
United States Patent (19)
Shima et al.

(54) MICROPROCESSOR APPARATUS AND
METHOD

75 Inventors: Masatoshi Shima, Santa Clara;
Federico Faggin, Cupertino; Ralph K.
Ungermann, Los Altos, all of Calif.

73) Assignee:
21 Appl. No.: 92,827
22 Filed: Nov. 9, 1979

Zilog, Inc., Cupertino, Calif.

Related U.S. Application Data
62) Division of Ser. No. 665,228, Mar. 9, 1976, abandoned.
51) Int. Cl. G06F 9/00; G06F 13/00
52) U.S. C. 364/200; 365/.222
(58) Field of Search ... 364/200 MS File, 900 MS File,

364/222

NSTRUCTION
DECODE

8.
3 CPU

CPU AND CONTROL
SYSTEM
CONTROL
SGNALS

+5W GND ()

CPU
CONTROL

11) 4,332,008
45) May 25, 1982

(56) References Cited
U.S. PATENT DOCUMENTS

3,748,651 7/1973 Mesnik 365/.222
3,760,379 9/1973 Nibby et al. 365/.222

Primary Examiner-Joseph M. Thesz
Assistant Examiner-John G. Mills, III
Attorney, Agent, or Firm-Limbach, Limbach & Sutton
(57) ABSTRACT
Microprocessor apparatus in which the CPU generates
as an integral function memory refresh addresses for an
external dynamic memory without degradation of CPU
performance. The CPU architecture is optimized by
dividing the CPU devices selectively into groups during
different time periods by the use of switching devices in
the internal bus structure.

5 Claims, 20 Drawing Figures

8-B
DATA BUS

DATA BUS
CONTROL

NTERNAL ATABUS

Adoress
CONTROL

6-BT
ADDRESSBUS

CPUBLOCK DAGRAM

U.S. Patent May 25, 1982 Sheet 1 of 21 4,332,008

8-BT
DATA BUS

DATA BUS
CONTROL

INTERNAL DATA BUS

NSTRUCTION
DECODE

8
3. CPU

CPU AND CONTROL CPU
SYSTEM REGISTERS
CONTROL
SIGNALS

ADDRESS
CONTROL

6-BT
ADDRESS BUS

+5 V GND ()

CPU BLOCK DAGRAM

FIG.

U.S. Patent May 25, 1982 Sheet 2 of 21 4,332,008

MAN REG SET ALTERNATE REG SET

ACCUMULATOR FLAGS
A

PURPOSE
REGISTERS

F

NTERRUPT MEMORY
VECTOR REFRESH

R

INDEX REGISTER X

SPECIAL
PURPOSE

NDEX REGISTER Y REGISTERS

STACK PONTER SP

PROGRAM COUNTER PC

CPU REGISTER CONFIGURATION

FIG. 2

U.S. Patent May 25, 1982 Sheet 3 of 21

OUTPUT
DATA

MINIMUM COMPUTER SYSTEM

FIG. 3

PORTA PORT B

4,332,008

ADDRESS

INPUT
DATA

Sheet 4 of 21 4,332,008 May 25, 1982 U.S. Patent

iz '91-'
|ET1cJWV/XE NOI.LV/LNE WETdWI WW}} {3 WOH

sne ss.3gqqw

Sheet 5 of 21 4,332,008 May 25, 1982 U.S. Patent

ETdWVXB 9NIWILL [ndo OISVE 3719A9 NOI LOTHLSN||

(H013 + 3COO dO)

Sheet 6 of 21 4,332,008 May 25, 1982 U.S. Patent

HOLE-I BCJOO dO NOILOT\}]_1SN||

U.S. Patent

i

May 25, 1982

- -

Sheet 7 of 21 4,332,008

Sheet 8 of 21 4,332,008 May 25, 1982 U.S. Patent

ETOÀO Å HOWEW ANW/ O L E LVLS LIVNA ENO 9NICJCIV

Sheet 9 of 21 4,332,008 May 25, 1982 U.S. Patent

SELV1S LIV/MW. H. LIW HOLB-] BC]OO dO NO|JLOTTAJ.LSN|| ------+------???? –

|----––– =-(---) | –

CI FÈROESOEFCFFF5EFFECT º 1^^1M131
ETO AO || W

HS38 LIV/MW 08

U.S. Patent May 25, 1982 Sheet 10 of 21 4,332,008

1 4K x 8 RAM ARRAY
R/w

do - d7 DATA BUS

4K x 8 RAM ARRAY

PAGE
(OOO TO FFF)

WR- R/W

PAGE O
(OOOO TO OFFF)

NTERFACNG DYNAMIC RAMS

FG.9

Sheet 11 of 21 4,332,008 May 25, 1982 U.S. Patent

(HS-18)

U.S. Patent May 25, 1982 Sheet 12 of 21 4,332,008

R. G D NPUTS
CC 2 NPUT

6 CHANNEL ADDRESS
Rx ADDRESS OUTPUTS

MULTIPLEXER
6 BT

Cx REFRESH
COUNTER

TMER
CONTROL

Q f O

- ---

REFREQ L-C STARTCY

CONTROL
CYREQ O REFON

BUSY O ACK

(PRIOR ART)

FIG. O

U.S. Patent

5

May 25, 1982 Sheet 13 of 21

2 OOW 2 9W
OOW : 9W

4,332,008

U.S. Patent May 25, 1982 Sheet 14 of 21 4,332,008

U.S. Patent May 25, 1982 Sheet 16 of 21 4,332,008

o

ON
w

O.

