	taken	low	(tRCD).	The	column	address	must	be	held	for	45ns
(tCAH)	following	activation	of	the	/CAS.

Once	/CAS	has	gone	low,	/RAS	must	continue	to	be	held	for	at	least	100ns	(tRSH),
and	/CAS	held	for	a	minimum	of	100ns	(tCAS).	Data	will	be	available	no	sooner
than	150ns	(t150)	 from	 the	 start	of	 /RAS	or	100ns	 (t100)	 from	 the	 start	of	 /CAS,
which	ever	is	the	longest.
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DRAM	Write

As	with	the	read,	a	write	begins	by	presenting	the	DRAM	with	the	row	address	of
the	 location	 to	 be	 written,	 and	 when	 stable	 activating	 /RAS.	 The	 write	 enable
signal,	/WE,	must	be	enabled	before	/CAS	is	activated	to	put	the	DRAM	into	an
early-write	mode.	This	prevents	the	DRAM	interpreting	the	/CAS	as	a	read	access
and	mistakenly	placing	data	on	its	output.	After	the	row	address	has	been	held	for
20ns	(tRAH)	the	column	address	can	be	supplied	and	allowed	to	stabilised	before
/CAS	is	taken	low	to	store	the	value.	The	column	address	must	be	held	for	45ns
(tCAH)	during	 the	 /CAS,	which	must	be	 low	for	at	 least	100ns	 (tCAS),	and	/RAS
held	for	the	same	length	of	time	(tRSH).

16K	DRAM	CPU	Interface

The	ZX	Spectrum	transforms	fourteen	bits	of	the	16-bit	Z80	address	bus	into	a	7-
bit	 multiplexed	 DRAM	 bus	 with	 two	 74LS157	 multiplexer	 ICs	 on	 the	 ZX
Spectrum	PCB.	The	ULA	controls	which	half	of	the	multiplexed	CPU	address	bus
is	 presented	 to	 the	 DRAM	 in	 addition	 to	 providing	 the	 dynamic	 RAM	 control
signals	discussed	previously.

The	 ULA	 is	 connected	 to	 the	 DRAM	 through	 tri-state	 outputs	 so	 that	 it	 can
disconnect	 itself	 from	 the	DRAM	when	 the	 Z80	 has	 access.	 Similarly,	 the	 Z80
must	 be	 isolated	 from	 the	 DRAM	 when	 the	 ULA	 has	 access.	 Ideally,	 tri-state
buffers	would	have	also	been	used,	but	because	this	increased	the	number	of	ICs
and	PCB	space	required,	directly	translating	into	higher	cost,	Altwasser	borrowed
a	technique	first	used	in	the	ZX80,	and	isolated	the	Z80	buses	by	connecting	them
to	the	DRAM	via	330	ohm	resistors.	Since	the	ULA	generates	all	the	lower	16K
DRAM	control	signals,	it	is	able	to	take	the	steps	required	to	release	the	DRAM
address	bus	over	to	the	CPU	as	soon	as	it	finishes	its	video	byte	fetch,	and	put	its
own	address	bus	into	a	high	impedance	state.	This	bus	isolation	is	shown	in	Figure
17-5.

In	 the	 ZX	 Spectrum,	 the	 largest	 unit	 of	 memory	 common	 to	 its	 three	 memory
devices	of	ROM,	16K	RAM	and	32K	RAM	is	16K	or	16384	bytes.	This	range	of
addresses	may	be	represented	by	14	bits	(16384	=	214),	and	thus	requires	address
lines	 A13-A0	 to	 access	 all	 16384	 locations.	 The	 ZX	 Spectrum's	 full	 64K	 can
therefore	be	split	into	four	16K	blocks,	as	shown	by	Table	17-1.

Address A15 A14 Memory	Device
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0	-	16383 0 0 16K	ROM
16384	-	32767 0 1 16K	RAM
32768	-	49151 1 0 32K	RAM	-	First	16K	half
49152	-	65535 1 1 32K	RAM	-	Second	16K	half

Table	17-1:	ZX	Spectrum	memory	mapping	by	16K	block

The	two	remaining	CPU	address	bus	lines,	A14	and	A15,	determine	which	of	the
four	16K	blocks	is	being	accessed;	thus	by	considering	combinations	of	A14	and
A15,	the	appropriate	memory	device	is	selected.	Note	that	whenever	A15	is	1,	the
32K	memory	present	in	48K	machines	is	selected,	regardless	of	the	state	of	A14.
Instead	A14	is	used	by	the	32K	memory	chips	to	select	one	of	its	two	internal	16K
banks.

Figure	17-5:	ULA	and	CPU	bus	and	control	signal	connection	to	16K	DRAM
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ZX	Spectrum	ROM	Select

Altwasser	 followed	 the	Zilog	 specification	 and	 used	 the	CPU	 /MREQ	 signal	 as
the	primary	memory	enable,	decoding	the	address	bus	when	it	becomes	active	and
enabling	 the	ROM	 if	 the	CPU	 is	 addressing	 a	memory	 location	 between	 0	 and
16383.	For	these	locations,	address	lines	A14	and	A15	will	both	be	low	(Table	17-
1).

Like	most	memory	devices,	the	ROM	requires	an	active	low	enable	signal,	and	the
ULA	ROM	enable	logic	is	relatively	simple:

The	schematic	for	/ROMCS	is	presented	in	Figure	17-7	and	is	subsequently	fed	to
peripheral	cell	27,	where	it	is	conditioned	as	a	TTL	output	and	passed	to	pin	34.

CPU	RAS	Generation

When	 the	 processor	 accesses	 the	 16K	 DRAM	 by	 placing	 an	 address	 between
address	16384	and	32767	on	its	bus,	/MREQ	will	go	low	with	A15	low	and	A14
high,	 as	 given	 in	 Table	 17-1.	 These	 signals	 are	 decoded	 by	 the	 ULA	 into	 an
internal	 signal	 RAM16),	 which	 it	 uses	 to	 activate	 the	 generation	 of	 the	 other
DRAM	signals	necessary	to	provide	the	CPU	with	access	to	the	16K	DRAM:

The	engineers	at	Zilog	designed	the	Z80	so	that	/MREQ	could	be	used	directly	as
a	DRAM	RAS,	and	places	the	address	to	be	accessed	on	its	bus	half	a	clock	cycle
before	/MREQ,	allowing	142ns	for	the	address	to	stabilise,	given	a	3.5MHz	clock.
Since	 RAM16)	 is	 synchronous	 with	 /MREQ	 for	 addresses	 between	 16384	 and
32767,	the	ULA	uses	it	as	the	CPU	/RAS	for	the	16K	DRAM.

The	ULA	has	 a	 single	 /RAS	 pin	 through	which	 it	 sends	 a	 combined	 video	 and
CPU	 RAS	 to	 the	 DRAM,	 and	 this	 combined	 signal	 is	 created	 by	 NOR	 gating
RAM16	 and	 the	 video	 RAS	 signal	 (described	 in	 the	 section	 called	 RAS
Generation	in	Chapter	13,	Video	Memory	Access):
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This	signal	is	routed	to	peripheral	cell	26,	where	it	is	conditioned	as	a	TTL	output
and	connected	to	pin	35.	See	Chapter	22,	Signal	Interfacing.

Figure	17-6:	CPU,	RAS	and	CAS	related	timing

CPU	CAS	Generation

Zilog	 engineered	 the	 Z80	 so	 that	 the	 /RD	 and	 /WR	 signals	 can	 drive	 the
generation	 of	 the	 DRAM	 column	 address	 strobe	 with	 little	 additional	 logic.
Generation	 of	 the	CPUCAS	 signal	 is	 controlled	 by	 the	 internal	 RAM16	 signal,
which	is	active	when	the	CPU	is	addressing	a	location	between	16384	and	32767.
RAM16	can	therefore	be	combined	with	/RD	and	/WR	to	generate	a	CAS	signal
whenever	the	CPU	performs	a	read	or	write	to	the	16K	DRAM.
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To	comply	with	the	specifications	of	the	µPD416	150ns	dynamic	RAM	[DS4116],
a	period	of	 tRCD	must	pass	between	 the	activation	of	RAS	and	 the	activation	of
CAS.	When	 the	CPU	 is	performing	a	write	operation,	 /WR	goes	 low	one	clock
cycle	after	/MREQ,	and	as	a	result	CPUCAS	defined	by	the	equation	above	will
go	low	285ns	after	CPURAS,	given	the	3.5MHz	CPU	clock.	As	this	exceeds	the
minimum	tRCD	of	20ns	 required	by	 the	DRAM,	no	additional	delay	needs	 to	be
added.	However,	when	performing	a	read,	the	CPU	/RD	line	goes	low	at	the	same
time	as	 /MREQ,	which	 results	 in	CPUCAS	and	CPURAS	also	going	 low	at	 the
same	time;	therefore	the	generation	of	CPUCAS	must	include	a	delay	of	at	least
tRCD	(20ns)	to	avoid	this	situation.

The	 ULA	 implementation	 of	 CPUCAS	 incorporates	 a	 number	 of	 dummy	 logic
gates	 that	 introduce	 some	 signal	delay.	The	 following	equations	 and	description
assume	an	10ns	gate	propagation	delay,	and	should	be	referred	to	Figure	17-7.

Typically	with	DRAM	control	circuits,	the	generated	CAS	signal	is	delayed	twice.
First	to	produce	a	multiplexer	select	signal	(MUXSEL)	that	switches	the	bus	over
to	 the	column	address	some	 time	after	 /RAS	has	gone	 low,	and	second	 to	allow
the	column	address	to	settle	before	the	CAS	is	activated.

Figure	17-7:	CPU	memory	decoding,	/ROMCS,	/RAS	and	/CAS	interfaces

First	RAM16	is	delayed	and	inverted	by	three	gates	before	it	is	NOR-gated	with	a
combined	 /RDWR	 signal,	 creating	 the	 MUXSEL	 signal	 that	 is	 delayed	 with
respect	to	RAM16,	and	therefore	CPURAS	by	approximately	30ns:
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It	 should	be	noted	 that	 this	 first	delay	only	 takes	effect	during	a	 read	operation,
where	 /RD	 goes	 low	with	 RAM16.	During	 a	write,	 /WR	 goes	 low	 285ns	 after
RAM16	 and	 overrides	 its	 delay;	 however	 285ns	 is	 more	 than	 enough	 time
between	/RAS	and	MUXSEL	for	the	DRAM	to	register	the	row	address.

Interestingly	this	MUXSEL	signal	is	not	used	by	the	ULA,	presumably	because	of
the	limited	number	of	IC	pins	available,	and	the	multiplexers	on	the	ZX	Spectrum
PCB	instead	make	use	of	the	/RAS	signal	as	their	select.

MUXSEL	 is	 further	 delayed	 by	 two	 inverters,	 producing	 the	 CPUCAS	 signal
which	is	combined	with	the	two	video	CAS	signals	VidCASAC	and	VidCASBD,	to
create	a	combined	/comCAS	signal	(this	combination	is	also	shown	in	the	section
called	CAS	Generation	in	Chapter	13,	Video	Memory	Access):

This	 three	 input	NOR	gate	 imparts	 some	delay	 to	 the	 signal	 as	well	 as	 the	 two
inverters	that	follow	it,	delaying	the	/compCAS	signal	by	a	further	30ns	to	create
the	final	/CAS:

The	overall	delay	applied	to	/CAS	with	respect	to	RAM16	is	approximately	90ns.
/RAS	 has	 a	 10ns	 delay	 with	 respect	 to	 the	 same	 signal,	 giving	 a	 difference	 of
approximately	 80ns	 between	 /RAS	 and	 /CAS.	 The	 /CAS	 signal	 is	 routed	 to
peripheral	cell	19,	where	it	is	conditioned	as	a	TTL	output	and	connected	to	pin	1.
See	the	section	called	RAS	Generation	in	Chapter	13,	Video	Memory	Access):

Note	 that	 the	 interface	 circuits	 contribute	 to	 the	 overall	 signal	 delay	 measured
between	the	ULA	pins.	For	instance,	a	large	part	of	the	delay	between	/MREQ	and
/RAS	can	be	attributed	 to	 the	 /MREQ	input	and	 the	 /RAS	output	delays,	adding
between	 20	 and	 30ns	 onto	 the	 /MREQ	 to	 /RAS	 timing.	 Figure	17-6	 shows	 the
CPU,	RAS	and	CAS	related	timings,	measured	on	a	6C001E-7	ULA.	Of	the	47ns
delay	measured	between	/MREQ	and	/RAS,	approximately	20ns	of	this	is	due	to
delays	in	the	/RAS	generation	circuit	shown	in	Figure	17-7,	and	the	remainder	due
to	interface	delay.
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Memory	Write	Control

In	addition	to	controlling	CPU	access	to	the	lower	16K	of	RAM,	the	ULA	must
make	sure	that	the	CPU	write	enable	signal,	/WR,	is	not	applied	to	the	RAM	when
the	CPU	 is	not,	 or	 is	 prevented	 from,	 accessing	 it.	This	 is	 to	guarantee	 that	 the
RAM	does	not	interpret	a	video	display	fetch	as	being	a	write	operation,	whenever
the	CPU	activates	its	/WR	signal.

To	do	this	the	CPU	/WR	signal	is	fed	to	the	ULA	where	it	is	gated	internally	with
/RAM16	to	produce	a	new	write	enable	signal,	/WE.	The	delayed	RAM16	signal
is	used	merely	for	convenience	in	the	interconnect	routing,	and	has	no	effect	since
CPU	/WR	goes	low	after	 the	delay	has	past.	This	 /WE	signal	goes	low	with	the
CPU	/WR	line	when	the	CPU	has	access	to	the	lower	16K	of	RAM,	and	is	held
high	at	all	other	times.

l.	 Upgrading	 a	 16K	 issue	 1	 machine	 to	 48K	 required	 a	 daughter	 board	 to	 be
plugged	into	the	main	circuit	board,	a	16K	issue	2	machine	required	eight	memory
and	four	logic	ICs	to	be	plugged	into	the	PCB	sockets	provided.
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Chapter	18

CPU	Clock	and	Contention

The	ZX	Spectrum	Z80	CPU	 is	driven	by	a	3.5MHz	clock,	derived	by	 the	ULA
from	 its	 internal	 counter	 bit,	 C0.	 This	 frequency	 was	 chosen	 as	 it	 was	 easily
obtained	 by	 dividing	 the	 14MHz	 ULA	 master	 clock	 by	 four,	 and	 allowed	 the
4MHz	Z80A	CPU	to	run	at	almost	full	speed.

The	Z80	 requires	 an	 accurate,	 square	 clock	 to	 control	 and	 sequence	 its	 internal
state	machine.	 A	 non-square	 clock	 causes	 its	 various	 circuits	 to	 each	 switch	 at
unspecified	points	in	the	clock	cycle,	leading	to	erratic	behaviour.	Consequently,
to	guarantee	 that	 the	Z80	 switches	 accurately,	 the	 clock	 signal	generated	by	 the
ULA	is	designed	to	receive	further	buffering	and	shaping	before	being	fed	to	the
Z80;	therefore	an	inverted	clock	is	produced	which	is	subsequently	amplified	and
re-inverted	by	a	 transistor	buffer	on	the	ZX	Spectrum	circuit	board,	producing	a
clean	square	wave	signal	that	rises	and	falls	rapidly	between	zero	and	five	volts.

Memory	Contention

As	discussed	in	Chapter	13,	Video	Memory	Access	and	Chapter	17,	CPU	Memory
Access,	 both	 the	 Z80	 and	 video	 controller	 require	 access	 to	 the	 lower	 16K	 of
RAM.	The	RAM	can	only	perform	a	single	operation	at	a	time,	and	as	the	display
cannot	be	 interrupted,	 the	video	controller	 takes	precedence.	This	means	 that	 to
avoid	contention	the	Z80	must	be	prevented	from	accessing	the	memory	while	the
video	controller	is	doing	so.

The	first	step	in	determining	whether	memory	contention	will	occur	is	to	identify
a	hazardous	address	appearing	on	the	Z80	address	bus	while	the	video	controller
is	accessing	the	lower	16K	RAM.	Any	Z80	address	falling	between	0x4000	and
0x7FFF	(16384	and	32767	decimal),	inclusive,	is	an	access	to	the	video	RAM	and
may	conflict	with	the	video	controller,	see	Chapter	17,	CPU	Memory	Access.	On
detecting	an	address	in	this	range,	the	video	controller	must	pause	the	Z80	until	it
has	finished	its	video	read	operation.

There	are	two	methods	for	pausing	the	Z80	described	by	the	data	sheet	[Z80UM],
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but	 Altwasser	 found	 them	 to	 be	 unsuitable	 when	 he	 considered	 the	 additional
signals	 required	 to	 control	 them	 and	 the	 precise	 timing	 demands	 of	 the	 video
controller.	Altwasser	was	forced,	therefore,	to	invent	a	third	method	which	could
be	synchronised	to	the	video	controller	and	which	did	not	require	any	additional
control	 signals	 and	 ULA	 pins	 to	 interface	 to	 the	 Z80.	 All	 three	 methods	 are
described	below.

Z80	WAIT	states

The	Z80	provides	a	special	control	pin,	/WAIT,	to	assist	with	interfacing	to	slow
memory	devices.	The	Z80	samples	this	pin	at	the	falling	edge	of	the	clock	during
the	 second	T-state	 of	 an	 instruction	 cycle,	 T2.	 If	 it	 is	 found	 to	 be	 low,	 the	Z80
extends	 the	 second	T-state	 by	 one	 clock	 cycle.	 The	 /WAIT	 pin	 is	 then	 sampled
again	and	the	process	repeated	until	/WAIT	has	returned	to	a	high	condition.	Once
the	wait	period	 is	over,	 the	Z80	completes	 the	second	T-state	and	proceeds	with
the	third,	where	data	is	read	from	or	written	to	the	memory.	See	Figure	18-1.

The	lower	16K	of	RAM	can	be	treated	as	a	slow	memory	device	while	the	video
controller	 is	 reading	 display	 information,	 and	 therefore	 this	 mechanism	 for
delaying	 the	 Z80	memory	 access	would	 satisfy	 the	 requirements	 for	 contention
resolution.

Figure	18-1:	Z80	CPU	memory	operation	timing

However,	closer	examination	of	the	Z80	signal	timing	reveals	that	the	address	bus
and	control	signals	/MREQ,	/RD	and	/WR,	are	established	during	T1,	one	T-state
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before	the	/WAIT	control	pin	is	sampled.	This	would	be	an	issue	for	the	ULA	as	it
has	 no	 internal	 override	 of	 the	 CPU	 RAS	 and	 CAS	 generation	 discussed	 in
Chapter	17,	CPU	Memory	Access .	As	soon	as	the	Z80	activates	the	/MREQ	line
with	 the	 address	 bus	 holding	 a	 value	 between	 0x4000	 and	 0x7FFF,	 the	 ULA
generates	a	/RAS	signal	on	behalf	of	the	Z80.	This	would	interfere	with	the	/RAS
signal	that	the	ULA	video	controller	may	be	generating	and	result	in	an	incorrect
display	update.	Had	 it	 not	 been	 for	 the	 lack	of	 spare	 pins	 on	 the	ULA	 to	 allow
connection	 of	 the	 /WAIT	 signal,	 an	 override	 of	 the	CPU	RAS-CAS	 production
could	 have	 been	 implemented	with	what	 little	 spare	 logic	 remains	 in	 the	ULA,
allowing	the	/WAIT	mechanism	to	be	used.

Z80	Bus	Request

The	second	mechanism	provided	by	the	Z80	to	allow	external	devices	to	pause	its
operation	is	called	a	bus	request.	The	/BUSREQ	pin	is	sampled	by	the	Z80	at	the
rising	 edge	 of	 the	 clock	 at	 the	 start	 of	 the	 last	 T-state	 of	 a	machine	 cycle,	 see
Figure	18-2.	If	it	is	found	to	be	low,	then	at	the	next	rising	edge	of	the	CPU	clock
the	Z80	puts	 its	address	bus,	data	bus	and	control	signals	 into	a	high	impedance
state,	 and	 at	 the	 rising	 edge	 of	 each	 subsequent	 clock	 period,	 /BUSREQ	 is
sampled	 again.	This	 continues	 until	 /BUSREQ	 returns	 high,	when,	 at	 the	 rising
edge	of	 the	following	clock	period,	 the	buses	and	control	signals	are	returned	to
normal.	This	allows	external	devices	to	stop	the	Z80	and	take	control	of	its	buses
for	as	long	as	required.

Figure	18-2:	Z80	CPU	bus	request	timing

Even	though	this	mechanism	detaches	the	Z80	from	its	buses	and	control	signals,

1
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closer	inspection	of	the	timing	involved	reveals	that	since	the	/BUSREQ	sampling
occurs	during	the	last	T-state	of	a	machine	cycle,	this	takes	place	during	T4	of	an
instruction	fetch,	which	is	after	the	memory	read	has	been	completed.	This	means
that	 instruction	 fetches	 cannot	 be	 interrupted	 using	 this	 method,	 nor	 can	 the
activation	of	the	Z80	memory	control	signals	be	prevented	prior	to	the	bus	request
being	detected	and	accepted.

This	method	of	temporarily	suspending	the	Z80	would	therefore	interfere	with	the
video	generation	in	a	similar	way	to	the	wait	state	approach	described	previously,
and	would	again	require	a	dedicated	ULA	pin	to	pass	the	bus	request	to	the	Z80,
when	all	available	pins	were	committed	to	other	tasks.

Clock	Interruption

The	method	of	pausing	the	Z80	that	was	designed	by	Altwasser	and	employed	in
the	ULA,	is	at	once	simple,	elegant	and	clever.	It	does	not	require	a	dedicated	pin
of	the	ULA	or	the	additional	complication	of	a	CPU	RAS-CAS	override.	It	works
by	stopping	the	clock	signal	it	sends	to	the	Z80	at	strategic	T-states,	whenever	it
detects	a	contention	condition	is	about	to	occur.	The	technique	exploits	the	timing
of	 the	 Z80	 clock	 and	 memory	 control	 signals,	 and	 demonstrates	 the	 in	 depth
understanding	the	ZX	Spectrum	designers	had	of	the	Z80.

What	makes	 this	method	of	 stopping	 the	Z80	possible	 is	 that	 the	address	of	 the
memory	 location	 to	be	accessed	 is	placed	on	 the	address	bus	half	 a	 clock	cycle
before	 the	 memory	 control	 signals	 are	 activated.	 See	 Figure	 18-1.	 The	 Z80
introduces	 this	 delay	 to	 ensure	 that	 the	 address	 on	 the	bus	has	 stabilised	before
any	 device	 attempts	 to	 read	 it.	 The	ULA	monitors	 the	 address	 bus	 and	when	 it
detects	a	CPU	address	between	16384	and	32767	while	it	is	reading	video	bytes,	it
immediately	holds	the	Z80	clock	high.	Because	this	happens	during	the	first	half
of	 state	T1	 the	 downward	 clock	 transition	 does	 not	 occur	 and	 the	Z80	memory
control	 signals	 remain	 inactive	 as	 a	 result.	 Consequently	 the	 CPU	 RAS-CAS
signals	 are	 not	 generated	 by	 the	 ULA,	 and	 no	 interference	 with	 the	 video
generation	occurs.

By	holding	 the	 clock	 high	 at	 the	 start	 of	 the	memory	 access	 state	T1,	 the	ULA
lengthens	 the	 T-state	 until	 the	 video	 controller	 has	 completed	 its	memory	 fetch
sequence.	The	Z80	 is	unaware	 that	 this	 is	happening,	 as	 its	only	 source	of	 time
reference	is	the	clock.	It	is	during	T2	and	T3	that	a	memory	write	takes	place,	or
T3	alone	for	a	memory	read;	therefore	these	T-states	are	never	interrupted,	and	the
ULA	allows	sufficient	time	after	releasing	T1,	for	T-states	T2	and	T3	 to	complete
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before	 the	 video	 controller	 requires	 memory	 access	 again.	 Because	 the	 master
counter	 is	 negative	 edge	 triggered,	 ULA	 signals	 derived	 from	 it	 are	 usually
aligned	to	these	negative	edges.	In	contrast,	each	Z80	clock	cycle	starts	with	the
positive	edge	of	its	clock,	which	is	derived	from	C0;	therefore	ULA	signals	will
generally	transition	halfway	through	a	processor	T-state.
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Figure	18-3:	Effect	of	clock	wait	on	three	contended	memory	read	operations

The	video	fetch	takes	four	out	of	eight	C0	cycles	to	complete	a	read,	spanning	five
CPU	 T-states,	 illustrated	 by	 Figure	 18-3.	 All	 Z80	 memory	 read	 and	 write
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operations	 complete	 in	 three	 T-states 	 and	 this	 was	 an	 important	 consideration
when	 deciding	 how	 many	 T-states	 for	 which	 to	 hold	 the	 Z80	 clock	 during	 a
memory	access	conflict.

Clock	Wait	Generation

As	discussed	previously,	T1	is	the	only	candidate	suitable	for	T-state	lengthening
because	only	here	is	the	address	bus	enabled	before	any	control	signals.	The	two
T-states	that	follow	are	always	allowed	to	proceed	without	interruption,	and	so	the
period	during	which	T1	is	checked	and	possibly	held	(clock	wait)	must	begin	two
T-states	before	the	start	of	the	video	fetch.	This	prevents	T1	from	executing	within
two	T-states	of	the	start	of	the	video	fetch,	leaving	time	for	T2	and	T3	to	complete
before	 the	 fetch	 begins.	 This	 gives	 a	 total	 wait	 period	 of	 six	 cycles,	 as
demonstrated	 in	 Figure	 18-3,	 which	 shows	 a	 memory	 access	 starting	 at	 three
consecutive	 cycles	 of	 C0	 and	 the	 effect	 of	 the	 clock	 wait	 period	 on	 their
execution.	Again,	note	that	the	CPU	T-states	and	signals	are	offset	from	the	ULA
signals	by	half	a	C0	cycle.

The	memory	contention	clock	wait	signal	is	derived	from	C2	and	C3,	as	follows:

The	 signal	 timing	 is	 critical	 here,	 because	 the	 clock	wait	 transitions	 are	 aligned
with	the	negative	going	edge	of	C0.	Any	delay	of	the	clock	wait	signal	such	that	it
lags	behind	C0	will	cause	Z80	stability	problems,	since	CPUCLK	will	be	allowed
to	 go	 low	 before	 the	 wait	 signal	 is	 able	 to	 pull	 it	 back	 high	 and	 hold	 it	 there,
causing	a	momentary	low	processor	clock	spike.

T1	Start	Detection

During	a	memory	operation	the	Z80	address	bus	contains	a	valid	address	from	the
start	of	T1	through	T2	and	T3 .	The	ULA	contention	controller	monitors	A14	and
A15	of	the	address	bus,	and	if	an	access	is	made	to	the	lower	16K	RAM	during
T1,	the	clock	wait	signal	is	applied	to	the	Z80	clock	to	hold	it	high.	As	the	clock
wait	signal	is	active	only	when	a	video	fetch	is	about	to	occur,	or	is	in	progress,
the	Z80	operation	is	suspended	only	when	a	contention	condition	exists.

2
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Determining	 that	 T-state	 T1	 has	 begun	 can	 only	 be	 achieved	 by	 looking	 for	 a
specific	address,	as	the	processor	will	have	only	activated	the	address	bus	at	this
point.	 Preventing	 contention	 checking	 outside	 of	 this	 T-state	 is	 achieved	 as
follows.	 /MREQ	 goes	 low	 halfway	 through	 the	 first	 T-state,	 at	 the	 downward
transition	of	the	clock,	and	by	delaying	it	until	the	clock	goes	high	at	the	end	of
the	T-state,	 an	 intermediate	 signal	MREQT23	 is	 produced	 that	 goes	 high	 for	T-
states	T2	and	T3,	disabling	contention	checking.

I/O	Contention

In	addition	to	memory	contention	between	the	video	controller	and	the	Z80,	it	is
also	possible	for	the	ULA	and	the	Z80	to	be	in	contention	when	the	Z80	requests
access	 to	 the	 ULA	 I/O	 port.	 See	 Chapter	 19,	 Input-Output	 Devices.	 The	 ULA
interfaces	to	external	devices	such	as	the	Z80	and	memory	through	a	single	data
bus	 and	 set	 of	 control	 signals.	 If	 the	 Z80	 requires	 access	 to	 the	ULA	 I/O	 port
while	 a	 video	 fetch	 is	 underway,	 the	 ULA	 data	 bus	 will	 be	 committed	 to
transferring	video	data	and	will	be	unable	to	satisfy	the	I/O	request.

To	avoid	a	conflict,	the	ULA	holds	the	Z80	clock	high	whenever	it	detects	the	Z80
attempting	to	access	its	I/O	port	during	a	video	fetch	sequence.
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Figure	18-4:	CPU	I/O	read	and	write	cycles

The	 ULA	 I/O	 port	 is	 officially	 documented	 as	 being	 at	 address	 0x00FE	 (254
decimal),	 however	 this	 is	 not	 technically	 accurate	 as	 Sinclair	 machines
implemented	 partial	 decoding	 of	 the	 address	 bus	 for	 I/O	 ports	 to	 reduce
complexity.	In	fact	the	ZX	Spectrum	decodes	the	single	address	line	A0	which,	if
low	during	an	 I/O	 request,	 signifies	 an	access	 to	 the	ULA	I/O	port.	This	means
that	 any	 port	 address	 that	 has	A0	 low	 is	 interpreted	 as	 a	ULA	port	 access.	 See
Chapter	 19,	 Input-Output	 Devices	 for	 further	 details	 of	 this	 I/O	 port	 address
decoding.

In	 general,	 memory	 operations	 take	 three	 T-states	 to	 complete,	 whereas	 I/O
operations	 take	 four.	The	 first	T-state	places	 the	 I/O	address	on	 the	address	bus,
the	 second	 activates	 the	 control	 signals	 /IORQ	 and	 /RD	 or	 /WR,	 the	 third	 is	 a
special	 T-state	 TW	 where	 the	 /WAIT	 pin	 is	 sampled,	 and	 the	 fourth,	 officially
labelled	T3,	is	where	the	I/O	operation	is	performed.

224



Figure	18-5:	Effect	of	clock	wait	on	four	contended	I/O	read	operations

The	ULA	cannot	use	the	address	bus	alone	to	determine	whether	an	I/O	access	is
being	made	 by	 the	 Z80,	 as	 an	 I/O	 address	 is	 indistinguishable	 from	 a	memory
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address	 during	 the	 first	 T-state	 of	 a	 memory	 operation.	 Thankfully,	 unlike	 the
memory	control	signals,	there	are	no	adverse	effects	from	having	the	I/O	control
signals	active	during	a	video	fetch,	allowing	the	ULA	to	safely	wait	for	/IOREQ	to
go	low	at	 the	start	of	I/O	T-state	T2	before	it	decides	whether	or	not	 to	hold	the
Z80	clock.

I/O	T-state	T2	 is	 therefore	 the	 first	 detectable	 T-state	 prior	 to	 the	 I/O	 operation
being	carried	out,	and	hence	the	T-state	that	the	ULA	lengthens	if	it	detects	a	ULA
I/O	port	access	during	a	video	fetch.	The	remaining	two	T-states	of	the	machine
cycle	 are	 allowed	 to	 continue	 uninterrupted,	 with	 the	 I/O	 operation	 being
performed	 by	 the	 final	 T-state.	 This	 sequence	 mirrors	 that	 of	 the	 memory
contention	model,	with	the	wait	period	starting	two	T-states	before	the	video	fetch
begins.	This	 prevents	T2	 from	 executing	within	 two	T-states	 of	 the	 video	 fetch,
and	allows	time	for	TW	and	T3	to	complete	uninterrupted.

Using	the	same	clock	wait	signal	as	memory	contention	does	not	give	the	optimal
contention	 timing	 for	 I/O	 operations,	 as	 the	 clock	 will	 be	 held	 longer	 than
necessary.	 Altwasser's	 efforts	 to	 reduce	 this	 period	 is	 described	 in	 the	 section
called	 The	 issue	 1	 5C102	 ULA,	 and	 the	 timing	 given	 in	 Figure	 18-5	 is	 that
ultimately	implemented	by	all	pre-Amstrad	Spectrum	models.

I/O	T2	Detection

The	start	of	 I/O	T-state	T2	 is	 indicated	by	 the	Z80	signal	 /IORQ	going	 low,	and
ends	at	the	next	positive	edge	of	the	CPU	clock.	The	ULA	uses	the	/IOREQ	signal
(the	 result	 of	OR	gating	 /IORQ	with	A0)	 to	 indicate	 that	 the	T2	 of	 a	ULA	port
access	has	begun,	and	/IOREQ	delayed	until	the	next	rising	edge	of	the	CPU	clock
to	indicate	that	T2	has	finished	and	states	TW	and	T3	are	in	progress.

This	delayed	 signal,	named	 /IOREQTW3,	 is	 active	only	during	 the	 final	 two	T-
states	of	a	ULA	port	access,	during	which	time	the	Z80	has	uninterrupted	access
to	 the	ULA	I/O	port.	 It	 is	 therefore	used	by	 the	ULA	to	activate	 its	 internal	 I/O
port	handling	circuitry,	see	Chapter	19,	Input-Output	Devices	for	further	details.

Due	 to	 its	 reliance	 on	 /IOREQ	 to	 differentiate	 between	 memory	 and	 I/O
contention,	 and	 because	 the	 address	 bus	 becomes	 active	 at	 the	 start	 of	 T1,	 the
ULA	will	enter	a	contended	mode	at	 the	start	of	T1	when	an	even	(A0	low)	I/O
address	 between	 0x4000	 and	 0x7FFF	 is	 accessed.	When	 an	 odd	 (A0	 high)	 I/O
address	in	the	same	range	is	accessed,	I/O	contention	is	applied	for	the	entire	I/O
instruction	cycle,	as	/IOREQ	(being	the	logical	OR	of	A0	and	/IORQ)	will	never
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go	low	to	trigger	its	cancellation	at	the	end	of	T2.

Circuit	Description

A	number	of	signals	are	brought	together	to	control	the	Z80	clock	during	times	of
memory	and	I/O	contention	between	the	video	controller	and	the	Z80:

1.	 C0:	The	3.5MHz	clock	that	forms	the	basis	of	the	Z80	clock.
2.	 Border:	This	signal	disables	contention	detection	while	the	video	controller

is	displaying	the	border,	and	therefore	not	performing	a	video	update.
3.	 A14	and	A15:	These	two	Z80	address	bus	signals	indicate,	among	other

things,	which	16K	block	of	memory	the	Z80	wants	to	access.	See	Chapter
8,	The	Memory	Map).	The	address	bus	would	normally	be	considered	along
with	/MREQ	when	decoding	memory	accesses.

4.	 /MREQ:	This	signal	indicates	that	the	Z80	is	performing	a	memory
operation.

5.	 /IOREQ:	This	signal	indicates	that	the	Z80	is	accessing	the	ULA	I/O	port,
being	the	result	of	OR	gating	/IORQ	with	A0.

6.	 C2	and	C3:	When	combined,	these	two	master	counter	signals	indicate	the
periods	during	a	scan	line	that	the	video	controller	might	require	access	to
the	video	RAM.	They	ultimately	determine	the	length	of	the	wait	signal	that
holds	the	Z80	clock	high	when	the	control	circuit	detects	a	contention
condition.
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Figure	18-6:	CPU	clock	output	driver	at	peripheral	cell	28,	pin	32

To	 produce	 the	 Z80	 clock	 the	 ZX	 Spectrum	 takes	 /C0,	 oscillating	 at	 3.5MHz,
inverts	 it	 and	 gates	 it	 with	 a	 clock	 control	 signal	 produced	 by	 the	 contention
controller.	The	 resulting	 clock	 signal	 is	 inverted	 and	 passed	 to	 a	 peripheral	 cell
where	it	is	amplified	to	a	peak	level	of	5V	by	a	transistor	in	a	collector-follower
configuration.	 This	 transistor	 also	 inverts	 the	 signal	 back	 to	 a	 negative	 phase
before	it	is	passed	out	of	the	chip	through	ULA	pin	32	(Figure	18-6).

The	contention	controller	 is	divided	into	two	parts:	one	that	detects	and	controls
memory	contention,	the	other	that	detects	and	controls	I/O	contention.	These	two
processes	combine	 to	form	the	clock	control	signal	 that	gates	C0	to	produce	 the
Z80	clock.

The	 contention	 controller	 has	 been	 the	 subject	 of	 several	 revisions	 during	 the
course	of	the	ZX	Spectrum's	manufacture,	as	early	ULA	versions	contained	subtle
design	 errors	 that	 affected	 the	 reliability	 of	 the	 machine.	 The	 operation	 of	 the
contention	controller	in	each	ULA	version	is	discussed	below.

The	issue	1	5C102	ULA

The	 issue	1	memory	contention	handler	 considers	A14	and	A15,	 looking	 for	 an
address	between	0x4000	and	0x7FFF,	and	delays	/MREQ	until	 the	end	of	the	T-
state	by	passing	it	through	a	gated	D	transparent	latch	clocked	by	the	CPU	clock.
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During	Z80	memory	cycles	this	delayed	signal,	designated	MREQT23,	is	high	for
T-states	T2	and	T3,	but	low	for	T1.	The	contention	circuit	detects	 that	 the	Z80	is
executing	the	first	T-state	of	a	contended	memory	cycle	by	waiting	for	A14	to	go
high,	with	A15	and	MREQT23	low.

The	 contention	 handler	 combines	 C2	 and	 C3	 to	 produce	 the	 clock	 wait	 signal
/MWAIT,	 which	 defines	 the	 period	 during	 which	 contention	 could	 occur,
discussed	in	the	section	called	Clock	Wait	Generation.	While	 this	signal	 is	high,
the	clock	control	 signal	 from	 the	contention	handler	 is	 forced	 low	and	switched
off.	 Therefore,	 whenever	 a	 contended	 T-state	 T2	 is	 detected,	 the	 output	 of	 the
contention	handler	is	governed	by	/MWAIT.

Also	considered	 is	 the	Border	 signal,	which	 indicates	when	 the	video	controller
does	 not	 require	 access	 to	 the	 video	 memory	 and	 contention	 checking	 can	 be
disabled.	 When	 high,	 the	 Border	 signal	 forces	 the	 clock	 control	 signal	 low,
allowing	C0	to	pass	uninterrupted	through	the	output	NOR	gate	as	CPUCLK.

Lastly	/CPUCLK	is	fed	back	into	the	contention	circuit	 to	hold	it	 inactive	while
CPUCLK	 is	 low.	 This	 avoids	 glitches	 in	 the	 clock	 output	 by	 only	 allowing
CPUCLK	to	be	held	high	from	an	already	high	state,	as	discussed	in	the	section
called	Clock	Wait	Generation.

The	I/O	contention	handler	delays	changes	to	/IOREQ	until	the	end	of	the	T-state
by	passing	it	through	a	gated	D	transparent	latch	clocked	by	the	CPU	clock.	This
creates	the	IOREQTW3	signal,	which	is	high	during	TW	and	T3	of	an	I/O	cycle.
By	bringing	 together	 /IOREQ,	which	goes	 low	during	T2,	 and	 IOREQTW3,	 the
contention	 controller	 detects	 the	 start	 and	 end	 of	 I/O	 T-state	 T2,	 allowing	 it	 to
activate	the	clock	control	as	required.	Like	memory	contention	this	control	signal
is	forced	low,	and	thus	deactivated,	while	Border	is	high	or	CPUCLK	low.
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Figure	18-7:	Issue	1	5C102	ULA	contention	handler

The	5C102	ULA	wait	timing	for	I/O	contention	is	different	from	that	of	memory
contention,	and	is	given	by	the	following	simplified	expression:

This	 I/O	Clock	wait	 signal	 is	active	 for	a	 total	of	 five	C0	cycles	 in	every	eight,
while	the	CPU	is	executing	contended	ULA	I/O	operations,	one	cycle	less	than	for
memory	contention.	It	should	be	noted	that	the	clock	wait	is	released	for	one	cycle
following	the	first	two	contended	periods	of	C0.	This	incorrectly	allows	any	I/O
instruction	 being	 held	 to	 continue	 execution	 from	 that	 point,	 resulting	 in	 a	 data
bus	collision	between	the	second	and	third	byte	fetches	with	the	I/O	transfer	of	T3,
see	Figure	18-8.
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Figure	18-8:	ULA	5C102	I/O	clock	wait	and	its	effect	on	I/O	read	operations

Because	 the	ULA	has	direct	access	 to	 the	memory,	and	 the	CPU	is	buffered	via
resistors,	 this	 conflict	 does	 not	 interfere	 with	 the	 display	 update	 but	 instead
corrupts	 the	 I/O	 port	 value	 being	 read	 or	 written.	 The	 effect	 is	 to	 make	 I/O
operations	 such	 as	 reading	 the	 keyboard	 erratic,	 as	 their	 success	 depends	 on
whether	the	ULA	is	updating	the	display.

This	fault	passed	undetected	initially	because	the	ZX	Spectrum	operating	system
reads	the	keyboard	via	an	interrupt	service	routine,	executed	while	the	television
electron	beam	is	returning	to	the	top	of	the	screen,	and	therefore	during	a	period
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when	 contention	 does	 not	 occur.	 As	 soon	 as	 software	 began	 to	 be	 written	 in
machine	code	that	read	the	keyboard	I/O	port	directly,	it	was	discovered	that	the
read	was	unreliable	and	suffered	from	contention	problems.

Analysis	showed	that	the	I/O	clock	wait	signal	should	not	be	released	for	the	third
C0	 cycle,	 and	 that	 the	 combination	 of	 C1	 and	 C2	were	 to	 blame.	 Sinclair	 was
faced	 with	 the	 prospect	 of	 discarding	 the	 first	 batch	 of	 ULA	 chips,	 at	 a	 huge
financial	loss,	until	it	realised	that	by	manipulating	the	signals	passed	to	the	ULA
from	the	CPU,	I/O	contention	could	be	made	to	look	like	memory	contention	and
would	therefore	be	subject	to	the	more	aggressive	memory	clock	wait	timing.

The	signal	manipulation	took	the	form	of	a	14	pin	NAND	gate	integrated	circuit
placed	upside	down	on	the	circuit	board	and	connected	between	address	lines	A14
and	A15	as	they	ran	from	the	Z80	to	the	ULA,	as	presented	in	Figure	18-9.	This
modification	forced	A14	high	and	A15	low	whenever	/IORQ	went	low,	creating	a
condition	 that	was	 recognised	by	 the	ULA	as	a	 contended	memory	access.	This
modification	subsequently	became	known	as	the	"dead	cockroach",	as	pictured	in
Figure	18-10.

Figure	18-9:	Cockroach	modification	added	to	issue	1	ULA	machines
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Figure	18-10:	Issue	1	5C102	ULA	with	"dead	cockroach"	modification

The	intention	behind	the	I/O	clock	wait	timing	is	likely	to	have	been	to	reduce	the
contention	applied	to	I/O	instructions	to	a	minimum.	Because	an	I/O	instructions
data	 transfer	 occurs	 during	T3	 and	 the	 I/O	 control	 signals	 do	 not	 interfere	with
display	byte	 fetches,	 data	bus	 collisions	 can	be	 avoided	by	making	 sure	 that	T3
alone	is	prevented	from	executing	while	video	byte	fetches	are	occurring.	This	is
in	 contrast	 to	 contended	 memory	 access	 where	 T-states	 T1,	 T2	 or	 T3	 must	 not
execute	while	video	byte	fetches	are	occurring.

This	 theoretically	 reduces	 the	 I/O	contention	window	 to	 four	T-states	 instead	of
the	 six	 required	 during	 memory	 contention.	 However,	 this	 would	 allow	 T3	 to
execute	 immediately	after	 a	byte	 fetch	 sequence	has	completed,	when	 the	video
RAM	will	be	releasing	the	data	bus.	Because	of	this,	an	extra	T-state	of	contention
is	necessary	to	allow	the	data	bus	to	stabilise	before	T3	performs	its	data	transfer.
This	ideal	I/O	contention	timing	is	presented	in	Figure	18-11,	and	defined	as:

It	is	mere	speculation	as	to	whether	this	was	the	intended	I/O	contention	timing	of
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the	5C102	ULA,	but	the	suggestion	is	given	weight	by	the	fact	that	the	observed
behaviour	 would	 be	 demonstrated	 if	 there	 was	 an	 error	 in	 the	 matrix	 cell
interconnection	of	/C2	and	/C1	for	the	above	logic,	where	the	non-inverted	signals
C2	and	C1	were	used	by	mistake,	since

This	 gives	 the	 only	 credible	 explanation	 for	 the	 presence	 of	 C1+C2	 in	 the	 I/O
clock	wait	circuit,	and	the	reason	/C3	is	represented	in	Figure	18-7.