Od

co o, a

H s
O

U.S. Patent May 25, 1982 Sheet 17 of 21 4,332,008

D
-
C

U
X

Ug
C g V

o < -
1. 5 U2

LL

O d

(X 9

,332,008 4 Sheet 19 of 21 May 25, 1982 U.S. Patent

U.S. Patent May 25, 1982 Sheet 20 of 21 4,332,008

:

Y
sa (d

d O

9 d
d

U.S. Patent May 25, 1982 Sheet 21 of 21 4,332,008

OO

C2

. . . "
O

4,332,008
1.

MICROPROCESSOR APPARATUS AND METHOD

This is a divisional of Application Ser, No. 665,228,
filed Mar. 9, 1976.

BACKGROUND OF THE INVENTION

The present invention generally relates to digital
processor apparatus and more particularly to digital
microprocessor apparatus using MOS (metal-oxide
semiconductor) LSI (large scale integration) technol
ogy. While the preferred embodiments are described
with respect to an MOS LSI microprocessor, it will be
understood by those of ordinary skill in the art that the
invention is applicable generally to digital processing.
A microprocessor system typically includes a central

processor unit (CPU), memory subsystem and input
/output subsystem to permit the system to communicate
with the outside world.
More detailed descriptions of prior art microproces

sors are found in "Microprocessor,” McGraw-Hill Year
book of Science and Technology 1974, McGraw-Hill,
Inc., New York, 1974, pp. 272-275; "Components: mi
croprocessors galore," IEEE Spectrum, January, 1976,
pp. 50-56; "Self-contained microcomputers ease system
implementation," IEEE Spectrum, December, 1974, p.
53; and "Computer Interfacing: Anatomy of a Mi
crocomputer,' Computer Design, February 1976, pp.
129,130. All of the above citations are hereby incorpo
rated by reference.

SUMMARY OF THE INVENTION

In the first preferred embodiment, refresh memory
addresses for an external dynamic memory, which re
quires periodic refresh addressing to maintain its mem
ory storage, are generated by a CPU as an integral
function of the CPU without any degradation of the
CPU performance. That is, this additional CPU func
tion is totally transparent, Prior art systems have em
ployed elaborate logic external to the CPU for the pur
pose of generating refresh memory addresses for dy
namic memories.
The various advantages and details of the present

invention will be better appreciated as the accompany
ing detailed description and accompanying drawings
are read and understood.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a typical central proces
sor unit (CPU) used in digital processing.

FIG. 2 is an exemplary arrangement of the register
configuration of a CPU according to one embodiment
of the present invention.

FIG. 3 is an exemplary arrangement of a minimum
computer system.

FIG. 4 is an exemplary arrangement of memory
blocks forming a portion of a computer system.
FIG. 5 is an exemplary basic timing diagram of a

CPU according to one embodiment of the present in
vention.
FIG. 6 is a timing diagram of one particular memory

cycle of a CPU according to one embodiment of the
present invention.
FIG. 7A is a block logic diagram and timing diagram

showing an approach for adding a wait state to a partic
ular memory cycle of a CPU according to one embodi
ment of the invention. ...'

15

20

25

30

35

40

45

50

55

65

2
FIG. 7B is a block logic diagram and timing diagram

showing an approach for adding a wait state to any
memory cycle of a CPU according to an embodiment of
the invention.
FIG. 8 is a timing diagram similar to that of FIG. 6

but showing the addition of wait states.
FIG. 9 is a block diagram showing the interface of a

CPU with dynamic random access memories according
to an embodiment of the instant invention.
FIG. 9A is a block diagram and timing diagram

showing the generation in the CPU of signals used in
FIG 9.

FIG. 10 is a block diagram of a prior art memory
refresh controller.
FIGS. 11-14 are block diagrams of prior art CPU bus

architectures.
FIG. 15 is a block diagram of a CPU bus architecture

according to one embodiment of the invention.
FIG. 16 is a diagram showing the operation times for

particular CPU operation for the CPU arrangements of
FIGS. 12-15.
FIG. 17 is a block diagram and timing diagram show

ing an exemplary switching control for the switches of
FIG. 15.