Figure	18-11:	The	ideal	I/O	clock	wait	timing

Sinclair's	subsequent	"dead	cockroach"	fix	overrides	the	I/O	clock	wait	signal	by
forcing	activation	of	the	memory	clock	wait	signal	when	/IOREQ	goes	low.	This
established	the	longer	contention	timing	that	would	have	to	be	reproduced	by	all
future	ULA	versions	if	software	were	to	behave	consistently	on	all	machines.

The	two	contention	handlers	normally	operate	independently,	but	can	interact	with
each	other	under	certain	circumstances.	Because	 the	memory	contention	handler
interprets	an	address	in	the	range	of	0x4000	to	0x7FFF	while	/MREQ	is	high	as
the	start	of	a	contended	memory	access,	accessing	an	I/O	port	 in	 this	 range	will
activate	the	memory	contention	handler	during	T1	and	the	I/O	contention	handler
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during	 T2.	 To	 ensure	 that	 under	 these	 conditions	 all	 contention	 checking	 is
disabled	 at	 the	 end	 of	 I/O	 T-state	 T2,	 IOREQTW3	 is	 also	 considered	 by	 the
memory	contention	handler.

It	is	worth	noting	that	the	memory	contention	handler	shown	in	Figure	18-7	uses	a
seven	input	NOR	gate	to	produce	the	clock	control	signal,	the	implementation	of
which	 is	 split	 across	 two	 multi-input	 NOR	 gates	 connected	 together	 via	 an
inverter.	 Normally	 multi-input	 NOR	 gates	 of	 any	 size	 are	 constructed	 by
connecting	in	parallel	several	NOR	gates	that	are	in	close	proximity.	However,	in
this	 case	 the	 NOR	 gate	 combining	 the	 Border,	 CPUCLK,	 MREQT23	 and
IOREQTW3	signals	is	sufficiently	far	away	from	the	output	NOR	gate	for	this	to
be	impractical.

The	issue	2	5C112	ULA

The	second	issue	ULA	was	produced	from	circa	August	1982,	removing	the	I/O
contention	problem	of	the	5C102	ULA.	This	new	ULA	essentially	had	the	"dead
cockroach"	modification	 incorporated	 internally,	so	 that	whenever	 /IOREQ	went
low	 it	 overrode	 address	 lines	 A14	 and	 A15,	 activating	 the	 memory	 contention
handler,	as	shown	in	Figure	18-12.

Sinclair	 did	 not	 attempt	 to	 fix	 the	 earlier	 fault	 by	 correctly	 implementing	 the
intended	 shorter	 I/O	 contention	 period,	 as	 this	 would	 have	 constituted	 a
measurable	timing	change	from	the	modified	5C102E	machines,	causing	software
to	behave	differently.

Consequently	the	I/O	specific	contention	handler	became	effectively	redundant	as
the	memory	contention	handler	assumed	responsibility	for	both	memory	and	I/O
contention.	The	I/O	contention	circuit	remained	in	place	however,	as	the	absolute
minimum	was	changed	of	the	ULA	interconnection	layer	to	produce	the	new	ULA
as	quickly	and	cheaply	as	possible.	See	Figure	18-12.

Shortly	after	the	issue	2	ULA	went	into	production,	a	further	fault	was	discovered
with	both	the	issue	1	and	2	ULAs	that	prevented	external	peripherals	such	as	the
ZX	Printer,	and	later	the	Interface	1	and	Microdrive,	from	operating	correctly.

The	problem	was	that	the	ULA	I/O	port	address	was	not	considered	with	/IORQ
when	 deciding	whether	 I/O	 contention	was	 about	 to	 occur.	This	 resulted	 in	 I/O
contention	being	applied	when	any	I/O	port	was	accessed,	pausing	the	processor.

Luckily	a	minimum	of	address	 line	A0	needed	to	be	considered,	as	discussed	 in
the	section	called	Decoding	the	I/O	Port	in	Chapter	19,	Input-Output	Devices,	and
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thanks	 to	 resistor	R27	having	being	 included	 in	 the	 /IORQ	signal	 passed	 to	 the
ULA	 from	 the	 processor,	 a	 simple	 OR	 gate	 was	 created	 by	 the	 addition	 of	 a
transistor	soldered	across	the	Z80	processor,	shown	in	Figure	18-14.	This	pulled
/IOREQ	 high	 whenever	 A0	 was	 high,	 overriding	 /IORQ	 and	 disabling	 I/O
contention	checking.	See	Figure	18-13.

Figure	18-12:	Issue	2	5C112	ULA	contention	handler

Figure	18-13:	Transistor	and	resistor	OR	gate	of	/IORQ	and	A0
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This	 transistor	became	a	 standard	component	of	 the	ZX	Spectrum	circuit	board,
and	the	problem	was	not	corrected	in	subsequent	versions	of	the	ULA.

Figure	18-14:	Issue	2	ZX	Spectrum	with	"spider"	transistor	modification

The	issue	3	6C001	ULA

The	 third	 issue	 ULA,	 produced	 circa	 May	 1983,	 incorporates	 a	 number	 of
enhancements	 to	 the	 design	 implemented	 by	 the	 previous	 versions,	 and	 was
realised	 by	 a	 more	 advanced	 ULA	 product	 from	 Ferranti.	 Therefore	 the	 ULA
interconnection	 layer	 had	 to	 be	 redrawn	 for	 the	 new	 ULA	 geometry,	 allowing
design	changes	to	be	incorporated	at	the	same	time.
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Figure	18-15:	Issue	3	and	above,	6C001	ULA	contention	handler

One	of	these	design	changes	was	to	remove	from	the	I/O	contention	handler	the
faulty	I/O	clock	wait	signal	(/IWAIT)	and	the	NOR	gate	that	produced	it,	so	that
the	handler	used	/MWAIT	alone	and	exhibited	the	same	contention	timing	as	the
previous	ULA	versions	that	processed	all	contention	through	the	memory	handler.
Interestingly,	 the	"dead	cockroach"	modification	was	also	 left	 in	place,	allowing
the	memory	contention	handler	to	continue	detecting	memory	and	I/O	contention,
the	result	being	two	independent	circuits	taking	identical	control	of	the	CPU	clock
under	I/O	contention	conditions.

This	 double	 edged	 fix	 may	 have	 come	 about	 as	 a	 result	 of	 the	 6C001	 ULA
interconnection	 layer	being	drawn	straight	 from	design	schematics	 incorporating
both	 historical	 and	 new	modifications.	 These	 schematics	may	 have	 earlier	 been
revised	to	reflect	the	removal	of	the	incorrect	/IWAIT	signal	at	the	time	the	fault
was	 discovered	 with	 the	 issue	 1	 ULA,	 and	 subsequently	 modified	 to	 show	 the
internal	"dead	cockroach"	modification	implemented	in	the	issue	2	ULA.

1.	The	ZX	Spectrum	16K,	48K	and	ZX	Spectrum	128	employ	 the	 same	 simple
bus	coupling	and	RAS-CAS	generation,	making	wait	cycles	via	the	/WAIT	control
pin	unsuitable.	The	redesigned	Amstrad	era	+2A/+3	machines	on	the	other	hand
have	 more	 complicated	 bus	 interfacing	 and	 do	 in	 fact	 use	 /WAIT	 to	 control
contention	between	the	Z80	and	the	ASIC	that	replaces	the	ULA	in	those	models.
For	 this	 reason,	 the	 contention	pattern	of	 the	+2A/+3	machines	differs	 from	 the
earlier	Sinclair	designed	machines.
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2.	The	instruction	Op	Code	fetch,	M1,	has	an	additional	T-state	T4	which	performs
a	memory	refresh,	but	is	not	itself	involved	in	the	memory	read	or	write	activity.

3.	A	Z80	instruction	fetch	ends	and	the	memory	address	is	removed	from	the	bus
at	the	beginning	of	T3,	shortly	after	 the	positive	clock	edge.	Other	memory	read
and	write	operations	complete	at	the	end	of	T3.
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Chapter	19

Input-Output	Devices

In	addition	to	the	television	display,	the	ZX	Spectrum	supports	a	number	of	other
input	and	output	devices:

1.	 A	40	key	keyboard.
2.	 A	border	colour	register.
3.	 Cassette	recorder	input.
4.	 Cassette	recorder	output.
5.	 An	internal	speaker.

As	discussed	in	Chapter	3,	The	Standard	Microcomputer	 the	Z80	processor	used
in	 the	 ZX	 Spectrum	 supports	 both	 memory	 and	 I/O	 mapped	 input	 and	 output.
Which	mechanism	should	be	used	depends	on	the	instruction	set	required,	and	the
amount	of	system	memory.	Since	the	Spectrum's	entire	64K	address	space	may	be
occupied	by	memory,	 I/O	mapped	 input-output	 is	 used,	 taking	 advantage	of	 the
Z80's	dedicated	I/O	control	signals	and	instructions.

The	Keyboard

The	 ZX	 Spectrum	 keyboard	 is	 implemented	 as	 an	 array	 of	 40	 switches.	 To
interface	them	individually	to	the	processors	8-bit	data	bus,	five	input	ports	would
be	required,	exceeding	the	pin	count	of	the	ULA	and	remaining	free	matrix	cells.

To	 reduce	 the	 interface	 demand	 of	 keyboards,	 manufacturers	 usually	 multiplex
them	by	arranging	 the	keys	 in	 an	electrical	grid	of	 rows	and	columns,	 so	 that	 a
keypress	connects	a	row	and	column	together.	To	check	for	a	keypress,	software
would	first	select	a	keyboard	row	by	writing	to	an	output	port	and	second,	test	the
keyboard	 columns	 by	 reading	 from	 an	 input	 port.	 The	 difficulty	 lies	 in	 the
awkward	 shape	 of	 a	 computer	 keyboard,	 being	wider	 than	 the	 eight	 columns	 a
single	input	port	can	support.	It	also	requires	a	dedicated	row	select	output	port.

To	eliminate	these	problems	the	ZX	Spectrum	ULA	performs	a	clever	but	simple
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multiplexing	trick	and	manages	to	handle	all	keys	through	a	single	input	port.	This
reduces	the	complexity	of	the	interface	by	a	factor	of	eight,	a	huge	saving	when
the	ULA	space	was	so	tight.

Figure	19-1:	The	ZX	Spectrum	keyboard

Internally	the	ULA	divides	each	row	of	the	ZX	Spectrum's	4×10	key	keyboard	in
half,	 creating	 eight	 half-rows	 of	 five	 keys	 each.	 These	 five	 key	 columns	 are
assigned	to	an	input	port.

To	be	 able	 to	 select	which	of	 the	 eight	half-rows	will	 be	 read	by	 the	 input	port
without	 requiring	a	dedicated	 row	select	port,	 the	address	of	 the	keyboard	 input
port	is	chosen	to	be	less	than	256,	so	that	it	can	be	decoded	by	considering	address
lines	A7-0	alone.	This	leaves	the	eight	upper	address	lines	A15-8	free,	and	these
are	used	as	the	half-row	selectors.	The	I/O	port	address	assigned	to	the	keyboard
is	FE	hexadecimal	(0xFE),	or	254	decimal.

Reading	a	keyboard	half-row	therefore	depends	on	the	state	of	the	upper	address
lines,	and	so	the	processor	sees	the	keyboard	interface	as	consisting	of	eight	input
ports.	However,	since	the	I/O	address	is	partially	decoded	by	the	ULA	and	ignores
the	upper	address	lines,	all	eight	addresses	in	fact	resolve	to	a	single	I/O	port.

The	advantage	of	this	approach	is	that	multiple	keyboard	rows	may	be	checked	at
the	same	time	by	enabling	more	than	one	of	the	upper	address	lines.	Under	these
conditions	it	is	impossible	for	the	processor	to	differentiate	between	selected	half-
rows	 when	 a	 keypress	 occurs,	 only	 the	 affected	 column	 positions	 is	 known.
Therefore	the	entire	keyboard	may	be	checked	for	a	keypress	with	one	read	of	the
keyboard	 port,	 after	which	 individual	 rows	 can	 be	 examined	 to	 discover	which
key	or	keys	they	were.
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Figure	19-2:	The	keyboard	half-row	matrix	and	ULA	connection

Keyboard	Input	Port

While	 no	 keys	 are	 being	 pressed,	 the	 signals	 of	 the	 input	 port	 are	 disconnected
from	any	active	circuit	 and	 float	at	 an	undetermined	voltage	between	0	and	5V,
causing	phantom	keypresses	to	be	detected.	To	prevent	this,	the	inputs	use	pull-up
resistors	 to	hold	 them	at	 logic	1	until	 a	key	 is	pressed,	when	 the	 corresponding
input	signal	will	be	pulled	down	to	logic	0	by	the	address	bus.	Therefore,	setting
an	upper	address	line	low	selects	the	corresponding	half-row.

Half-Row High	Byte Address	Line A15	-	8
B-SPACE 0x7F A15 0	1	1	1	1	1	1	1
H-ENTER 0xBF A14 1	0	1	1	1	1	1	1

Y-P 0xDF A13 1	1	0	1	1	1	1	1
6-0 0xEF A12 1	1	1	0	1	1	1	1
1-5 0xF7 A11 1	1	1	1	0	1	1	1
Q-T 0xFB A10 1	1	1	1	1	0	1	1
A-G 0xFD A9 1	1	1	1	1	1	0	1

CAPS-V 0xFE A8 1	1	1	1	1	1	1	0

Table	19-1:	Keyboard	I/O	port	address	high	byte	values
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Table	19-1	gives	the	upper	address	bus	values	and	address	line	states	for	each	of
the	eight	keyboard	half-rows.	A	row	is	read	from	software	by	setting	the	low	byte
of	 the	port	 address	 as	0xFE,	 and	 the	high	byte	 as	defined	 in	 the	 table.	Multiple
rows	are	read	by	logically	ANDing	high	bytes	together.

Figure	19-2	shows	the	physical	keyboard	connection	to	the	input	port	and	address
bus.	 The	 diodes	 at	 the	 address	 bus	 connection	 prevent	 multiple	 simultaneous
keypresses	in	one	column	from	shorting	out	the	processor	side	of	the	bus.

Figure	19-3:	The	keyboard	input	port

The	I/O	input	port	shown	in	Figure	19-3	consists	of	a	gated	buffer	 that	connects
the	keyboard	inputs	K4-0	to	the	data	bus	D4-0	when	the	processor	makes	an	I/O
read	from	port	0xFE.	The	buffer	is	extremely	simple,	being	made	up	of	just	five
OR	gates.	When	the	I/O	port	is	not	being	read,	the	OR	gates	send	logic	1	to	the
data	bus	outputs,	putting	them	into	a	high	impedance	state	and	disconnecting	them
from	 the	 bus	 (see	 Chapter	 22,	 Signal	 Interfacing).	 When	 reading	 from	 the
keyboard	 port,	 the	 data	 bus	 outputs	 are	 set	 low	where	 a	 key	 is	 pressed	 or	 high
impedance	otherwise.	These	values	are	registered	by	the	processor	as	low	or	high
due	to	the	data	bus	pull-up	resistors.
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The	Border	Colour	Register

The	 television	displays	 the	 combined	outputs	of	 two	 separate	 sources.	First,	 the
information	stored	in	the	video	display	RAM,	and	second,	a	border	whose	colour
is	specified	by	the	border	colour	register.

The	 border	 colour	 register	 is	 not	 implemented	 as	 a	 RAM	 location,	 due	 to	 the
complexity	 of	 fetching	 a	 byte	 from	 memory	 and	 the	 frequency	 that	 it	 will	 be
required.	Instead,	the	register	is	implemented	as	a	latched	three	bit	I/O	output	port
that	directly	feeds	the	display	controller.	Thus,	the	border	colour	value	is	always
available	and	may	be	changed	at	any	time	with	a	simple	write	to	the	I/O	port.

Port	 address	 0xFE	has	 so	 far	 only	been	used	 for	 input,	 and	 as	 I/O	ports	 can	be
both	 input	 and	 output,	 the	 same	 address	 is	 used	 for	 the	ULA	 output	 port.	 This
avoids	introducing	additional	port	address	decoding.

Output	I/O	ports	generally	consist	of	simple	gated	latches,	and	the	ZX	Spectrum	is
no	 exception,	 constructing	 the	 border	 colour	 register	 from	 three	 gated	 D
transparent	 latches	(Figure	19-4).	The	 register	 feeds	 the	 colour	 output	 circuit	 of
the	 video	 generator,	 as	 discussed	 in	 the	 section	 called	 Border	 Generation	 in
Chapter	12,	Generating	The	Display.

Figure	19-4:	The	border	colour	register

Cassette	Recorder	Input

The	linear	nature	of	a	cassette	tape	means	that	its	use	as	a	data	storage	medium	is
restricted	to	serial	data	streams.	The	ZX	Spectrum	ULA	must	therefore	provide	a
serial	 interface	 to	 send	 and	 receive	 data	 (see	 Chapter	 3,	 The	 Standard
Microcomputer),	 and	 an	 analogue	 interface	 to	 allow	 connection	 to	 a	 cassette
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recorder.	The	analogue	interface	is	presented	in	Chapter	20,	Cassette	Storage	and
Sound.

A	hardware	serial	interface	would	typically	consist	of	parallel	to	serial	and	serial
to	 parallel	 shift	 registers,	which	 are	 complicated	 and	 take	 up	 a	minimum	of	 40
matrix	 cells	 each.	 Space	 constraints	 would	 not	 permit	 this,	 so	 the	 conversion
between	 parallel	 and	 serial	 data	 is	 instead	 carried	 out	 in	 software,	 interfaced
through	single	bit	input	and	output	ports.

Figure	19-5:	The	cassette	input	port

The	cassette	 input	port	 is	 implemented	in	exactly	 the	same	way	as	 the	keyboard
input	port;	a	gated	buffer	that	connects	the	logic	output	from	the	analogue	cassette
input	 interface	 to	 the	data	bus,	whenever	 the	processor	 reads	 from	 the	 I/O	port.
See	Figure	19-5.

As	only	a	 single	bit	of	an	 input	port	 is	 required	 to	 implement	 the	cassette	 input
interface,	 the	ULA	makes	 use	 of	 one	 of	 the	 free	 input	 bits	 of	 the	 keyboard	 I/O
port,	in	this	case	D6.

D5	is	not	used,	even	though	it	is	the	logical	choice	and	its	connection	pin	is	closer
than	D6	 to	 the	 cassette	 input	 buffer	 (labelled	EAR	D6	 in	Figure	A-1).	 Most	 of
peripheral	cell	31,	which	provides	the	physical	connection	to	D5	through	pin	29,
is	used	for	the	analogue	cassette	interface,	so	the	actual	interface	logic	for	D5	is
provided	by	peripheral	cell	28	and	is	shared	with	the	CPU	clock	output	PHICLK.
D6	is	thus	the	nearest	available	free	data	bus	output.

Data	 is	 stored	 on	 cassette	 as	 a	 sequence	 of	 tones.	 These	 are	 converted	 into	 a
sequence	 of	 logic	 pulses	 by	 the	 analogue	 interface,	 the	 frequency	 of	 which
depends	on	the	tone.	The	software	serial	interface	samples	the	I/O	port	and	counts
the	pulses	being	received	to	determine	their	frequency,	and	decides	whether	they
represents	a	binary	0	or	1.	Every	eight	binary	digits	received	are	assembled	into	a
byte	and	stored	in	RAM.

Conventionally,	 a	 cassette	 recorder	 output	 is	 labeled	 EAR,	 and	 so	 the	 ZX
Spectrum	cassette	input	port	is	given	the	same	designation.
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Cassette	Recorder	Output

Cassette	recorder	output	is	similar	to	input	in	that	it	requires	a	serial	interface	to
convert	 the	 parallel	 data	 to	 be	 written	 to	 cassette	 into	 a	 serial	 stream,	 and	 an
analogue	interface	to	provide	the	cassette	recorder	connection.

The	serial	interface	is	once	again	implemented	in	software,	requiring	only	a	single
output	 port	 bit	 through	which	 to	 send	 the	 data	 stream	 to	 the	 analogue	 cassette
interface.

As	 with	 the	 cassette	 input	 port,	 further	 use	 of	 an	 existing	 port	 is	 made	 by
allocating	the	first	free	bit	of	output	port	0xFE	to	the	cassette	recorder	output,	in
this	case	D3,	following	the	border	colour	bits.	A	simple	gated	D	transparent	latch
stores	 the	 value	 output	 to	 this	 bit	 and	 feeds	 the	 cassette	 recorder	 analogue
interface,	described	in	Chapter	20,	Cassette	Storage	and	Sound.

To	store	a	set	of	bytes	on	cassette,	 the	software	serial	 interface	takes	each	bit	of
each	 byte	 in	 turn,	 and	 outputs	 a	 sequence	 of	 logic	 pulses	 to	 the	 I/O	 port,	 the
frequency	 of	 which	 depends	 on	 whether	 the	 bit	 was	 a	 0	 or	 1.	 The	 analogue
cassette	interface	converts	this	pulse	sequence	into	a	tone	of	the	same	frequency
and	feeds	this	to	the	cassette	recorder	input.

Conventionally,	a	cassette	recorder	input	is	labelled	MIC,	and	so	the	ZX	Spectrum
analogue	cassette	output	port	is	given	the	same	designation.

Figure	19-6:	The	cassette	and	speaker	output	port

Speaker	Output

The	ZX	Spectrum	does	not	incorporate	a	dedicated	sound	generation	device,	but
instead	makes	use	of	a	software	oscillator	that	alters	the	logic	state	of	a	single	bit
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output	 port	 at	 varying	 frequencies.	 This	 is	 analogous	 to	 the	 cassette	 recorder
output	mechanism.

The	 output	 port	 is	 connected	 to	 a	 speaker	 whose	 diaphragm	 moves	 in	 or	 out
depending	on	the	state	of	the	port,	creating	an	audible	tone	at	the	same	frequency.

As	with	the	cassette	output	port,	the	next	free	bit	of	output	port	0xFE	is	assigned
to	the	speaker	output,	here	being	D4,	following	the	cassette	output	bit.	The	logic
state	written	to	this	port	bit	is	latched	by	a	gated	D	transparent	latch	before	being
fed	 to	 the	speaker	analogue	output	driver,	 see	Chapter	20,	Cassette	 Storage	and
Sound.

Decoding	the	I/O	Port

As	 discussed	 in	 the	 section	 called	 The	 Keyboard,	 the	 ZX	 Spectrum	 ULA
implements	 partial	 decoding	 of	 its	 I/O	 port	 to	 allow	 the	 eight	 most	 significant
address	lines	to	be	used	as	keyboard	row	selects.	Port	address	0xFE	is	represented
by	11111110	appearing	on	address	bus	lines	A7-0,	and	the	ULA	takes	the	partial
decoding	of	this	address	to	the	extreme	by	considering	only	address	line	A0.

This	 partial	 address	 decoding	 scheme	was	 inherited	 from	 the	ZX80,	which	was
built	from	SSI	TTL	chips.	Every	additional	gate	increased	the	risk	of	requiring	an
additional	integrated	circuit,	which	would	raise	the	component	and	PCB	costs.	As
this	simplified	addressing	was	found	to	be	acceptable,	Sinclair's	engineers	carried
it	forward	in	subsequent	products.

The	consequence	of	this	 is	 that	any	port	address	that	has	A0	low,	or	put	another
way,	any	even	numbered	address,	will	select	the	ULA	I/O	port.	Therefore	to	avoid
accidentally	selecting	the	I/O	port	of	a	peripheral	connected	to	the	ZX	Spectrum,
all	software	must	ensure	that	port	0xFE	is	addressed	so	that	A7-1	will	be	at	logic
1.
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Figure	19-7:	The	ULA	I/O	port	decoding	of	address	0xFE

The	I/O	port	decoder	generates	two	internal	signals,	PortRD	and	PortWR,	which
are	 used	 to	 enable	 the	 input	 I/O	 port	 data	 bus	 buffers	 and	 output	 data	 latches
respectively.

The	circuit	considers	A0	and	/IOREQ	in	its	decoding	of	I/O	port	requests,	along
with	 signal	 /IOREQTW3	 generated	 by	 the	 contention	 handler.	 /IOREQTW3	 is
always	 high	 during	 I/O	 operation	 T-states	 T1	 and	 T2,	 and	 its	 inclusion	 here
prevents	the	ULA	I/O	port	from	being	activated	during	T2,	when	contention	may
occur.	 See	 the	 section	 called	 I/O	T2	 Detection	 in	 Chapter	 18,	CPU	 Clock	 and
Contention	for	a	complete	description	of	how	contention	affects	I/O	port	access.

Summary	of	I/O	Port	Bit	Designations

7 6 5 4 3 2 1 0
Input - EAR - Keyboard
Output - - - Speaker MIC Border

Table	19-2:	I/O	port	bit	map
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Chapter	20

Cassette	Storage	and	Sound

In	 addition	 to	 the	 television	 output,	 the	 ZX	 Spectrum	 ULA	 provides	 a
bidirectional	 cassette	 data	 interface	 and	 a	 single	 channel	 audio	 speaker	 driver.
Both	 are	 implemented	 as	 software	driven	 serial	 interfaces,	 discussed	 in	Chapter
19,	Input-Output	Devices,	with	analogue	input/output	stages.

The	distinguishing	design	feature	of	both	the	cassette	and	loudspeaker	interface	is
that	 they	 share	 a	 single	 ULA	 pin.	 The	 Sinclair	 patent	 Computer	 input/output
circuit	[ALTWASSERIO]	states	that	"A	difficulty	is	that	while	these	facilities	can
easily	 be	 provided,	 a	 substantial	 number	 of	 input/output	 terminals	 are	 usually
required.	It	is	an	object	of	the	present	invention	to	provide	a	circuit	which	enables
data	 and/or	 programmes	 to	 be	 transferred	 between	 a	 computer	 and	 ancillary
equipment	using	a	single	input/output	terminal.	Preferably,	the	circuit	is	arranged
to	provide	a	further	output	signal	at	the	single	terminal	for	driving	an	audio	output
device."	 This	 clearly	 highlights	 the	 continual	 design	 compromise	 that	 was
necessary	to	deliver	the	ZX	Spectrum	at	the	lowest	possible	cost.

As	 a	 result	 some	 functionality	 was	 lost.	 Neither	 is	 it	 possible	 to	 control	 the
loudspeaker	at	 the	same	 time	as	 reading	or	writing	data	 to	 the	cassette	 recorder,
nor	is	it	possible	to	read	data	from	one	cassette	recorder	while	writing	to	another.
That	said,	the	software	required	to	perform	these	activities	simultaneously	would
have	been	prohibitively	complicated	to	design	and	execute	with	an	efficient	data
transfer	rate,	therefore	the	compromise	is	perfectly	acceptable.

Altwasser's	 technical	 solution	 is	 ingenious,	 and	 divides	 the	 possible	 voltages
output	by	the	I/O	pin	into	two	ranges,	one	that	controls	the	internal	loudspeaker,
the	other	 that	 is	 routed	 to	 the	cassette	output	 socket.	The	 input	 interface	detects
voltage	 changes	 at	 the	 I/O	 pin,	 to	 which	 the	 cassette	 input	 socket	 is	 also
connected,	and	decides	whether	the	voltage	represents	a	binary	one	or	zero.

Cassette	and	Speaker	Output

The	ZX	Spectrum	circuit	board	takes	the	analogue	output	from	ULA	pin	28	and
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attenuates	 it	with	 a	 low	pass	 filter	before	 feeding	 it	 to	 the	output	 socket	 for	 the
cassette	recorder,	MIC.	Any	alternating	signal	appearing	at	the	ULA	I/O	pin	will
therefore	be	present	at	the	ZX	Spectrum	MIC	socket.	The	ULA	analogue	output	is
also	 fed	 to	 a	 loudspeaker,	 having	 been	 passed	 through	 two	 series	 connected
diodes.	As	a	diode	has	a	 forward	voltage	drop	of	approximately	0.7V,	 the	ULA
output	 must	 exceed	 1.4V	 for	 the	 signal	 to	 register	 at	 the	 loudspeaker.	 Thus,
alternating	 voltages	 below	1.4V	 appear	 only	 at	 the	MIC	 socket,	 voltages	 above
1.4V	activate	the	loudspeaker	as	well	as	producing	a	louder	signal	from	the	MIC
socket	(Figure	20-1).	It	is	by	generating	voltages	within	these	two	ranges	that	the
ZX	Spectrum	is	able	to	provide	both	cassette	and	loudspeaker	output	from	a	single
analogue	source.

Figure	20-1:	Simplified	ZX	Spectrum	PCB	analogue	interface

The	cassette	and	speaker	output	section	of	the	ULA	analogue	input/output	circuit
is	 shown	 in	Figure	20-2,	 and	 consists	 of	 a	 voltage	 divider	with	 two	 switchable
resistors	 such	 that	 the	 voltage	 produced	may	 be	 set	 to	 one	 of	 four	 values.	 The
switching	transistors	are	connected	to	the	two	CPU	controlled	I/O	port	output	bits
for	the	speaker	and	cassette	recorder,	described	in	the	sections	Speaker	Output	and
Cassette	Recorder	Output	in	Chapter	19,	Input-Output	Devices.

The	voltage	that	is	produced	at	junction	A	is	determined	by	which	combination	of
switch	transistors	Q1	and	Q3	is	active.

Theoretically,	the	speaker	I/O	port	bit	4	controls	transistor	Q1	which	in	turn	sets
the	voltage	at	the	base	of	Q2,	switching	resistor	R2	in	and	out	of	the	circuit.	When
Q1	is	off,	 the	base	of	Q2	is	pulled	high	by	R1,	switching	Q2	on	and	raising	 the
voltage	at	junction	A	of	the	voltage	divider	to	approximately	4.3V	(Vcc	minus	the
base-emitter	voltage	drop).

When	Q1	is	on,	Q2	shuts	off,	switching	R2	back	into	the	circuit.	Assuming	Q3	is
on	and	R4	is	short-circuited,	the	voltage	divider	produces	a	voltage	at	junction	A
of:
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The	cassette	 recorder	 serial	 output	 is	 controlled	by	 I/O	port	 bit	 3.	When	active,
this	 turns	 transistor	Q3	off,	 switching	resistor	R4	 into	 the	circuit	and	raising	 the
voltage	at	junction	A.	Normally	this	occurs	when	the	speaker	I/O	port	is	inactive,
and	therefore	R2	will	also	be	in	the	circuit.	The	voltage	measured	at	junction	A	is
therefore:

Figure	20-2:	ULA	6C001E-7	cassette	output	and	speaker	driver

This	simplified	calculation	of	node	voltages	does	not	take	into	account	the	actual
voltages	applied	 to	 the	base	of	Q1	and	Q3.	 In	 reality,	when	 the	MIC	port	bit	 is
high,	 the	 base	 of	Q3	will	 be	 at	 approximately	 0.59V	 (the	matrix	 cell	 logic	 low
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level,	as	shown	in	Figure	5-12).	This	only	just	keeps	the	transistor	active,	with	a
small	 amount	 of	 current	 flowing	 in	 its	 collector.	 Consequently,	 R4	 is	 not
completely	switched	into	the	circuit	and	drops	less	voltage	than	would	be	the	case
if	Q3	were	removed,	producing	a	slightly	lower	voltage	at	junction	A.

When	the	MIC	port	bit	is	low,	the	base	of	Q3	will	be	at	the	matrix	cell	logic	high
level	 of	 0.95V,	 turning	 the	 transistor	 almost	 fully	 on.	 Current	 still	 flows	 in	 the
collector	of	Q3	and	a	small	voltage	drop	appears	across	R4,	raising	the	voltage	at
junction	A	slightly	higher	than	if	Q3	were	completely	on	and	short	circuiting	R4.

The	speaker	control	circuit	experiences	similar	residual	current	flows	through	Q2
and	R2,	raising	and	lowering	the	voltage	at	junction	A	by	a	small	amount.

SPICE	analysis	of	the	circuit	for	an	approximate	NPN	transistor	has	revealed	the
node	voltages	reproduced	in	Table	20-1,	giving	the	voltage	at	the	base	of	Q2,	the
voltage	at	the	collector	of	Q3	and	the	voltage	at	junction	A.	The	actual	measured
output	voltages	for	 the	5C	and	6C	ULA	are	given	 in	Table	20-2,	 the	differences
between	5C	and	6C	ULA	voltages	being	due	 to	different	peripheral	cell	 resistor
values.

Speaker MIC VB2 VC3 A
0 0 0.0302 0.0296 0.332
0 1 0.0302 0.478 0.744
1 0 4.451 0.042 3.387
1 1 4.103 2.490 3.763

Table	20-1:	Node	voltage	SPICE	analysis	for	a	6C001E-7	analogue	circuit

Speaker MIC 5C	ULA 6C	ULA
0 0 0.391 0.342
0 1 0.728 0.652
1 0 3.653 3.591
1 1 3.790 3.753

Table	20-2:	Voltages	produced	by	ULA	speaker	and	cassette	output	port

The	values	predicted	in	Table	20-1	are	very	close	to	the	measured	values	in	Table
20-2.	The	deviation	can	be	attributed	to	the	generic	NPN	transistor	model	used	for
the	analysis,	as	the	peripheral	cell	transistor	parameters	are	unknown.
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Cassette	Input

The	 cassette	 recorder	 input	 is	 similarly	 connected	 to	 ULA	 pin	 28,	 through	 an
attenuating	 resistor	 and	 DC	 blocking	 capacitor,	 as	 shown	 in	 Figure	 20-1.	 This
input	signal	alters	the	bias	at	junction	A,	set	by	the	output	voltage	divider	to	be	at
0.652V	 when	 the	 speaker	 bit	 is	 off	 and	 the	 MIC	 bit	 on.	 This	 condition	 is
established	 by	 the	 cassette	 loading	 routine	 in	 the	 ROM	 at	 address	 0x05FF,	 by
explicitly	 setting	 bit	 3	 of	 the	 ULA	 output	 port.	 The	 ZX	 Spectrum	 ROM
disassembly	 [LOGAN]	 incorrectly	 annotates	 this	 action	 as	 "Signal	 Mic	 off",
giving	rise	to	the	misconception	that	clearing	this	bit	turns	the	MIC	socket	on,	and
setting	the	bit	turns	if	off.

The	 cassette	 input	 section	 of	 the	 analogue	 input/output	 circuit	 is	 presented	 in
Figure	20-3.	The	voltage	divider	at	the	left	hand	side	of	the	diagram	is	reproduced
from	Figure	20-2.

Figure	20-3:	ULA	6C001E-7	cassette	input

The	 input	 circuit	 consists	 of	 a	 single	 transistor	 amplifier	 with	 a	 high	 gain	 that
feeds	a	bistable	multivibrator.	The	bistable	shapes	the	variable	input	signal	into	an
absolute	 high	 or	 low	 logic	 level	 as	 the	 input	 crosses	 a	 threshold	 voltage
determined	by	the	input	amplifier,	which	reduces	sensitivity	to	noisy	signals.

The	 input	 amplifier	 consists	 of	R5,	Q4	 and	R6,	 and	 the	 threshold	 at	which	Q4
switches	determines	the	high/low	threshold	of	the	input	signal.	To	calculate	this,
the	maximum	current	that	can	flow	through	resistor	R6	must	be	found:
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When	Q4	is	saturated,	VCE=0,	therefore,	assuming	a	transistor	gain	β	of	100,	the
maximum	current	in	the	base	of	Q4	is:

The	voltage	at	junction	A	required	to	produce	a	base	current	of	0.336×10-5A	is	the
voltage	drop	across	R5	plus	the	base-emitter	voltage	drop:

As	 the	 voltage	 at	 junction	A	 gets	 very	 close	 to	 0.714V,	Q4	 rapidly	 approaches
saturation,	 pulling	 the	 voltage	 at	 its	 collector	 down	 to	 0V.	When	 the	 voltage	 at
junction	A	falls	away	from	0.714V,	Q4	stops	conducting	and	allows	the	collector
voltage	to	be	pulled	up	to	Vcc	by	R6.

The	bias	at	junction	A	is	0.728V	for	the	5C	ULA	and	0.652	for	the	6C	ULA.	The
alternating	signal	fed	into	the	EAR	socket,	shown	in	Figure	20-1,	causes	this	bias
voltage	to	rise	and	fall	about	its	nominal	value,	crossing	the	switching	threshold	as
it	does	so.

When	Q4	saturates,	the	voltage	at	its	collector	drops	to	0V,	pulling	the	base	of	Q6
low	and	 turning	 it	 off.	This	 allows	R8	 and	R11	 to	 pull	 the	base	of	Q5	 to	 0.7V,
turning	Q5	on	and	holding	the	base	of	Q6	low.

The	bistable	will	 remain	in	 this	state	until	 the	base	of	Q6	can	be	pulled	high	by
R6.	This	occurs	when	the	voltage	at	junction	A	drops	below	0.714V,	shutting	off
Q4	and	allowing	R6	to	pull	the	base	of	Q6	to	0.7V	through	R9.	By	turning	on,	Q6
pulls	the	base	of	Q5	low	and	allows	R7	to	hold	the	base	of	Q6	high.	The	bistable
will	remain	in	this	state	until	junction	A	once	again	approaches	0.714V,	at	which
point	the	bistable	will	flip	states.

The	output	of	 the	bistable	 is	 taken	from	the	collector	of	Q6	and	fed	into	Q7,	an
emitter-follower	 buffer	 that	 converts	 the	 peripheral	 cell	 voltage	 level	 (0	 to	 5V)
into	 a	matrix	 cell	 compatible	 voltage	 between	 0	 and	 0.95V	 (Vs).	This	 signal	 is
connected	to	the	ULA	I/O	input	port	bit	6,	designated	the	EAR	input	bit,	so	that
the	high-low	state	of	the	cassette	input	may	be	read	by	the	CPU.	See	the	section
called	Cassette	Recorder	Input	in	Chapter	19,	Input-Output	Devices.
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The	cassette	 recorder	signal	 level	will	generally	exceed	0.7V	in	amplitude	(l.4V
peek-to-peek)	under	 successful	 loading	conditions,	and	because	 this	exceeds	 the
forward	 voltage	 drop	 of	 the	 two	 loudspeaker	 diodes,	 the	 cassette	 signal	will	 be
audible.	Though	a	consequence	of	having	a	single	multiplexed	analogue	I/O	port,
this	effect	proved	beneficial	when	cueing	up	programmes	to	be	loaded.
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Chapter	21

Interrupts

Every	 task	 a	 microprocessor	 performs	 may	 be	 categorised	 as	 transforming	 an
input	into	an	output.	Such	inputs	may	come	from	memory,	from	storage	media	or
from	an	external	device.	Where	an	input	occurs	asynchronously,	 that	 is,	 it	 is	not
known	when	 it	will	 become	available,	 the	processor	would	need	 to	periodically
check	 for	 the	presence	of	 the	 input.	This	wastes	 time,	 so	 some	microprocessors
provide	a	mechanism	through	which	to	receive	notifications	that	the	input	device
has	data	 to	be	 read.	Such	notifications	 are	 called	 interrupts,	 and	were	discussed
previously	 in	 the	 section	 called	 The	 Z80	 Microcomputer	 in	 Chapter	 3,	 The
Standard	Microcomputer.

All	 microprocessors	 provide	 at	 least	 one	 interrupt	 signal	 which	 forces	 the
processor	 to	stop	what	 it	was	doing	and	run	 the	Interrupt	Service	Routine	 (ISR)
associated	with	the	interrupt.	The	Z80	provides	two	such	interrupt	signals:	A	high
priority	non-maskable	interrupt	and	a	lower	priority	maskable	interrupt.

In	addition	to	informing	the	processor	that	an	event	has	occurred,	interrupts	may
be	used	to	provide	a	time	reference	or	heartbeat	against	which	the	processor	may
mark	 the	 passage	 of	 time	 or	 schedule	 a	 regular	 task.	 The	 period	 of	 such	 time
signals	 cannot	 be	 very	 short,	 as	 too	 frequent	 an	 interrupt	 would	 considerably
reduce	the	performance	of	the	processor	in	completing	its	main	activity.

The	ZX	Spectrum	Non-Maskable	Interrupts

The	 Z80's	 non-maskable	 interrupt	 is	 activated	 through	 a	 dedicated	 pin	 labelled
/NMI.	The	processor	samples	the	interrupt	signal	at	the	start	of	the	last	T-state	of
the	current	machine	cycle.	If	it	is	active,	the	processor	pushes	the	current	program
counter	 onto	 the	 stack	 and	 jumps	 to	 address	 0x0066.	 This	 interrupt	 cannot	 be
overridden	by	software,	and	takes	precedence	over	the	maskable	interrupt.

When	the	ISR	has	completed	processing	the	interrupt,	the	return	address	is	popped
off	the	stack	and	execution	is	returned	to	the	interrupted	program,	at	the	point	at
which	it	left	off.
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The	 ZX	 Spectrum	 does	 not	 make	 use	 of	 non-maskable	 interrupts	 itself,	 but
provides	the	Z80	/NMI	control	signal	on	its	expansion	port	for	peripherals	to	use.
The	service	routine	at	address	0x0066	resides	in	the	ZX	Spectrum	ROM,	and	was
intended	 to	 facilitate	 peripheral	 use	 by	 redirecting	 NMI	 execution	 to	 a	 user
configurable	address.	However,	a	bug	in	this	routine	only	permits	the	redirection
to	address	0x0000,	which	causes	a	reset	of	the	computer.	Peripheral	manufacturers
overcome	this	issue	by	disabling	the	ZX	Spectrum	ROM	and	enabling	their	own
in	its	place	whenever	they	activate	the	/NMI	signal.

The	ZX	Spectrum	Maskable	Interrupts

The	Z80's	maskable	 interrupt	 is	 activated	 through	a	dedicated	pin	 labelled	 /INT
and	has	three	modes	of	operation,	selected	through	dedicated	Z80	instructions.

Mode	0	requires	that	the	interrupting	devices	place	an	instruction	on	the	data	bus
for	the	Z80	to	execute.	Usually	single-byte	RST	instructions	are	used,	but	equally
multi-byte	instructions	are	also	permitted,	such	as	a	jump	(JP).

Mode	1	is	similar	to	the	non-maskable	interrupt	in	that	the	Z80	begins	execution
of	an	ISR	at	a	fixed	address,	in	this	case	at	0x0038.	This	is	the	default	mode	used
by	the	ZX	Spectrum.

Mode	2	is	the	most	complicated	mode	and	requires	that	the	Z80	I	register	be	set
with	 the	 upper	 eight	 bits	 of	 a	 vector	 address	 when	 the	 mode	 is	 selected.
Peripherals	complete	this	vector	address	by	placing	its	lower	eight	bits	on	the	data
bus	whenever	 they	 activate	 the	 interrupt;	 therefore	 allowing	multiple	 devices	 to
have	their	own	service	routines	and	share	a	common	interrupt	signal.	This	vector
address	 does	 not	 point	 to	 an	 ISR	 but	 instead	 gives	 the	 location	 of	 a	 two	 byte
address	within	a	look-up	table.	It	 is	 the	address	entries	in	this	 table	that	point	to
the	service	routines.	This	is	the	mode	used	by	ZX	Spectrum	software	to	call	their
own	routines	when	the	ULA	interrupt	occurs.

The	 I/O	 interfaces	 of	 the	 ZX	 Spectrum,	 notably	 the	 keyboard	 and	 cassette
interface,	are	implemented	as	the	simplest	form	of	input	and	output	port,	and	the
ULA	does	not	implement	any	I/O	controller	features	such	as	interrupt	notification
of	 an	 I/O	 event.	The	ZX	Spectrum	 I/O	ports	 are	 discussed	 fully	 in	Chapter	 19,
Input-Output	Devices.

To	 relieve	 the	processor	 from	being	put	under	unnecessary	 load,	 and	 to	 remove
the	software	burden	of	having	to	schedule	frequent	checks	for	a	keyboard	input,
the	 ULA	 provides	 the	 processor	 with	 a	 regular	 interrupt	 to	 be	 used	 as	 a	 task
scheduler.	It	should	be	noted	that	cassette	I/O	cannot	be	processed	via	an	interrupt,
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allowing	 the	 processor	 to	 simultaneously	 attend	 to	 another	 task,	 because	 the
cassette	port	is	sampled	by	a	software	routine	that	requires	most	of	the	processor's
execution	time,	and	which	cannot	be	interrupted.

When	generating	an	interrupt	for	the	Z80,	there	is	a	minimum	duration	for	which
the	 /INT	 or	 /NMI	 signal	 must	 be	 active	 to	 guarantee	 a	 response	 from	 the
processor.	The	Z80	samples	both	interrupt	pins	at	the	rising	edge	of	the	last	T-state
of	an	instruction,	and	since	the	longest	 instructions	take	23	T-states	to	complete,
the	interrupt	signal	must	be	held	low	for	at	least	this	time.

In	 choosing	 a	 suitable	 interrupt	 period,	 several	 requirements	 need	 to	 be
considered:	One,	 the	 interrupt	must	 be	 regular.	Two,	 the	 period	 should	 be	 short
enough	to	avoid	events	like	key	presses	from	being	missed.	Three,	the	frequency
of	the	interrupt	cannot	be	so	great	as	to	cause	the	processor	to	spend	most	of	its
time	executing	the	ISR.

To	satisfy	these	requirements	and	avoid	implementing	additional	counters	to	mark
out	 the	 interrupt	 period,	 Altwasser	 would	 have	 looked	 to	 see	 what	 regular	 and
frequently	 occurring	 signal	 already	 existed	 in	 the	 ULA.	 Each	 stage	 of	 the
horizontal	 and	 vertical	 counters	 increasing	 divide	 the	master	 14MHz	 clock	 into
longer	and	longer	periods,	and	the	choices	would	have	been	clear:	Use	the	period
of	one	scan	line,	several	scan	lines,	or	an	entire	frame.

The	 first	 option	 of	 using	 a	 single	 scan	 line	 period	would	 result	 in	 an	 interrupt
every	 64µs,	 or	 put	 another	 way,	 after	 224	 T-states	 or	 56	 of	 the	 Z80's	 fastest
instructions.	The	second	option	of	using	the	period	of	several	scan	line,	decreases
the	interrupt	period	but	increases	the	complexity	of	the	interrupt	generator	as	the
number	of	lines	used	must	be	divisible	into	312,	the	number	of	lines	counted	by
the	vertical	 counter,	 to	make	 sure	 that	 the	period	was	 even.	The	 third	option	of
using	the	period	of	all	312	scan	lines	in	a	single	frame	gives	a	period	of	19.97ms,
which	 is	69888	T-states	or	17472	of	 the	Z80's	 fastest	 instructions.	Additionally,
the	ULA	 is	 already	 generating	 a	 regular	 signal	 at	 this	 frequency	 to	 provide	 the
television	with	the	necessary	vertical	synchronisation,	and	so	capitalising	on	this
signal	to	additionally	provide	the	processor	interrupt	makes	perfect	sense.

Because	 the	 VSync	 signal	 is	 active	 for	 the	 duration	 of	 four	 scan	 lines,	 its
additional	use	as	the	Z80	interrupt	would	create	a	pulse	256µs	long.	This	would
certainly	cause	repeated	detection	by	the	processor	since	it	is	very	likely	that	the
interrupt	signal	would	still	be	present	when	the	processor	finished	executing	 the
service	routine,	and	attempted	to	resume	normal	program	execution.	To	avoid	this
scenario,	the	ULA	creates	a	shorter	interrupt	pulse	by	combining	/VSync	with	V2-
0	to	reduce	its	duration	to	a	single	64µ5	scan	line,	and	then	shortens	it	further	by
combining	it	with	the	horizontal	counter	bits	C8-6	to	create	a	signal	that	is	active
for	exactly	32	T-states.
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It	should	be	noted	that	the	V2	term	in	the	interrupt	generation	is	obsolete,	since	it
also	 occurs	 in	 the	VSync	 logic.	Had	 the	 vertical	 sync	 spanned	 eight	 scan	 lines
when	 the	 interrupt	 logic	was	designed,	 then	 the	V2	would	have	been	necessary,
hinting	 that	 the	 VSync	 signal	 timing	 may	 have	 been	 adjusted	 during	 design
prototyping.	See	the	section	called	Vertical	Synchronization	in	Chapter	11,	Video
Synchronisation	for	further	information.

Figure	21-1:	Relationship	between	interrupt	and	electron	beam	position

As	demonstrated	by	Table	11-1	and	Figure	11-4,	the	horizontal	counter	is	at	zero
when	the	electron	beam	is	in	line	with	or	at	the	left	hand	edge	of	the	pixel	display
rectangle.	Also,	the	vertical	synchronisation	pulse	begins	64	scan	lines	before	the
pixel	display	rectangle	(Table	11-2);	therefore	the	interrupt	occurs	exactly	64	scan
lines	 before	 the	 first	 pixel	 of	 a	 frame	 is	 displayed	 by	 the	 television,	 which	 is
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64×224	CPU	clock	cycles	or	14336	T-states.	See	Figure	21-1.

This	timing	is	exploited	by	a	number	of	innovative	programs	that	track	the	exact
position	 of	 the	 electron	 beam	 through	 the	 meticulous	 counting	 of	 T-states,
allowing	them	to	change	the	value	of	attribute	bytes	just	behind	the	electron	beam,
so	 that	 the	next	pixel	 line	of	a	character	 row	 is	 scanned	with	a	different	colour;
therefore	 increasing	 the	vertical	colour	 resolution	of	 that	part	of	 the	screen	by	a
factor	of	eight.

Figure	21-2:	Interrupt	signal	generation

The	ULA	does	not	place	an	instruction	or	vector	address	on	the	data	bus	when	it
generates	 the	 processor	 interrupt,	 so	 interrupt	mode	 0	 cannot	 generally	 be	 used
with	 the	ZX	Spectrum.	 Interrupt	mode	2,	 on	 the	 other	 hand,	 can	 be	 used	 if	 the
vector	table	is	carefully	constructed	to	return	the	same	16	bit	address	regardless	of
which	pair	of	bytes	are	 taken;	 therefore	making	 the	value	on	 the	data	bus	at	 the
time	the	interrupt	was	generated	irrelevant.

Detection	Reliability

Figure	21-3	 shows	 the	 relationship	 between	 the	ULA	 /INT	 signal	 and	 the	CPU
clock.

The	Z8400A	CPU	datasheet	 from	Zilog 	 [Z80ZDS]	 specifies	 that	 the	minimum
/INT	 fall	 to	clock	rise	setup	 time	 for	 the	Z80	 is	80ns,	whereas	 the	 timing	of	 the
interrupt	 signal	 in	 the	 ZX	 Spectrum	 is	 such	 that	 it	 occurs	 approximately	 42ns
before	 the	next	positive	clock	 transition;	 therefore	 there	 is	no	guarantee	 that	 the
Z80	will	respond	to	the	interrupt	at	this	clock	cycle.	However,	it	is	known	that	the
processors	of	most	ZX	Spectrums	do	manage	to	recognise	the	interrupt	request	at

l
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this	next	cycle.	This	is	borne	out	first	by	14336	being	an	exact	multiple	of	T-states
per	 line,	 and	 second	 because	 some	ZX	Spectrums	 report	 14335	T-states	 for	 the
same	period,	which	 could	 only	 occur	 if	 the	 processor	 completed	 a	 cycle	 before
accepting	the	interrupt	request	-	easily	attributed	to	the	out-of-specification	set	up
time.

Figure	21-3:	Timing	relationship	between	interrupt	and	CPU	clock

Why	 some	 machines	 report	 a	 "late	 timing"	 of	 14335	 T-states	 is	 due	 to	 a	 less
tolerant	 Z80	 processor	 being	 used,	 since	 the	 ZX	 Spectrum's	 interrupt	 signal	 is
clearly	at	the	limit	of	detectability	by	the	next	clock	cycle.	These	machines	have
been	known	to	exhibit	 this	 timing	as	soon	as	 they	are	switched	on,	or	after	 they
have	been	allowed	to	warm	up.	The	ULA	/INT	signal	is	generated	by	NOR	gating
a	number	of	counter	signals,	and	the	propagation	delay	incurred	here	causes	/INT
to	lag	behind	the	downwards	transition	of	the	CPU	clock.	This	lag	is	increased	by
the	ripple	stages	within	the	horizontal	counter,	delaying	the	downward	transition
of	 the	 interrupt	 further	 so	 that	 it	 is	 within	 42ns	 of	 the	 upward	 clock	 transition
(measured	on	a	6C001E-7	ULA).	As	the	ULA	warms	up,	the	overall	propagation
delay	experienced	by	 the	 interrupt	 increases,	 closing	 the	gap	between	 it	 and	 the
rising	 clock	 transition	 and	 overstepping	 the	 detection	 threshold	 of	 a	 small
percentage	of	processors.

1.	 The	 Z8400A	 from	 Zilog	 [Z80ZDS],	 SGS,	 NEC	 and	 the	 Sharp	 LH0080
[Z80SDS]	all	specify	a	minimum	80ns	set	up	time	for	the	4MHz	processor.
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Chapter	22

Signal	Interfacing

This	 chapter	 lists	 each	 of	 the	ULA	 interface	 pins,	 giving	 a	 brief	 description	 of
each,	whether	 they	 are	 input,	 output	 or	 both,	 and	what	 electrical	 interface	 they
implement.

The	ULA	provides	signal	level	matching	between	the	internal	matrix	cell	voltage
levels	and	the	external	TTL	levels	of	the	other	ZX	Spectrum	ICs,	through	drivers
and	buffers	implemented	within	the	peripheral	cells.

Altwasser	made	 extensive	 use	 of	 standard	 interface	 functions	 from	 the	 Ferranti
component	 library,	 each	 a	 pretested	 component	 with	 known	 operating
characteristics.	 Analogue	 interfaces	 such	 as	 the	 YUV	 video	 and	 the
cassette/speaker	are	unique	to	the	ZX	Spectrum.

Appendix	B,	Component	Library	gives	each	of	the	interface	function	schematics.

ULA	Interface	Connections

Pin Name Cell Type Description
1 /CAS 18 Totem	pole	output Column	address	strobe	for	the	16K

DRAM	video	memory
2 /WR 17 TTL	input Z80	write	enable.	Indicates	when	the

processor	is	performing	a	write
operation

3 /RD 16 TTL	input Z80	read	enable.	Indicates	when	the
processor	is	performing	a	read
operation

4 /WE 15 Totem	pole	output Write	enable	for	lower	16K	DRAM
5 A0 14 Tri-state	totem

pole	output;	TTL
input

Multiplexed	lower	16K	DRAM
address	bus;	I/O	port	decoding
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6 A1 13 Tri-state	totem
pole	output

Multiplexed	lower	16K	DRAM
address	bus

7 A2 12 Tri-state	totem
pole	output

Multiplexed	lower	16K	DRAM
address	bus

8 A3 11 Tri-state	totem
pole	output

Multiplexed	lower	16K	DRAM
address	bus

9 A4 10 Tri-state	totem
pole	output

Multiplexed	lower	16K	DRAM
address	bus

10 A5 9 Tri-state	totem
pole	output

Multiplexed	lower	16K	DRAM
address	bus

11 A6 8 Tri-state	totem
pole	output

Multiplexed	lower	16K	DRAM
address	bus

12 /INT 7 Open-collector
output

Z80	non-maskable	interrupt	request

13 VccLogic - 5V	logic	supply

14 VccIO 5,6 5V	analogue	and	interface	supply

15 U 2,3,4 Analogue Colour	difference	signal
16 V 45,46,1 Analogue Colour	difference	signal
17 /Y 49,50 Analogue Video	luminance
18 D0 43 Open-collector

output;	TTL	input
16K	DRAM	and	Z80	data	bus

19 K0 42 See	Keyboard
Matrix	Inputs

Keyboard	matrix	half-row	column

20 K1 41 See	Keyboard
Matrix	Inputs

Keyboard	matrix	half-row	column

21 D1 40 Open-collector
output;	TTL	input

16K	DRAM	and	Z80	data	bus

22 D2 39 Open-collector
output;	TTL	input

16K	DRAM	and	Z80	data	bus

23 K2 38 See	Keyboard
Matrix	Inputs

Keyboard	matrix	half-row	column

24 K3 37 See	Keyboard
Matrix	Inputs

Keyboard	matrix	half-row	columt

25 D3 36 Open-collector
output;	TTL	input

16K	DRAM	and	Z80	data	bus
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26 K4 35 See	Keyboard
Matrix	Inputs

Keyboard	matrix	half-row	column

27 D4 34 Open-collector
output;	TTL	input

16K	DRAM	and	Z80	data	bus

28 SOUND 32,33 Analogue Multiplexed	cassette	I/O	and	speaker
output

29 D5 31,28 Open-collector
output

16K	DRAM	and	Z80	data	bus

30 D6 30 Open-collector
output;	TTL	input

16K	DRAM	and	Z80	data	bus

31 D7 29 Open-collector
output;	TTL	input

16K	DRAM	and	Z80	data	bus

32 /PHICPU 28 Inverting	open-
collector	output

Inverted	3.5MHz	clock	for	the	Z80

33 /IOREQ 27 TTL	input I/O	port	select
34 /ROMCS 26 Totem	pole	output The	ROM	chip	enable
35 /RAS 25 Tri-state	totem

pole	output
Row	address	strobe	for	the	16K
DRAM	video	memory

36 A14 24 TTL	input The	Z80	address	bus
37 A15 23 TTL	input The	Z80	address	bus
38 /MREQ 22 TTL	input The	Z80	memory	request
39 XTAL 20-21 Oscillator Connection	to	an	external	14MHz

crystal
40 GND 19 0V	power	connection

Interface	Categories

Open-Collector	Output

An	open-collector	 output	 is	 either	 at	 zero	volts	 or	 in	 a	 floating	high	 impedance
state.	Such	outputs	are	usually	connected	 to	an	external	pull-up	resistor,	 to	 raise
the	signal	to	a	high	logic	level	when	the	output	is	in	its	floating	state.

The	 ULA	 incorporates	 internal	 pull-up	 resistors,	 but	 these	 are	 generally
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unnecessary	as	pull-ups	are	also	provided	on	the	ZX	Spectrum	PCB.

Totem	Pole	Output

A	totem	pole	output	contains	two	output	transistors,	one	that	pulls	the	signal	up	to
a	logic	1,	the	other	that	pulls	the	signal	down	to	a	logic	0.	They	are	typically	used
as	output	stages	of	TTL	integrated	circuits,	and	sometimes	incorporate	an	output
enable	that	switches	off	both	output	transistors	when	not	active,	disconnecting	the
output	from	the	external	circuit.

TTL	Input

A	TTL	input	is	one	that	is	compatible	with	the	TTL	logic	1	and	0	voltage	levels.
The	ULA	implements	this	through	a	voltage	divider	and	emitter-follower	that	has
its	 collector	 connected	 to	 Vs.	 This	 converts	 the	 TTL	 level	 input	 signal	 into	 an
internal	CML	logic	compatible	signal.

ULA	Interface	Summary

Z80	Control	Signal	Input

The	 Z80	 control	 inputs	 are	 accepted	 by	 TTL	 level	 compatible	 emitter-follower
buffers,	where	they	are	converted	into	CML	matrix	cell	compatible	logic	levels.

Z80	Address	Bus	A15-14

The	 address	 bus	 inputs	 A15-14	 are	 accepted	 by	 TTL	 level	 compatible	 emitter-
follower	buffers,	where	they	and	converted	into	CML	matrix	cell	compatible	logic
levels.

Address	Bus	A6-0
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The	ULA	generates	six	multiplexed	DRAM	address	bus	signals,	through	which	it
selects	the	video	memory	address	it	wants	to	read.	These	outputs	are	tri-state	and
are	only	enabled	during	a	video	update	memory	fetch,	when	internal	signal	/AE	is
active.	Details	of	the	video	address	generation	and	bus	enable	can	be	found	in	the
section	called	Generating	The	Address	in	Chapter	15,	Video	Addressing.

A0	is	a	special	case,	being	both	an	output	and	an	 input.	When	the	ULA	address
bus	is	disabled,	the	Z80	A0	signal	is	passed	to	pin	5	through	the	external	address
multiplexer	and	bus	isolating	resistor.	The	ULA	buffers	 this	signal,	converting	it
to	a	CML	compatible	logic	level	that	is	used	by	the	I/O	port	decoding	described	in
the	section	called	Decoding	the	I/O	Port	in	Chapter	19,	Input-Output	Devices.

Data	Bus	D7-0

As	the	ULA	both	reads	and	writes	to	the	data	bus,	this	interface	consists	of	non-
inverting	collector-follower	outputs	with	weak	pull-up	resistors.	Coupled	to	these
are	emitter-follower	input	buffers	that	convert	the	external	TTL	levels	into	CML
compatible	logic	levels.	Data	bus	signal	D5	is	an	exception,	as	it	is	input	only.

Weak	pull-up	resistors	are	used	because	the	data	bus	is	shared	with	other	ICs	such
as	 16K	 and	 32K	 DRAM,	 ROM	 and	 external	 peripherals.	 The	 ZX	 Spectrum
provides	additional	pull-up	resistors	on	the	PCB.

Z80	Interrupt	Signal

The	ULA	generated	interrupt	signal	for	the	Z80	is	converted	to	a	TTL	compatible
level	 by	 a	 non-inverting	 collector-follower.	 The	 output	 has	 a	 strong	 pull-up
resistor	to	provide	a	fast	rise/fall	time.

PHICPU	3.5MHz	Z80	Clock

The	ULA	generated	Z80	clock	is	converted	to	an	inverted	TTL	compatible	output
by	 a	 collector-follower.	 The	 output	 incorporates	 a	 strong	 pull-up	 resistor	 to
provide	a	fast	rise/fall	time.
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Keyboard	Matrix	Inputs	K4-0

The	keyboard	matrix	inputs	are	passed	into	the	ULA	through	an	emitter-follower
buffer	 with	 a	 weak	 pull-up	 resistor,	 converting	 the	 external	 voltage	 levels	 into
CML	compatible	logic	levels.

Keyboard	 pin	 K0	 is	 an	 exception	 because	 it	 also	 provides	 an	 open-collector
output.	This	output	may	pull	K0	down	 to	0V	as	part	of	ULA	die	 testing	during
manufacture.	See	the	section	called	V8	Output	Via	Keyboard	Input	K0	in	Chapter
23,	Hidden	Features	and	Errors	for	further	details.

When	a	key	is	pressed,	the	Z80	address	bus	pulls	the	keyboard	input	signal	down
towards	0V	by	sinking	current.	Resistance	due	 to	 the	keyboard	contacts	and	 the
connecting	 cable	 reduces	 the	 voltage	 swing	 at	 the	 ULA	 input	 pins.	 The	 input
buffers	 take	 this	 into	 account	 and	 are	 biased	 differently	 to	 the	 TTL	 inputs,
accepting	a	smaller	voltage	range.

ROM	Chip	Enable

The	ROM	chip	enable	is	a	totem	pole	output	that	goes	low	when	the	CPU	requests
access	to	the	16K	ROM.

DRAM	Column	Address	Strobe

The	 DRAM	 CAS	 is	 a	 totem	 pole	 output	 that	 goes	 low	 as	 part	 of	 the	 video
generator	or	Z80	access	to	the	lower	16K	DRAM.

DRAM	Row	Address	Strobe

The	DRAM	RAS	is	a	 tri-state	 totem	pole	output,	enabled	when	either	 the	video
generator	 or	 Z80	 requires	 access	 to	 the	 lower	 16K	 DRAM.	 There	 is	 an
implementation	error	with	this	signal	which	results	in	it	being	enabled	for	most	of
the	time.	For	further	details,	see	the	section	called	Disabled	16K	DRAM	Refresh	in
Chapter	23,	Hidden	Features	and	Errors.
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Chapter	23

Hidden	Features	and	Errors

Test	Modes

A	 significant	 cost	 in	 the	 production	 of	 integrated	 circuits	 is	 the	 time	 taken	 to
complete	 wafer	 testing.	 Each	 die	 on	 a	 wafer	 is	 tested	 against	 a	 number	 of
customer	supplied	 test	vectors,	using	an	automated	wafer	probe	 that	connects	 to
the	die	 pin	 connections.	The	die	 that	 fail	 are	 spot	marked	with	 ink	 so	 that	 they
may	be	identified	and	discarded	before	packaging.	If	test	vectors	take	a	long	time
to	complete,	manufacturing	costs	will	rise	considerably.

It	is	therefore	imperative	that	customers	ensure	the	test	pattern	will	execute	in	the
shortest	 time	possible.	For	some	designs,	 this	may	 involve	building	specific	 test
features	into	the	core	functionality	of	the	device.

The	ZX	Spectrum	ULA	contains	 four	such	 test	 features	 that	allow	die	 testing	 to
exercise	its	complete	clock	and	signal	cycle	in	a	compressed	time	period.

The	issue	with	testing	the	ZX	Spectrum	ULA	is	that	it	is	driven	by	a	single	clock
signal,	 the	 frequency	of	which	 it	 repeatedly	halves	 to	generate	 the	scan	 line	and
video	frame	timing.

Under	normal	operating	conditions,	the	ZX	Spectrum	ULA	is	clocked	at	14MHz
and	completes	a	full	video	cycle	in	20ms.	This	is	an	exceptionally	long	time	when
die	testing,	and	even	by	clocking	the	ULA	at	the	maximum	permitted	frequency	of
20MHz,	completion	time	only	improves	to	14ms.

Altwasser	realised	that	there	were	key	clock	signals	in	his	design	that	would	allow
rapid	 test	 pattern	 execution	 if	 they	 could	 be	 driven	 at	 a	much	higher	 frequency
than	usual.	To	allow	this,	he	 identified	ULA	pin	signal	combinations	 that	would
normally	be	 invalid,	 and	engineered	 the	detection	of	 these	 invalid	conditions	 so
that	they	overrode	the	required	internal	clocks.

Essentially,	 it	 was	 not	 necessary	 to	 test	 an	 entire	 frame.	 As	 long	 as	 the	 key
operations	 performed	 during	 a	 scan	 line	 and	 frame	 were	 checked,	 the	 correct
operation	of	the	ULA	video	handling	would	be	proven.
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Checking	events	within	a	frame,	such	as	the	vertical	sync	and	CPU	interrupt,	was
sped	 up	 considerably	 by	 allowing	 the	 upper	 stage	 of	 the	 master	 counter	 to	 be
clocked	directly.	This	allowed	all	312	states	of	the	vertical	counter	to	be	stepped
through	in	0.1092ms,	and	is	the	first	of	the	test	mode	clocks.

Stepping	 through	 the	events	of	a	 scan	 line	was	achieved	by	clocking	 the	master
oscillator	input	of	pin	39	at	20MHz;	the	complete	sequence	taking	0.0448ms.	The
test	vectors	would	verify	the	timing	of	signals	such	as	/RAS,	/CAS,	/HSync	and
pixel	video	generation,	having	pre-loaded	the	ULA	data	bus	inputs	with	a	suitable
test	pattern.

Several	aspects	of	 the	pixel	video	generation	needed	 to	be	 tested	 independently,
such	as	the	PAL	odd/even	line	inversion,	the	flash	counter	and	flash	mode	colour
inversion.	 This	 required	 clocking	 the	 flash	 counter	 much	 faster	 than	 usual,	 the
ability	 to	 measure	 the	 RGB	 values	 after	 the	 PAL	 line	 inversion,	 and	 some
indication	as	to	the	current	scan	line	number.

The	 flash	 counter	 clock	 is	 the	 second	 test	mode	 clock,	 and	 is	 discussed	 below
along	with	the	additional	test	monitoring	signals.

To	 enable	 the	 test	modes,	 the	ULA	decodes	CPU	 signals	 /MREQ	and	 /IOREQ,
looking	for	 the	 invalid	condition	of	both	being	low	together,	and	addresses	each
clock	through	the	/RD	and	/WR	signals.

Upper	Counter	Stage	Test	Clock

The	first	test	clock	/TCLKA	is	defined	as:

In	 the	 section	called	The	Master	Counter	 in	Chapter	 10,	The	 Internal	Clocks,	 it
was	discussed	that	 the	master	counter	segments	C8-6	and	the	entire	vertical	 line
counter	are	clocked	by	CLKHC6,	the	result	of	gating	/C5	with	/TCLKA:

Under	 normal	 operating	 conditions	 /TCLKA	 will	 be	 low,	 and	 clock	 signal
CLKHC6	reflects	the	state	of	C5.	However,	when	the	test	condition	is	imposed	by
/MREQ,	/IOREQ	and	/RD	being	low,	/TCLKA	will	go	high;	therefore	CLKHC6
reflects	the	state	of	TCLKA,	when	/C5	is	low.
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To	perform	these	accelerated	tests,	the	master	clock	is	removed	from	the	oscillator
input	pin	39,	and	/MREQ	and	/IOREQ	are	held	low	to	activate	the	clock	override.
/RD	is	then	clocked	at	up	to	20MHz,	directly	driving	CLKHC6	at	this	frequency.
As	 the	 override	 will	 only	 succeed	 when	 master	 counter	 /C5	 is	 low,	 the	 tester
would	guarantee	that	/C5	was	low	before	it	proceeded	with	the	test.

It	 is	 probable	 that	 the	 scan	 line	 tests	 for	 signals	 such	 as	 /RAS,	 /CAS	 and
horizontal	sync	would	be	performed	first,	and	in	an	order	that	results	in	/C5	being
left	low.	See	Table	11-1.

CLKHC6	 drives	 the	 upper	 three	 segments	 of	 the	 master	 counter,	 which	 cycle
through	seven	states	before	clocking	the	vertical	counter.	It	is	therefore	possible	to
clock	 the	 vertical	 counter	 at	 20MHz/7=2.86MHz	 instead	 of	 the	 usual	 15625Hz,
sequencing	a	single	video	frame	in	0.1092ms	instead	of	19.968ms.

Figure	23-1:	TCLKA	and	TCLKB	generation,	K0	output

Flash	Counter	Test	Clock

The	second	test	clock	/TCLKB	is	defined	as:

This	 clock	 is	 similar	 to	 the	 /TCLKA	discussed	 above,	 and	 is	 enabled	 under	 the
same	 invalid	 conditions	 of	 /IOREQ	 and	 /MREQ	 being	 low	 together,	with	 /WR
being	the	clock	input	instead	of	/RD.

This	 test	 clock	 overrides	 /V8	 which	 clocks	 the	 flash	 counter	 to	 generate	 the
1.565Hz	flash	signal	(see	Figure	14-3),	allowing	the	flash	counter	to	be	clocked	at
20MHz,	 producing	 a	 625KHz	 flash	 signal.	 The	 test	 process	 would	 remove	 the
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master	clock	from	the	oscillator	input	pin	39,	when	clocking	/TCLKB	input	/WR.

Because	 /V8	 must	 be	 low	 for	 /TCLKB	 to	 control	 the	 flash	 counter,	 the	 ULA
provides	a	mechanism	for	 the	wafer	probe	 to	monitor	V8,	see	 the	section	called
V8	Output	Via	Keyboard	Input	K0.

Driving	 the	 flash	counter	directly	allows	 rapid	 testing	of	 the	 flash	counter,	 flash
XNOR	and	 colour	 output	multiplexer	 by	monitoring	 the	 /Black*	 output,	 see	 the
section	called	Black	Output.

Before	carrying	out	these	tests,	the	flash	mode	must	be	enabled	by	presenting	an
appropriate	 value	 to	 the	ULA	 data	 bus	 during	 the	 video	 byte	 load	 test	 (see	 the
section	called	The	Flash	Mode	in	Chapter	12,	Generating	The	Display).

V8	Output	Via	Keyboard	Input	K0

While	 /TCLKB	 is	 enabled	 and	 high,	 V8	 is	 output	 through	 keyboard	 input
connector	KO.

K0out	is	given	by:

The	K0	output	is	an	open	collector,	so	normally	it	has	no	effect	on	the	incoming
keyboard	signal.	However,	when	K0out	goes	high,	the	output	of	K0	goes	low	as	it
is	clamped	to	ground.

This	output	is	used	during	die	tests	to	identify	when	/V8	is	low,	so	that	/TCLKB
may	take	control	of	the	flash	counter,	and	also	to	indicate	when	the	first	vertical
counter	has	reached	the	first	pixel	display	line.

Black	Output

/Black*	is	routed	to	the	unused	peripheral	cell	48,	where	it	is	output	to	the	package
pin	bond	pad	via	transistor	T6,	forming	an	open	collector	output.

This	bond	pad	provides	 the	NOR	of	 the	 colour	output	multiplexer	RGB	values,
after	they	have	been	processed	by	the	PAL	odd/even	line	inverter.	By	sampling	the
value	at	this	connection,	the	die	test	pattern	can	test	whether	or	not	black	is	being
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produced	 when	 expected,	 whether	 the	 flash	 counter	 and	 XNOR	 gate	 are
functioning	 correctly	 and	 whether	 the	 PAL	 odd	 line	 inversion	 is	 occurring
appropriately.

Altwasser's	patent	Display	 for	a	computer	[ALTWASSERDC]	 shows	 the	Black*
signal	being	inverted	and	fed	off	the	bottom	of	Fig.	5D.

Implementation	and	Design	Errors

Disabled	16K	DRAM	Refresh

The	lower	16K	DRAM	refresh	mechanism	of	the	issue	1	ZX	Spectrum	intended	to
rely	on	 the	ULA	video	access	during	 the	active	part	of	 the	display,	and	 the	Z80
refresh	mechanism	at	all	other	times.

Thus	the	/RAS	output	of	the	ULA	is	supposed	to	go	into	a	high	impedance	state
when	 a	 video	 update	 or	 Z80	 16K	 DRAM	 access	 is	 not	 being	 performed.	 This
hands	control	of	the	DRAM	/RAS	input	over	to	the	Z80	/RFSH	signal,	which	is
also	connected	to	the	DRAM	/RAS	via	a	330R	resistor,	as	in	Figure	23-2.

Figure	23-2:	ZX	Spectrum	/RAS	output	and	enable

As	the	implementation	stands,	the	/RAS	output	of	the	ULA	is	a	tri-state	signal	that
is	enabled	when:

This	 shows	 that	 the	 /RAS	output	 is	deactivated	and	goes	 into	a	high	 impedance
state	only	when	the	Z80	is	addressing	the	ROM	during	periods	of	border	update.
At	 all	 other	 times	 /RAS	 will	 be	 enabled,	 overriding	 the	 Z80	 /RFSH	 signal.	 In
other	words,	 the	Z80	can	only	 refresh	 the	16K	DRAM	while	 it	 is	 accessing	 the
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ROM	and	the	video	controller	is	not	updating	the	display.

The	 ZX	 Spectrum	 suffers	 no	 ill	 effects	 from	 the	 disabled	 refresh	 as	 the	 video
update	appears	to	provide	enough	of	a	row	refresh	for	the	4116	DRAM	chips	to
maintain	 integrity.	 As	 the	 ULA	 does	 not	 access	 the	 video	 DRAM	 for	 120
consecutive	display	lines,	the	longest	period	between	DRAM	memory	row	reads
is	7.68ms,	which	exceeds	the	maximum	period	of	2ms	specified	by	the	data	sheet
[DS4116].

For	 the	ULA	 /RAS	output	 to	 go	 high	 impedance	whenever	 the	 video	 controller
and	CPU	are	not	accessing	the	16K	DRAM,	/RASEN	should	have	been:

This	 logic	 was	 not	 fixed	 in	 subsequent	 revisions	 of	 the	 ULA,	 and	 the	 /RFSH
connection	 to	 /RAS	 via	 R32	 was	 removed	 from	 the	 issue	 2	 ZX	 Spectrum	 and
above.

Dark	Flash	Edges

Display	 artefacts	 that	 all	 ZX	 Spectrum	 owners	 will	 be	 familiar	 with	 are	 the
vertical	lines	that	appear	at	the	left	and	right	edges	of	flashing	character	cells.	An
example	of	this	is	shown	in	Figure	23-3.
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Figure	23-3:	The	dark	edges	of	flash	cells

Consider	the	first	character	cell	shown	in	the	example.	It	has	a	vertical	line	at	its
left	and	a	 thinner	vertical	 line	at	 its	right.	This	empty	character	cell	has	 its	flash
mode	enabled	and	has	a	black	background	(paper)	and	a	white	 foreground	(ink)
attribute.	Because	this	photograph	was	taken	while	the	character	cell	was	inverted
by	the	flash	clock,	the	cell	is	shown	with	a	white	background.

The	character	cells	 to	 the	 left	 and	 right	of	 the	 flash	cell	have	white	background
and	black	foreground	attributes.

These	vertical	lines	are	due	to	the	flash	mode	enable	signal	being	delayed	between
the	colour	output	 latch	and	 the	DataSelect	XNOR	gate.	This	 is	demonstrated	by
the	following	sequence	of	events,	which	assume	that	the	FlashClock	signal	is	low:

1.	 As	 the	electron	beam	moves	 from	 the	non-flash	character	 cell	on	 the	 left,
into	 the	 flash	 cell,	 the	white	 foreground	 and	black	background	 colours	 of
the	flash	cell	are	presented	to	the	colour	output	multiplexer.

The	 flash	mode	enable	 signal,	FL,	 is	applied	 to	 the	XNOR	gate	 shown	 in
Figure	23-4,	but	is	delayed	by	an	inverter	and	NOR	gate.

Because	of	the	delay,	the	expected	inversion	of	/DataSelect	does	not	occur
at	the	XNOR	gate	at	this	time,	causing	the	background	colour	to	be	selected
by	the	output	multiplexer,	and	the	television	to	being	displaying	black.

2.	 After	 the	delay	of	 the	flash	enable	signal	has	past,	 the	XNOR	gate	 inverts
/DataSelect	and	causes	 the	output	multiplexer	 to	correctly	select	 the	white
foreground	colour.	The	television	will	begin	to	display	white.

This	ends	the	moment	of	black	output,	leaving	a	vertical	line	to	the	left	of
the	character	cell.

274



3.	 As	the	electron	beam	enters	the	non-flash	character	cell	 to	the	right	of	the
flash	cell,	 the	colours	presented	to	the	output	multiplexer	are	set	back	to	a
foreground	of	black	and	a	background	of	white.

The	 flash	 mode	 enable	 signal	 is	 disabled,	 but	 is	 again	 delayed	 before	 it
reaches	the	XNOR	gate.

/DataSelect	 continues	 to	 be	 inverted	 and	 the	 foreground	 colour	 of	 black
begins	to	be	displayed	by	the	television.

4.	 Shortly	after	 this,	 the	disabled	 flash	mode	 signal	 reaches	 the	XNOR	gate,
reverting	 /DataSelect	 and	 causing	 the	 output	 multiplexer	 to	 select	 the
background	colour,	white.

This	 ends	 the	moment	 of	 black	 output,	 leaving	 a	 vertical	 line	 at	 the	 right
hand	edge	of	the	character	cell.

The	example	above	works	by	swapping	the	foreground	and	background	colours	as
the	electron	beam	enters	and	leaves	the	flash	cell.	The	DataSelect	signal	does	not
change	state	because	all	pixels	are	reset.

Figure	23-4:	Flash	XNOR	and	foreground/background	colour	bit	multiplexer

The	 vertical	 lines	 can	 also	 be	 generated	 by	 keeping	 the	 foreground	 and
background	 colours	 consistent,	 and	 filling	 the	 flash	 cell	 completely	 with	 set
pixels.	 However	 this	 will	 produce	 a	 thinner	 left	 hand	 vertical	 line	 than	 the
previous	 example.	 The	 second	 example	 in	 Figure	23-3	 shows	 a	 flash	 cell	 with
inverted	pixels,	so	that	they	are	all	set:

1.	 As	 the	electron	beam	moves	 from	 the	non-flash	character	 cell	on	 the	 left,
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into	the	flash	cell,	the	set	pixels	cause	DataSelect	to	go	high.

The	 flash	mode	enable	 signal,	FL,	 is	applied	 to	 the	XNOR	gate	 shown	 in
Figure	23-4,	but	is	delayed	by	an	inverter	and	NOR	gate.

Because	of	the	delay,	the	expected	inversion	of	/DataSelect	does	not	occur
at	the	XNOR	gate	at	this	time,	causing	the	foreground	colour	to	be	selected
by	the	output	multiplexer,	and	the	television	to	being	displaying	black.

2.	 After	 the	delay	of	 the	flash	enable	signal	has	past,	 the	XNOR	gate	 inverts
/DataSelct	 and	 causes	 the	 output	multiplexer	 to	 correctly	 select	 the	white
background	colour.	The	television	will	begin	to	display	white.

This	ends	the	moment	of	black	output,	leaving	a	vertical	line	to	the	left	of
the	character	cell.

3.	 As	the	electron	beam	enters	the	non-flash	character	cell	 to	the	right	of	the
flash	cell,	the	reset	pixels	cause	DataSelect	to	go	low.

The	 flash	 mode	 enable	 signal	 is	 disabled,	 but	 is	 again	 delayed	 before	 it
reaches	the	XNOR	gate.

/DataSelect	 continues	 to	 be	 inverted	 and	 the	 background	 colour	 of	 black
begins	to	be	displayed	by	the	television.

4.	 Shortly	after	 this,	 the	disabled	 flash	mode	 signal	 reaches	 the	XNOR	gate,
reverting	 /DataSelect	 and	 causing	 the	 output	 multiplexer	 to	 select	 the
foreground	colour,	white.

This	 ends	 the	moment	 of	 black	 output,	 leaving	 a	 vertical	 line	 at	 the	 right
hand	edge	of	the	character	cell.

The	flash	cell	in	the	third	example	of	Figure	23-3	is	identical	to	the	first	example,
except	 that	 the	 flash	 cell	 has	 a	 foreground	of	black	 and	a	background	of	white.
Vertical	 edges	 have	 been	 produced,	 but	 as	 they	 are	 white	 they	 blend	 in	 to	 the
overall	screen	background.

Examining	the	lines	generated	by	examples	one	and	two,	it	is	clear	that	the	line	at
the	 left	hand	edge	of	 the	first	example	 is	 thicker	 than	 the	other	 three	 lines.	This
appears	 to	 be	 due	 to	 the	 slightly	 asymmetrical	 propagation	 delay	 of	 the
foreground/background	colour	bit	multiplexer.	See	Figure	23-4.

When	the	ink	(foreground)	bit	is	clear,	and	the	paper	(background)	bit	is	set,	the
propagation	delay	of	 the	multiplexer	 is	 the	sum	of	the	ink	and	output	NOR	gate
propagation	 delays.	 When	 the	 ink	 bit	 is	 set	 and	 the	 paper	 bit	 is	 reset,	 the
propagation	 delay	 of	 the	 multiplexer	 is	 the	 sum	 of	 the	 channel	 select	 inverter,
paper	and	output	NOR	gate	propagation	delays.
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Where	 the	 first	example	demonstrates	a	 thicker	 line	at	 the	 left	edge	of	 the	 flash
cell,	 the	 multiplexer	 is	 taking	 a	 little	 longer	 to	 select	 the	 foreground	 colour	 of
white	because	it	is	slower	when	switching	between	a	set	foreground	bit	and	a	reset
background	bit.

Variable	Pixel	Widths

The	photograph	in	Figure	23-5	show	an	alternate	pixel	pattern	that	is	darker	in	the
second	 and	 fourth	 columns.	The	 first	 eight	 character	 cells	 from	 left	 to	 right	 are
displaying	 a	 10101010	 pixel	 pattern,	 with	 a	 black	 foreground	 and	 white
background.This	 pattern	 is	 repeated	 down	 the	 screen,	 creating	 the	 lighter	 shade
column	on	the	left.

To	the	right	of	this	column,	character	positions	eight	to	fifteen	are	filled	with	an
inverted	 pixel	 pattern	 of	 01010101,	 but	 this	 time	 with	 a	 white	 foreground	 and
black	background.	As	the	colours	have	also	been	inverted,	the	television	displays
the	same	10101010	pattern	as	the	first	column,	but	appears	darker	than	the	first.
The	two	columns	are	repeated	once	more,	giving	four	wide	columns	in	total.

Columns	 two	 and	 four	 have	 a	 black	 background	 and	 a	 white	 foreground.	 As
described	in	the	section	called	Dark	Flash	Edges,	this	combination	of	foreground
and	 background	 colour	 increases	 the	 propagation	 delay	 of	 the
foreground/background	colour	bit	multiplexer,	widening	the	area	of	colour	being
switched	 from.	However	both	 the	 foreground	and	background	colours	would	be
delayed	equally,	and	there	would	be	no	visible	brightness	difference.
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Figure	23-5:	Perception	of	variable	brightness

It	 is	 probable	 that	 the	 large	 fan-out	 of	 the	 /DataSelect	 signal	 is	 affecting	 its
switching	speed,	such	that	it	is	able	to	pull	a	gate	input	high	in	less	time	that	it	is
able	 to	 pull	 it	 low.	 This	 would	make	 the	 reset	 background	 pixels	 very	 slightly
wider	 than	 the	 set	 foreground	 pixels,	 the	 visual	 effect	 of	 which	 would	 be
amplified	 by	 alternating	 between	 set	 and	 reset	 pixels.	 In	 the	 example	 shown	 in
Figure	23-5,	 the	 asymmetric	 pixel	width	would	 lighten	 columns	 one	 and	 three,
and	darken	columns	two	and	four,	 the	contrast	between	the	two	appearing	much
greater.

All	I/O	Ports	Contended

This	has	already	been	discussed	in	the	section	called	The	issue	2	5C112	ULA	 in
Chapter	18,	CPU	Clock	and	Contention,	but	will	be	summarised	here.

The	 CPU	 contention	 handler	 does	 not	 consider	 A0	 along	 with	 /IORQ	 when
deciding	whether	the	Z80	I/O	activity	will	cause	contention	for	the	ULA	data	bus;
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therefore	all	 I/O	 activity	 is	 considered	 equally,	 resulting	 in	 the	 processor	 being
stopped	when	any	I/O	port	is	accessed	during	a	display	update.

Sinclair	engineers	solved	this	problem	without	needing	to	produce	a	replacement
ULA	by	OR	gating	A0	and	/IORQ	on	the	PCB	and	feeding	the	result	into	the	ULA
as	/IOREQ.	This	OR	gate	was	created	by	the	resistor	that	was	already	present	in
the	 /IORQ	 signal	 and	 an	 additional	 transistor	 soldered	 across	 the	 Z80	 between
Vcc,	A0	and	/IOREQ	(at	the	ULA	side	of	the	resistor).	See	Figure	18-13.

Colour	Sub-Carrier	Frequency	Lock

During	the	design	of	the	ZX	Spectrum,	Sinclair	engineers	were	unaware	that	PAL
and	NTSC	TV	standards	required	the	colour	sub-carrier	frequency	to	be	locked	to
the	line	and	frame	frequencies,	and	consequently	designed	the	colour	encoder	to
be	clocked	from	a	different	frequency	source	than	the	ULA,	which	is	responsible
for	 the	 synchronisation	 signals.	 The	 cross-talk	 effect	 of	 these	 unlocked
frequencies	is	to	produce	a	thin	vertical	rolling	effect	between	the	vertical	edges
of	strongly	contrasting	colours.

Phantom	Keys

This	feature	is	not	really	a	design	flaw	of	the	ULA,	but	arises	due	to	the	way	the
keyboard	is	multiplexed	through	the	ULA's	single	I/O	port.

When	software	checks	for	a	keypress	in	the	half-row	Q	to	T,	it	reads	from	I/O	port
0xFB7F.	 See	 Table	 19-1.	 This	 pulls	 address	 line	A10	 low	 to	 select	 the	 desired
keyboard	half-row,	and	reads	the	5-bit	keypress	result	from	the	ULA	I/O	port.

If	the	user	pressed	Q,	P	and	O	simultaneously,	the	read	of	keyboard	half-row	Q	to
T	would	incorrectly	indicate	that	Q	and	W	were	being	pressed.

What	 is	 happening	here	 is	 that	 by	pressing	 the	Q	key,	A10	 is	 connected	 to	K0,
which	pulls	K0	low.	By	pressing	P	at	the	same	time,	A13	is	also	connected	to	K0,
which	causes	A13	 to	be	pulled	 low.	Now,	by	pressing	another	key	connected	 to
A13,	in	this	example	O,	its	keyboard	input,	K1,	is	mistakenly	pulled	low	by	A13;
therefore	 a	 read	 of	 half-row	 Q	 to	 T	 sees	 K0	 and	 K1	 going	 low,	 which	 is
interpreted	as	keys	Q	and	W	being	pressed.
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The	Snow	Effect

The	"Snow	Effect"	occurs	because	 the	ULA	does	not	consider	a	 refresh	address
between	 0x4000	 and	 0x7F7F	 as	 a	 contention	 condition,	 and	 does	 not	 halt	 the
instruction	being	 executed	while	 it	 completes	 the	video	byte	 fetch.	See	Chapter
18,	CPU	Clock	and	Contention.	While	this	is	technically	correct,	 the	CPU	/RAS
generator	 recognises	 this	 condition	 as	 being	 a	 genuine	 access	 to	 the	 lower	 16K
DRAM,	 and	 therefore	 generates	 a	 CPU	 /RAS	 signal.	 This	 interferes	 with	 the
/RAS	signal	being	produced	by	 the	video	generator,	and	corrupts	 the	video	byte
fetch	that	is	taking	place.	See	the	section	called	CPU	RAS	Generation	in	Chapter
17,	CPU	Memory	Access	for	further	information.

Detection	of	a	conflicting	CPU	address	only	occurs	during	the	first	T-state	of	an
instruction.	 The	 second	 T-state	 is	 identified	 by	 the	 rising	 clock	 transition	 after
/MREQ	 has	 gone	 low,	 and	 the	 last	 T-state	 by	 the	 rising	 clock	 transition	 after
/MREQ	has	gone	high.	See	Figure	23-6.	During	this	period	contention	checking	is
disabled	 to	 allow	 the	 instruction	 to	 complete,	 and	 is	 controlled	 by	 signal
MREQT23.

Figure	23-6:	Z80	instruction	fetch	showing	refresh	cycle

If	 an	 instruction	 is	 fetched	 from	 the	 lower	 16K	 DRAM,	 the	 address	 will	 be
detected	by	 the	ULA	during	 the	first	half	of	T1,	and	 the	 instruction	will	be	held
until	the	video	fetch	is	complete.	However,	because	an	instruction	fetch	is	four	T-
states	in	length,	the	timing	of	the	clock	wait	signal,	CLKWAIT,	is	such	that	T4	can
overlap	the	start	of	the	video	fetch,	where	/VidRAS	goes	low.
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Furthermore,	by	ignoring	the	address	bus	between	the	start	of	T-state	T2	and	the
end	of	T4,	the	ULA	will	not	consider	the	refresh	address	placed	on	the	bus	during
T3	and	T4.

During	a	 refresh	cycle,	 the	Z80	places	 the	 lower	seven	bits	of	 the	R	 register	on
address	lines	6-0.	In	addition,	it	places	the	contents	of	the	I	register	on	the	upper
eight	 address	 lines,	 an	 action	 of	 the	 Z80	 that	 is	 not	 officially	 documented	 by
Zilog.	 Therefore,	 if	 the	 I	 register	 is	 set	 to	 a	 value	 between	 0x40	 and	 0x7F,	 the
CPU	will	generate	a	refresh	address	between	0x4000	and	0x7F7F.

Figure	23-7:	Screen	break-up	of	the	"Snow	Effect"

The	 consequence	 of	 not	 considering	 the	 refresh	 address	 during	 contention
checking	allows	the	instruction	fetch	refresh	cycle	to	overlap	the	video	byte	fetch.
If	 the	 refresh	 address	 is	 between	 0x4000	 and	 0x7F7F,	 the	ULA	will	 generate	 a
CPU	/RAS	signal	and	disrupt	the	timing	of	the	video	/RAS.	This	can	cause	/RAS
to	 stay	 low	 across	 both	 page	mode	 reads,	 or	 cause	 /RAS	 to	 go	 low	 before	 the
video	DRAM	row	address	has	been	placed	on	the	ULA	address	bus.	Both	of	these
situations	lead	to	video	bytes	being	fetched	from	the	wrong	row	address,	resulting
in	a	break-up	of	the	screen.	See	Figure	23-7.

Had	the	Z80	/RFSH	signal	been	available	to	the	ULA,	the	generation	of	the	CPU
/RAS	 signal	 during	 a	 refresh	 cycle	 could	 have	 been	 suppressed.	 Alternatively,
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/RFSH	could	have	been	used	on	the	ZX	Spectrum	PCB	to	pull	/MREQ	high	at	the
ULA	pin,	preventing	the	CPU	/RAS	from	being	produced.
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Chapter	24

ULA	Versions

Issue	1	ULA	5C102E

The	 first	 ZX	 Spectrum	 ULAs,	 the	 5C102E,	 were	 produced	 by	 Ferranti	 from
March/April	 1982.	 The	 earliest	 recorded	 date	 code	 is	 8214,	 giving	 the	 date	 of
manufacture	as	the	week	beginning	4	April	1982.	Many	of	these	early	machines
were	 sent	 out	 as	 review	 models,	 with	 the	 operating	 system	 contained	 in	 an
EPROM	as	the	ROMS	had	not	yet	been	produced.

Figure	24-1:	Issue	2	ZX	Spectrum	with	issue	1	ULA	and	dead	cockroach

The	contention	handling	of	 this	ULA	contained	a	 logic	 error	 that	 prevented	 I/O
contention	from	being	handled	properly.	This	only	partially	halted	 the	execution
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of	 I/O	 instructions	 while	 the	 video	 update	 was	 being	 performed,	 and	 was	 first
noticed	by	the	erratic	keyboard	response	of	the	first	machine	code	games.	See	the
section	called	The	issue	I	5C102	ULA	in	Chapter	18,	CPU	Clock	and	Contention
for	full	details.

The	engineers	at	Sinclair	corrected	the	logic	error	by	modifying	the	ZX	Spectrum
PCB	 circuit	 with	 a	 small	 upside-down	 IC,	 termed	 the	 "dead	 cockroach".	 See
Figure	18-9.

Some	early	issue	2	ZX	Spectrum	models	were	sold	containing	the	issue	1	5C102E
ULA	 and	 dead	 cockroach	 modification,	 mounted	 on	 its	 own	 tiny	 PCB.	 The
photograph	 in	 Figure	 24-1	 shows	 such	 a	 machine,	 serial	 number	 001-037728,
containing	an	issue	1	ULA	manufactured	between	the	21	and	27	June	1982.

The	erratic	I/O	contention	handling	masked	a	second	error	that	caused	the	ULA	to
interrupt	all	Z80	I/O	operations,	even	if	they	were	not	intended	for	the	ULA.	This
error	remained	undiscovered	until	after	the	issue	2	ULA	went	into	production.

Issue	2	ULA	5C112E

The	issue	2	ULA,	5C112E,	was	first	manufactured	circa	August	1982.	It	corrected
the	 earlier	 I/O	 contention	 error	 of	 the	 ULA	 5C102E	 by	 including	 the	 "dead
cockroach"	modification	internally,	however	the	second	I/O	handling	error	present
in	the	5C102E	ULA	remained	unnoticed	and	was	therefore	not	fixed.

The	 contention	 handler	 does	 not	 consider	A0	 along	with	 the	Z80	 /IORQ	 signal
during	 I/O	 activity,	 and	 therefore	 treats	 all	 I/O	 requests	 equally,	 interrupting
requests	for	I/O	ports	such	as	the	ZX	Printer.

The	 Sinclair	 engineers	 corrected	 this	 problem	 by	 OR	 gating	 A0	 and	 /IORQ
together	before	passing	them	to	the	ULA	/IOREQ	pin.	This	was	neatly	achieved
by	 soldering	 a	 transistor	 "spider"	 across	 the	 top	 of	 the	 Z80.	 See	 photograph	 in
Figure	18-14.

It	was	 also	 discovered	 that	 the	 intended	Z80	memory	 refresh	 of	 the	 lower	 16K
DRAM	did	not	work	as	intended	with	the	issue	1	ZX	Spectrum,	and	caused	no	ill
effects.	Therefore	the	/RFSH	signal	was	disconnected	from	the	lower	16K	/RAS
signal	on	the	issue	2	ZX	Spectrum	PCB,	and	was	not	corrected	within	the	5C112E
ULA.	Presumably	this	fault	was	discovered	after	the	5C112E	had	been	produced
and	was	cleaned	up	during	the	issue	2	ZX	Spectrum	PCB	redesign.
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Issue	3	ULA	6C001E-6

The	 issue	 3	 ULA,	 6C001E-6,	 was	 first	 manufactured	 circa	 May	 1983.	 It	 was
based	 on	 a	 new	 ULA	 series	 from	 Ferranti,	 and	 may	 have	 been	 produced
specifically	for	Sinclair	Research.

This	new	series	used	Ferranti's	improved	ULA	manufacturing	process,	resulting	in
a	 lower	 power	 device.	 Resistor	 changes	 on	 the	 PCB	 were	 therefore	 necessary
when	using	the	6C00l	ULA,	resulting	in	a	PCB	design	change	for	the	issue	3	ZX
Spectrum	and	above.

The	ULA	cleaned	up	the	earlier	I/O	contention	fixes	that	had	been	applied	to	the
issue	2	5C112E	ULA	and	altered	the	timing	of	the	colour	burst	component	of	the
video	signal,	improving	compatibility	with	Hitachi	and	Grundig	televisions.	This
had	 the	side	effect	of	shifting	 the	 television	picture	slightly	further	 to	 the	 left	of
the	screen.	See	the	section	called	Burst	Generation	in	Chapter	16,	Analogue	Video
for	full	details.

The	 issue	 2	 "spider"	 modification	 was	 still	 required,	 and	 became	 an	 integral
component	of	the	ZX	Spectrum	PCB.

Issue	4	ULA	6C001E-7

The	issue	4	ZX	Spectrum	contains	a	modification	that	improves	the	reliability	of
the	CPU's	access	to	the	lower	16K	DRAM.

The	multiplexer	 select	 signal	 in	 earlier	 issues	 of	 the	 computer	 is	 taken	 directly
from	 the	 DRAM	 /RAS	 signal,	 switching	 the	 multiplexers	 over	 to	 the	 column
address	when	 it	 goes	 low.	This	 removes	 the	 row	 address	 soon	 after	 /RAS	 goes
low,	potentially	violating	tRAH.	See	Table	13-1	and	Figure	13-1.

In	the	issue	4	ZX	Spectrum	and	above,	the	address	bus	multiplexer	select	signal	is
delayed	by	two	NAND	gates	on	the	PCB,	connected	as	inverters.	This	increases
the	length	of	time	between	/RAS	going	low	and	the	removal	of	the	row	address,
improving	 row	 address	 reliability.	 The	 unfortunate	 side	 effect	 of	 delaying	 the
column	address	 is	 that	 the	address	bus	may	not	 stabilise	before	 /CAS	goes	 low,
making	the	column	address	read	unreliable.	The	6C001E-7	ULA	was	produced	to
solve	this	problem	by	generating	a	delayed	/CAS	signal.

The	 ULA	 introduces	 delay	 into	 the	 /CAS	 signal	 with	 two	 inverters,	 shown
between	 /comCAS	 and	 /CAS	 in	 Figure	 17-7.	 This	 was	 the	 most	 convenient
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location	 to	 insert	 the	 delay,	 and	 required	minimal	 interconnect	 re-routing.	 This
affects	 both	 the	CPU	CAS	 and	 the	 video	CAS,	 but	was	 only	 necessary	 for	 the
CPU	CAS.

For	 example,	 the	 CPU	 generated	 /CAS	 signal	 goes	 low	 94ns	 after	 /RD	 for	 the
6C001E-7	ULA,	and	after	61ns	for	the	6C001E-6.	Similarly,	the	video	generated
/CAS	signal	goes	low	approximately	78ns	after	/RAS	for	the	6C001E-7	ULA,	and
50ns	 after	 /RAS	 for	 the	 6C001E-6	 ULA.	 Therefore,	 CAS	 timings	 are
approximately	30ns	later	for	the	6C001E-7	ULA.

Because	the	PCB	NAND	gates	alter	the	timing	of	the	multiplexer	select	signal,	it
is	 important	 that	 the	/CAS	timing	is	also	adjusted	by	using	a	6C001E-7	ULA	in
these	 machines.	 Using	 an	 earlier	 ULA	 will	 cause	 the	 computer	 to	 behave
unreliably.	This	is	reflected	by	the	ZX	Spectrum	Service	Manual	Supplement	No
1,	which	state	that	"Two	spare	gates	from	IC24	have	been	used	to	improve	ULA
timing.	 It	 is	 important	 that	 ULA	 6C001-7	 or	 later	 issues	 (the	 issue	 number	 is
designated	by	the	number	after	the	hyphen)	are	used	in	this	circuit.	The	gates	are
fitted	in	series	with	the	RASL	output	from	the	ULA	and	the	input	to	the	display
RAM	multiplexers."

The	 6C001E-7	 ULA	 can	 be	 used	 successfully	 in	 earlier	 issues	 of	 the	 ZX
Spectrum.

The	NTSC	ULA	6C011E

The	NTSC	ULA,	identified	as	6C011E,	was	produced	by	Sinclair	presumably	to
export	the	ZX	Spectrum	to	the	United	States.	However,	the	design	of	the	machine
did	 not	 comply	 with	 the	 FCC	 regulations	 for	 computers,	 and	 its	 sale	 was
prohibited.	The	earliest	known	date	code	 for	an	NTSC	ULA	is	8444,	giving	 the
date	 of	 manufacture	 as	 the	 week	 beginning	 29	 October	 1984.	 The	 computer
containing	this	ULA	was	sold	in	Chile,	South	America,	and	it	is	not	known	how
many	were	manufactured.

The	 NTSC	ULA	 is	 clocked	 by	 a	 14.11MHz	 crystal,	 slightly	 faster	 than	 a	 PAL
ULA,	producing	an	NTSC	compliant	63.5µs	scan	line.	At	264	lines	per	frame,	the
ULA	generates	a	frame	rate	of	59.65MHz.	The	Z80	CPU	runs	slightly	faster	as	a
result,	being	clocked	by	the	ULA	at	3.5275MHz.	See	the	section	called	The	NTSC
Display	 in	Chapter	 9,	The	Video	Display	 and	 the	 section	 called	The	NTSC	Line
Counter	in	Chapter	10,	The	Internal	Clocks,	for	further	details.

The	vertical	synchronisation	pulse	occurs	earlier	 than	for	a	PAL	ULA,	216	scan
lines	 after	 the	 first	 pixel	 display	 row,	 shortening	 the	 bottom	 border	 to	 24	 lines.
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This	timing	adjustment	helps	maintain	a	vertically	centred	display.	See	the	section
called	NTSC	Vertical	Synchronisation	in	Chapter	11,	Video	Synchronisation.

Colour	generation	is	also	affected,	as	the	ULA	does	not	invert	the	chrominance	V
signal	 on	 alternate	 scan	 lines,	 and	 only	 inserts	 a	 colour	 burst	 into	 the	U	 signal.
Additionally,	 the	LM1889	 chrominance	modulator	 on	 the	ZX	Spectrum	PCB	 is
clocked	 by	 a	 3.579545MHz	 crystal,	 providing	 the	 necessary	NTSC	 colour	 sub-
carrier	 frequency.	 See	 the	 section	 called	 NTSC	 Chrominance	 Modulation	 in
Chapter	16,	Analogue	Video.

The	ZX	Spectrum	128	ULA

The	ZX	Spectrum	128	was	produced	by	Sinclair	Research	in	partnership	with	its
Spanish	 distributor,	 Investronica.	 The	 design	 of	 the	 128	 ULA,	 designated
7K010E-5,	is	almost	identical	to	the	5C	and	6C	ULAs	used	in	the	ZX	Spectrum
16/48K,	and	contains	very	few	design	changes	or	fixes.	For	example,	the	"spider"
modification	 is	 still	 required	 to	 prevent	 the	ULA	 contending	 all	 I/O	 operations.
The	 main	 modifications	 to	 the	 ULA	 were	 to	 improve	 the	 quality	 of	 the	 video
signal	generated,	and	to	provide	additional	clocks	for	new	circuit	components.

In	the	section	called	Colour	Sub-Carrier	Frequency	Lock	 in	Chapter	 23,	Hidden
Features	 and	 Errors,	 the	 vertical	 rolling	 effect	 that	 occurs	 between	 strongly
contrasting	 colours	 is	 described.	 This	 is	 caused	 by	 interaction	 between	 the	 two
separate	oscillators	used	for	 the	video	generation.	The	7K010E	ULA	avoids	 this
by	using	a	single	crystal	oscillator	from	which	it	derives	the	master	counter	clock,
and	the	colour	sub-carrier	signal.

The	 7K010E	ULA	does	 not	 produce	 luminance	 and	 chrominance	YUV	 signals,
but	 instead	outputs	 the	 internally	generated	RGB,	Bright,	VSync	and	composite
synchronisation	signals	through	six	ULA	package	pins.	These	video	components
are	modulated	into	a	composite	video	signal	by	a	TEA2000	colour	modulator	on
the	PCB,	in	addition	to	making	them	available	at	an	RGB	monitor	connector	at	the
rear	of	the	computer.	The	TEA2000	modulator	requires	an	external	clock	at	twice
the	PAL	sub-carrier	frequency	of	4.43361875MHz.

The	ULA	is	driven	by	a	17.7345MHz	master	clock,	the	frequency	of	which	was
carefully	 chosen	 to	 allow	 both	 the	 colour	 sub-carrier	 and	 pixel	 clock	 to	 be
generated	by	the	ULA.	By	dividing	the	master	clock	by	2,	the	ULA	generates	the
8.86725MHz	colour	clock	for	the	TEA2000,	and	by	dividing	by	2.5,	it	generates
the	7.0938MHz	pixel	and	master	counter	clock.	This	pixel	clock	is	slightly	faster
than	used	by	the	16/48K	ULA	and,	without	modifying	the	master	counter,	would
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result	in	a	shorter	scan	line	period	of	63.15µs.

The	horizontal	and	vertical	line	timings	of	the	7K010E	ULA	have	therefore	been
adjusted	to	take	account	of	this	higher	clock	frequency.	For	instance,	the	number
of	master	counter	states	that	produce	a	15625	Hz	line	frequency	is	given	by:

However,	 in	 the	 7K010E	ULA,	 the	master	 counter	 responsible	 for	 tracking	 the
horizontal	position	of	 the	 television	electron	beam	is	 reset	on	 reaching	456,	and
not	454	as	predicted	above.	The	upper	six	bits	of	the	counter,	C8-3,	must	therefore
be	 constructed	 from	 the	 larger	 T-Type	 flip-flops	 which	 have	 reset,	 carry	 and
enable,	so	that	the	counter	stages	are	synchronous	with	a	common	reset	signal	and
clocked	by	C2.	The	reset	signal	is	activated	when	the	counter	reads	455	(111	000
111),	 and	 the	 reset	 occurs	 at	 the	 next	 clock	 transition.	 The	 reset	 is	 therefore
generated	 from	 the	NOR	of	 /C8,	 /C7	 and	 /C6	 and	 is	 applied	 until	C2	 advances
from	 1	 to	 0,	 clocking	 the	 synchronous	 stages	 as	 it	 does	 so	 and	 resets	 them	 to
000000.

Establishing	the	reset	at	456	meant	that	the	C2-0	did	not	need	to	be	considered	in
the	generation	of	 the	reset	signal,	and	could	remain	as	D-Type	flip-flops,	saving
space.	The	consequence	being	that	the	counter	generates	a	horizontal	line	period
of	64.28µs.

With	this	slightly	over-specification	line	period,	the	frame	rate	would	become:

This	 is	below	the	specification	50Hz,	and	so	 the	engineers	of	 the	7K010E	ULA
reduced	the	vertical	line	count	to	311	to	compensate:

The	 increase	 in	 master	 counter	 frequency	 increases	 the	 CPU	 clock	 to	 3.5469
MHz,	a	gain	of	46.9KHz.

In	addition	to	generating	the	pixel,	colour	sub-carrier	and	CPU	clocks,	 the	ULA
generates	the	1.77345MHz	clock	for	the	AY-3-8912A	sound	chip	by	dividing	the
CPU	 clock	 by	 two	 and	 passing	 this	 out	 of	 a	 dedicated	 package	 pin.	 All	 other
aspects	of	 the	ZX	Spectrum	128,	such	as	 the	128K	bank-paged	memory	and	the
control	of	the	AY-3-8912	sound	device	are	handled	by	a	custom	PAL	chip,	and	the
custom	ZX8401	multiplexer	 that	also	 replaced	 the	 two	74LS157	multiplexers	 in
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the	ZX	Spectrum	48K	issue	5	and	above.

The	cassette	interface	described	in	Chapter	20,	Cassette	Storage	and	Sound	is	also
implemented	across	two	peripheral	cells	in	the	7K010E	ULA.	However,	instead	of
both	 input	 and	output	 interfaces	being	connected	 to	a	 single	ULA	pin,	 the	MIC
and	Speaker	output	section	(Figure	20-2)	is	connected	to	package	pin	35,	and	the
EAR	 input	 section	 (Figure	 20-3)	 is	 connected	 to	 package	 pin	 34.	 On	 the	 ZX
Spectrum	 128	 PCB,	 these	 two	 pins	 are	 connected	 together,	 reproducing	 the
behaviour	of	the	original	ZX	Spectrum	16/48K.

The	7K010E-5	ULA	identifier	may	be	broken	down	as	follows.	7	indicates	that	it
is	 a	 7000	 series	 array,	 K	 gives	 the	 array	 type	 and	 speed,	 010	 the	 device
customisation	 identifier,	E	 the	package	 type	 (plastic	DIL	 in	 this	 case)	 and	5	 the
revision	number.	Like	the	6000	series	array,	the	7000	series	does	not	appear	in	the
Ferranti	archives	held	at	the	Museum	Of	Science	and	Industry	in	Manchester.	It	is
likely	 that	 the	 7000	 series	 is	 a	 larger	 version	 of	 the	 6000	 series,	with	 the	 same
matrix	and	peripheral	cell	 structure,	and	 the	same	component	values;	 just	as	 the
5000	 series	 array	 is	 a	 larger	 version	 of	 the	 2000	 series.	 This	 would	 have	 been
desirable	 to	 reduce	 the	amount	of	 redesign	and	 re-layout	 required	and	 to	 reduce
cost.	The	7000	series	array	was	the	largest	used	by	Sinclair,	and	has	48	package
pins.
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Appendix	A

The	ULA	Die	Plot

The	die	plot	of	the	ULA	6C001E-7	silicon	is	presented	in	Figure	A-1	and	Figure
A-2,	and	shows	the	location	and	size	of	each	functional	design	component	within
each	ULA	quarter.

The	first	quarter	contains	the	analogue	video	signal	and	colour	generation,	along
with	the	flash	counter	and	the	upper	master	and	lower	vertical	counter	stages.

The	 second	 quarter	 contains	 the	 video	 address	 generation,	 master	 and	 vertical
counter	stages	and	I/O	port	address	decoding.

The	 third	 quarter	 contains	 the	 display	 and	 attribute	 byte	 data	 latches,	 attribute
output	latch,	colour	output	multiplexer	and	partial	pixel	shift	register.	Also	present
are	the	I/O	port	output	latches,	keyboard	input	buffers	and	cassette	recorder	EAR
input	buffer.

The	fourth	quarter	contains	the	master	clock,	lower	master	counter,	DRAM	RAS
and	 CAS	 generation,	 video	 control	 signals,	 memory	 decode,	 CPU	 clock
generation,	contention	handling	and	most	of	the	pixel	shift	register.

The	ULA	area	 used	 does	 not	 extend	 to	 the	 outer	 edge	 of	matrix	 cells,	with	 the
exception	of	DL4,	AL4	and	PL4,	as	the	design	was	originally	laid	out	for	a	5C000
series	ULA	that	contained	11×10	matrix	cells	per	quarter	instead	of	12×11	for	the
6C000	series.

Running	around	the	outside	of	the	ULA,	surrounding	the	matrix	cells	and	crossing
over	the	peripheral	cells,	are	the	four	ULA	power	rails.	The	outer	thin	rail	is	GND,
and	inside	that	is	the	5V	peripheral	cell	I/O	supply.	The	next	and	thickest	power
rail	is	the	logic	5V	supply,	which	is	regulated	into	a	0.95V	matrix	cell	supply	by
serial	 voltage	 regulators	 located	 at	 the	 base	 of	 each	 peripheral	 cell.	 These
regulators	are	controlled	by	a	bandgap	reference	voltage	rail,	Vref,	that	runs	inside
the	logic	rail,	producing	the	innermost	matrix	cell	Vs	rail.
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Figure	A-1:	Die	plot	of	the	ZX	Spectrum	6C001	ULA	-	Quarters	1	and	3
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Figure	A-2:	Die	plot	of	the	ZX	Spectrum	6C001	ULA	-	Quarters	2	and	4

Identifier Description
AL7-0 Attribute	byte	data	latch	consisting	of	eight	gated	D	transparent

latches.
AO7-0 Attribute	output	latch	consisting	of	eight	gated	D	transparent

latches.
C5-0 The	master	counter	D-type	flip-flops.
C8-6 The	master	counter	T-type	flip-flops.
CAS CPU	DRAM	CAS	generation.
CLK7 Divides	the	14MHz	master	clock	into	a	7MHz	signal	with	an

even	duty	cycle.	Drives	the	pixel	shift	register	and	master
counter.

Cockroach The	issue	1	”dead	cockroach”	fix	when	implemented	within	the
5C112	and	6C001	ULAs.

Colour
Generation

Logic	to	generate	the	various	RGB,	timing,	blank	and	black
signals	required	for	the	analogue	luminance	and	chrominance
signal	generation.

Colour	Output
Mux

The	colour	output	multiplexer	from	the	attribute	output	latch.

Control	Signals The	video	generation	and	memory	fetch	control	and	timing
signals.

CPU	Clock	and
Contention
Handler

Generation	of	the	CPU	clock	and	contention	handling.

DL7-0 Display	byte	data	latch	consisting	of	eight	gated	D	transparent
latches.

EAR-D6 I/O	port	output	buffer	to	CPU	data	bus	of	EAR	socket	state.
Flash	Clock The	5-bit	flash	ripple	counter	consisting	of	D-type	flip-flops.
Flash	XNOR XNOR	of	serial	data	stream	from	pixel	shift	register	with	the

flash	clock.
I/O	Port
Address
RD/WR
Decode

I/O	port	address	decoding	and	test	mode	decoding.
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Keyboard	to
Data	Bus

I/O	port	output	buffer	to	CPU	data	bus	of	keyboard	state.

MemDecd CPU	memory	access	decoding	and	generation	of	/ROMCS	and
RAM16	signals.

Paper/Border
Mux

Multiplex	the	background	and	border	colours	into	the	attribute
output	latch.

Pixel	Shift
Register

The	pixel	shift	register,	constructed	from	eight	D-type	flip-flops
with	input	multiplexing.

PL4-0 I/O	port	output	latch	consisting	of	five	gated	D	transparent
latches.

RAS CPU	DRAM	RAS	generation.
Sync,	INT,
Burst,Blank

Counter	driven	logic	that	derives	the	video	synchronisation,
burst	and	blank	signals	as	well	as	the	CPU	interrupt	request
signal.

V9-0 The	master	counter	T-type	flip-flops.
VCRst Vertical	counter	reset	logic.
VidEN,	SLoad
and	VidC3

Further	specific	control	signal	generation.

VidCAS Video	access	DRAM	CAS	generation.
VidRAS Video	access	DRAM	RAS	generation.
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Appendix	B

Component	Library

The	 Ferranti	 component	 library	 for	 each	 type	 of	 ULA	 array	 contained	 a
comprehensive	collection	of	functional	building	blocks	that	designers	could	draw
upon.	 Each	 unit	 was	 provided	 with	 details	 of	 relevant	 characteristics,	 such	 as
propagation	delay	and	fan-out,	and	in	the	case	of	interface	functions,	the	current
and	voltage	levels.

In	 addition	 to	 the	 circuit	 schematic,	 example	 interconnect	 routing	 patterns	 are
occasionally	given,	an	example	of	which	is	presented	in	Figure	B-13.

Flip-Flops	and	Latches

The	 flip-flops	 and	 latches	 used	 by	 the	ZX	Spectrum	ULA	 are	 presented	 in	 this
section.	 The	 flip-flops	 and	 shift	 registers	 are	 negative	 edge	 triggered,	 and	 the
latches	enter	a	latched	state	when	the	enable	input	is	high.

Description Reference Cells Figure
T-Type	with	reset,	carry,	enable TRCE 5 Figure	B-1
T-Type	with	carry,	enable TCE 5 Figure	B-2
T-Type	with	reset,	carry TRC 3.5 Figure	B-3
D-Type	flip-flop FD 3 Figure	B-4
Single	bit	of	shift	register SHIFT 5 Figure	B-5
8-bit	shift	register Shift8 40 Figure	B-6
Gated	D	transparent	latch GD 2 Figure	B-7

Table	B-1:	Matrix	cell	counts	of	the	latches	and	flip-flops	used	by	the	ZX
Spectrum
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Figure	B-1:	T-Type	flip-flop	with	Reset,	Carry	and	Enable

Figure	B-2:	T-Type	flip-flop	with	Carry	and	Enable
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Figure	B-3:	T-Type	flip-flop	with	Reset	and	Carry

Figure	B-4:	D-Type	flip-flop
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Figure	B-5:	Single	bit	stage	of	shift	register

Figure	B-6:	8-bit	shift	left	register

Figure	B-7:	Gated	D	transparent	latch
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Interface	Functions

Input	 and	 output	 functions,	 such	 as	 the	TTL	 compatible	 inputs	 used	 by	 the	ZX
Spectrum	ULA	are	presented	in	this	section.

The	resistor	values	given	are	for	the	6000	series	ULA	peripheral	cell,	such	as	the
6C001E-6	and	6C001E-7.	Figure	B-13	shows	an	example	interconnect	layout	for
the	tri-state	totem	pole	output	given	in	Figure	B-12.

Description Direction Figure
Open-collector	output	with	high	fan-out Output Figure	B-

8
TTL	compatible	open-collector	output,	emitter-follower
input

Bidirectional Figure	B-
9

TTL	compatible	input Input Figure	B-
10

Emitter-follower	buffer	input Input Figure	B-
11

Totem	pole	output	with	tri-state	capability Output Figure	B-
12

Table	B-2:	Interface	functions	used	by	the	ZX	Spectrum
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Figure	B-8:	Open-collector	output	with	strong	pull-up

Figure	B-9:	TTL	compatible	open-collector	output	and	emitter-follower	input
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Figure	B-10:	TTL	compatible	input

Figure	B-11:	Emitter-follower	buffer	inputs
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Figure	B-12:	Totem	pole	output	with	tri-state	capability
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Figure	B-13:	Tri-state	totem	pole	peripheral	cell	interconnect
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Appendix	C

ULA	Configuration

The	basic	gate	type	supported	by	the	ULA	matrix	cell	is	the	2-input	NOR	gate.	A
single	5000	and	6000	series	matrix	cell	will	provide	up	to	two	2-input	NOR	gates.
The	propagation	delay	and	fan-out	of	these	gates	is	determined	by	the	load	resistor
and	 current	 source	 configuration	 they	have,	 in	 addition	 to	 the	number	of	 inputs
they	have	(fan-in).

The	standard	2-input	NOR	gate	is	shown	in	Figure	C-1.	Here,	all	four	transistors
of	the	matrix	cell	are	used	to	provide	two	identical	2-input	NOR	gates,	each	with	a
single	load	resistor,	RL,	and	current	source	connection.
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Figure	C-1:	6000	Series	ULA,	two	2-input	NOR	gates

These	two	2-input	NOR	gates	may	be	combined	into	a	single	4-input	NOR	gate
by	joining	the	transistor	collectors	together,	along	with	the	emitters.	See	Figure	C-
2.	As	twice	the	number	of	transistors	are	being	used	for	a	single	gate,	to	maintain
the	 same	 propagation	 delay	 and	 fan-out	 capability,	 it	 is	 important	 that	 the	 load
resistor	 be	 halved	 in	 value,	 and	 the	 current	 source	 doubled.	 Hence	 the	 two
available	 load	 resistors	 are	 connected	 in	 parallel,	 and	 both	 current	 sources	 are
connected	to	the	transistor	emitter.

If	the	gate	were	required	to	switch	slower,	then	only	one	load	resistor	and	current
source	would	be	used.
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Figure	C-2:	6000	Series	ULA,	4-input	NOR	gate
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Figure	C-3:	6000	Series	ULA,	2-input	NOR	gate,	reduced	propagation	delay

The	technique	of	increasing	the	current	drawn	through	the	gate	transistors	can	be
applied	 to	 any	 gate,	 decreasing	 its	 propagation	 delay	 and	 increasing	 its	 fan-out
capability.	Figure	C-3	 shows	 a	 2-input	NOR	 gate,	 configured	with	 two	 parallel
load	 resistors	 and	 two	 coupled	 current	 sources.	 This	 configuration	 would
approximately	reduce	the	propagation	delay	of	the	gate	by	one	quarter.
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Figure	C-4:	6000	Series	ULA,	2-input	OR	gate

Large	gates,	such	as	the	8-input	NOR	gate	shown	in	Figure	C-5,	are	constructed
by	 connecting	 the	 transistors	 from	multiple	 matrix	 cells	 in	 parallel.	 Again,	 the
appropriate	number	of	load	resistors	and	current	sources	are	used	to	configure	the
required	propagation	delay	and	fan-out.

Figure	C-5:	6000	Series	ULA,	8-input	NOR	gate
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Figure	C-6	shows	an	example	matrix	cell	interconnect	for	a	D-type	flip-flop.	Note
that	 the	 /Q	 gate	 is	 configured	 with	 a	 load	 resistance	 of	 RL/2	 and	 two	 current
sources,	giving	it	a	higher	fan-out	that	the	Q	output.	This	example	is	taken	from
the	C0	master	counter	stage	of	the	ZX	Spectrum	6C001	ULA.
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Figure	C-6:	D-Type	flip-flop	using	three	out	of	four	matrix	cells
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Appendix	D

Mathematical	Proofs

Quadrature	Amplitude	Modulation

The	 following	 proof	 demonstrates	 that	 the	 sum	 of	 two	 orthogonal,	 amplitude
modulated	 carriers	 results	 in	 an	 output	 that	 is	 both	 phase	 and	 amplitude
modulated.

Quadrature	modulation,	defined	by:

From	trigonometry:

substituting:
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Colophon

Original	hard-copy	edition

This	 book	 was	 created	 on	 a	 GNU/Linux	 workstation,	 running	 Debian
Squeeze/Sid.	 The	 source	 text	was	written	 in	Docbook	V4.5	XML	 using	 vi	 and
XMLMind	 XML	 Editor	 for	 spell	 checking,	 and	 processed	 using	 openjade	 and
Norman	Walsh's	DocBook	DSSSL	stylesheets,	which	were	overridden	to	produce
the	 desired	 layout.	 Each	 chapter	 was	 produced	 as	 a	 separate	 XML	 file	 and
preprocessed	by	xmllint	into	a	single	document	prior	to	passing	to	openjade.

Diagrams	were	produced	using	inkscape,	imported	into	GIMP	for	resizing	and	to
allow	touch	up	before	being	exported	as	PNG	files.	Schematics	were	drawn	using
kicad.

The	index	was	created	by	preprocessing	the	document	for	SGML	output	through
openjade	with	 the	 html-index	 option,	 and	 then	 collating	 the	 HTML	 index	with
Norman	Walsh’s	collateindex.pl	to	produce	an	XML	Docbook	index	file.

Math	 equations	 were	 written	 in	 TeX,	 escaped	 and	 embedded	 in	 the	 docbook
XML.	The	openjade	TeX	output	was	processed	to	unescape	the	math	TeX	prior	to
rendering	the	final	output.

The	 cover	 features	 an	 issue	 3B	 ZX	 Spectrum	 48K	 PCB,	 back	 lit	 by	 a	 high
intensity	 red	 lamp.	 The	 photograph	 was	 distorted	 into	 a	 sphere	 using	 Gimp,
separated	into	CMYK	plates	using	the	Separate+	plugin	and	exported	as	a	CMYK
tif.	The	cover	 itself	was	laid	out	using	Scribus,	from	which	it	was	exported	as	a
print	ready	PDF.

The	main	text	of	the	book	is	set	in	Nimbus	Roman.	Titles	and	headings	are	set	in
Nimbus	Sans.

This	OCR	version

This	version	was	created	according	to	the	GNU	Free	Documentation	License

The	 book	 was	 scanned	 from	 original	 hard-copy	 edition	 using	 Canon	 LiDE	 60
scanner	with	Linux	Sane	drivers	and	skanlite	frontend.	It	was	then	OCR'ed	using
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tesseract	 and	 then	cleaned	using	custom-made	 scripts	 and	put	 into	basic	HTML
layout.

Images	were	 cut,	 cleaned	 and	 straightened	 using	Gimp.	 Equations	were	 redone
using	Daum	Equation	Editor	and	then	exported	to	png.

All	text	was	then	proof-read	and	corrected,	Links	between	chapters,	images,	tables
etc.	were	added.	All	text	editing	was	done	with	kate.
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The	ULA	research,	reverse	engineering	and	documentation	was	financed	and
carried	out	by	Chris	Smith.	Please	support	this	effort	by	purchasing	the	ZX
Design	and	Media	printed	edition	of	this	book,	’The	ZX	Spectrum	ULA:	How	To
Design	a	Microcomputer’

319


	The ZX Spectrum ULA: How to Design a Microcomputer
	Front
	Dedication
	Preface
	Acknowledgements

	Chapter 1, Introduction
	Chapter 2, Integrated Circuits
	Epitaxial Transistor Fabrication
	The Standard Buried Collector Process
	Standard Resistor Fabrication

	Logic Gate Technology
	Resistor-Transistor Logic
	Transistor-Transistor Logic
	Emitter-Coupled Logic
	Current-Mode Logic
	Collector-Diffusion Isolation Process
	CDI process resistor fabrication


	Chapter 3, The Standard Microcomputer
	The Architecture
	The Control Bus
	Memory Devices
	Dynamic RAM
	ROM

	Input and Output
	Serial I/O
	Keyboard Input
	CRT Display

	Architecture Evolution
	The Z80 Microcomputer
	Dynamic RAM Interface
	ROM Interface
	I/O Interface
	Interrupts

	Microcomputer Implementation

	Chapter 4, Semi-Custom Devices
	Semi-Custom Gate Technologies

	Chapter 5, The Ferranti ULA
	ULA Organisation
	Matrix Cells
	Peripheral Cells

	ULA Design Process
	Determine Array Type and Agree Logic
	Generate Interconnect Pattern
	Prototype Fabrication
	Testing
	ULA Computer Aided Design

	ULA Construction
	Matrix Cells
	Peripheral Cells
	Power Rails

	The ULA1000, 2000 and 5000 Series
	The 5000 Series ULA

	The R Series ULA
	The 6000 Series ULA
	Package Types

	Chapter 6, Sinclair and the ULA
	The First Sinclair ULA
	The ZX Spectrum ULA

	Chapter 7, The ZX Spectrum Overview
	The Z80A CPU
	16K ROM
	16K RAM
	32K RAM
	Clock Generator
	Video Generator
	Colour Encoder
	Keyboard Input Port
	Cassette I/O Ports
	Internal Speaker
	The ULA Chip

	Chapter 8, The Memory Map
	Chapter 9, The Video Display
	Television and Display Basics
	Choosing a Display Resolution
	Vertical Interlace
	Positioning the Display
	The NTSC Display

	Chapter 10, The Internal Clocks
	The Oscillator
	The 7MHz Clock
	The Master Counter
	The Vertical Line Counter
	The PAL Line Counter
	The NTSC Line Counter


	Chapter 11, Video Synchronisation
	Horizontal Timing
	Horizontal Blanking
	Horizontal Synchronization
	Vertical Timing
	Vertical Synchronization
	NTSC Vertical Synchronisation

	Chapter 12, Generating The Display
	Pixel Display Generation
	The Flash Mode
	Border Generation
	Control Signals
	Circuit Operation
	Display Byte Latch and Shift Register
	Attribute Data Latch and Border Multiplexer
	Flash Control of Pixel Stream
	Attribute Output Latch and Output Multiplexer


	Chapter 13, Video Memory Access
	Video Access Control
	Page Mode Read
	RAS and CAS Timing Overview
	RAS Generation
	CAS Generation
	Circuit Description

	Chapter 14, Video Control Clocks
	Sequence Overview
	Circuit Operation
	CLK7
	VidEN
	DataLatch
	AttrLatch
	SLoad
	AOLatch

	The Flash Clock

	Chapter 15, Video Addressing
	Address Generation Theory
	The ZX Spectrum Addressing
	Generating The Address

	Chapter 16, Analogue Video
	Composite Video
	YUV
	PAL Chrominance Modulation
	Quadrature Amplitude Modulation

	ULA Analogue YUV Generation
	General Circuit Overview
	Luminance Y Generation
	Highlight Mode
	Synchronisation
	Temperature Stability
	Chrominance U Generation
	Chrominance V Generation
	Burst Generation
	YUV Control Signals

	NTSC Chrominance Modulation
	LM1889 Modulation Circuit

	Chapter 17, CPU Memory Access
	Z80 CPU Read and Write Cycle
	Z80 Instruction Fetch
	Z80 Memory Read Or Write

	Dynamic RAM Timing Considerations
	DRAM Read
	DRAM Write

	16K DRAM CPU Interface
	ZX Spectrum ROM Select
	CPU RAS Generation
	CPU CAS Generation
	Memory Write Control

	Chapter 18, CPU Clock and Contention
	Memory Contention
	Z80 WAIT states
	Z80 Bus Request
	Clock Interruption
	Clock Wait Generation
	T1 Start Detection

	I/O Contention
	I/O T2 Detection

	Circuit Description
	The issue 1 5C102 ULA
	The issue 2 5C112 ULA
	The issue 3 6C001 ULA


	Chapter 19, Input-Output Devices
	The Keyboard
	Keyboard Input Port

	The Border Colour Register
	Cassette Recorder Input
	Cassette Recorder Output
	Speaker Output
	Decoding the I/O Port
	Summary of I/O Port Bit Designations

	Chapter 20, Cassette Storage and Sound
	Cassette and Speaker Output
	Cassette Input

	Chapter 21, Interrupts
	The ZX Spectrum Non-Maskable Interrupts
	The ZX Spectrum Maskable Interrupts
	Detection Reliability


	Chapter 22, Signal Interfacing
	ULA Interface Connections
	Interface Categories
	Open-Collector Output
	Totem Pole Output
	TTL Input

	ULA Interface Summary
	Z80 Control Signal Input
	Z80 Address Bus A15-14
	Address Bus A6-0
	Data Bus D7-0
	Z80 Interrupt Signal
	PHICPU 3.5MHz Z80 Clock
	Keyboard Matrix Inputs K4-0
	ROM Chip Enable
	DRAM Column Address Strobe
	DRAM Row Address Strobe


	Chapter 23, Hidden Features and Errors
	Test Modes
	Upper Counter Stage Test Clock
	Flash Counter Test Clock
	V8 Output Via Keyboard Input K0
	Black Output

	Implementation and Design Errors
	Disabled 16K DRAM Refresh
	Dark Flash Edges
	Variable Pixel Widths
	All I/O Ports Contended
	Colour Sub-Carrier Frequency Lock
	Phantom Keys
	The Snow Effect


	Chapter 24, ULA Versions
	Issue 1 ULA 5C102E
	Issue 2 ULA 5C112E
	Issue 3 ULA 6C001E-6
	Issue 4 ULA 6C001E-7
	The NTSC ULA 6C011E
	The ZX Spectrum 128 ULA

	Appendix A, The ULA Die Plot
	Appendix B, Component Library
	Flip-Flops and Latches
	Interface Functions

	Appendix C, ULA Configuration
	Appendix D, Mathematical Proofs
	Quadrature Amplitude Modulation

	Bibliography
	Colophon
	Original hard-copy edition
	This OCR version