FIG. 18 is a block diagram showing one generalized
embodiment of the bus architecture of the present in
vention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A basic element related to the present invention is the
central processor unit (CPU), referred to herein occa
sionally as the "Zilog Z-80 CPU", the designation
under which it is to be sold.
The term "microcomputer' has been used to describe

virtually every type of small computing device de
signed within the last few years. This term has been
applied to everything from simple "microprogrammed"
controllers constructed out of TTL MSI up to low end
minicomputers with a portion of the CPU constructed
out of TTL LSI "bit slices.' However, the major im
pact of the LSI technology within the last few years has
been with MOS LSI. With this technology, it is possible
to fabricate complete and very powerful computer sys
tems with only a few MOS LSI components.
The Zilog Z-80 family of components is a significant

advancement in the state-of-the art of microcomputers.
These components can be configured with any type of
standard semiconductor memory to generate computer
systems with an extremely wide range of capabilities.
For example, as few as two LSI circuits and three stan
dard TTL MSI packages can be combined to form a
simple controller. With additional memory and I/O
devices a computer can be constructed with capabilities
that only a minicomputer could previously deliver. This
wide range of computational power allows standard
modules to be constructed by a user that can satisfy the
requirements of an extremely wide range of applica
tions.
The major reason for MOS LSI domination of the

microcomputer market is the low cost of these few LSI
components. For example, MOS LSI microcomputers
have already replaced TTL logic in such applications as
terminal controllers, peripheral device controllers, traf
fic signal controllers, point of sale terminals, intelligent
terminals and test systems. In fact the MOS ISI mi
crocomputer is finding its way into almost every prod
uct that now uses electronics and it is even replacing

4,332,008
3

many mechanical systems such as weight scales and
automobile controls.
The MOS LSI microcomputer market is already well

established and new products using them are being
developed at an extraordinary rate. The Zilog Z-80
component set has been designed to fit into this market
through the following factors:

1. The Z-80 is fully software compatible with the
popular 8080A CPU offered from several sources.
Existing designs can be easily converted to include
the Z-80 as a superior alternative.

2. The Z-80 component set is superior in both soft
ware and hardware capabilities to any other mi
crocomputer system on the market. These capabili
ties provide the user with significantly lower hard
ware and software development costs while also
allowing him to offer additional features in his
system.

3. A complete product line including full software
support with strong emphasis on high level lan
guages and a disk-based development system with
advanced real-time debug capabilities is offered to
enable the user to easily develop new products.

Microcomputer systems are extremely simple to con
struct using Z-80 components. Any such system consists
of three parts:

1. CPU (Central Processing Unit)
2. Memory
3. Interface Circuits to peripheral devices

The CPU is the heart of the system. Its function is to
obtain instructions from the memory and perform the
desired operations. The memory is used to contain in
structions and in most cases data that is to be processed.
For example, a typical instruction sequence may be to
read data from a specific peripheral device, store it in a
location in memory, check the parity and write it out to
another peripheral device. Note that the Zilog compo
nent set includes the CPU and various general purpose
I/O device controllers, while a wide range of memory
devices may be used from any source. Thus, all required
components can be connected together in a very simple
manner with virtually no other external logic. The
user's effort then becomes primarily one of software
development. That is, the user can concentrate on de
scribing his problem and translating it into a series of
instructions that can be loaded into the microcomputer
memory. Zilog is dedicated to making this step of soft
ware generation as simple as possible. A good example
of this is our assembly language in which a simple mne
monic is used to represent every instruction that the
CPU can perform. This language is self documenting in
such a way that from the mnemonic the user can under
stand exactly what the instruction is doing without
constantly checking back to a complex cross listing.
FIG. 1 shows a block diagram of the CPU, showing

all of its major elements (digital devices).
CPU REGISTERS

The Z-80 CPU contans 208 bits of R/W memory that
are accessible to the programmer. FIG. 2 illustrates
how this memory is configured into eighteen 8-bit regis
ters and four 16-bit registers. All Z-80 registers are
implemented using static RAM. The registers include
two sets of six general purpose registers that may be
used individually as 8-bit registers or in pairs as 16-bit
registers. There are also two sets of accumulator and
flag registers
Special Purpose Registers

5

10

15

20

25

30

35

45

50

55

65

4.
1. Program Counter (PC). The program counter

holds the 16-bit address of the current instruction being
fetched from memory. The PC is automatically incre
mented after its contents have been transferred to the
address lines. When a program jump occurs the new
value is automatically placed in the PC, overriding the
incrementer.

2. Stack Pointer (SP). The stack pointer holds the
16-bit address of the current top of a stack located any
where in external system RAM memory. The external
stack memory is organized as a last-in first-out (LIFO)
file. Data can be pushed onto the stack from specific
CPU registers or popped off of the stack into specific
CPU registers through the execution of PUSH and POP
instructions. The data popped from the stack is always
the last data pushed onto it. The stack allows simple
implementation of multiple level interrupts, unlimited
subroutine nesting and simplification of many types of
data manipulation.

3. Two Index Registers (IX & IY). The two indepen
dent index registers hold a 16-bit base address that is
used in indexed addressing modes. In this mode, an
index register is used as a base to point to a region in
memory from which data is to be stored or retrieved.
An additional byte is included in indexed instructions to
specify a displacement from this base. This displace
ment is specified as a two's complement signed integer.
This mode of addressing greatly simplifies many types
of programs, especially where tables of data are used.

4. Interrupt Page Address Register (I). The Z-80
CPU can be operated in a mode where an indirect call
to any memory location can be achieved in response to
an interrupt. The I Register is used for this purpose to
store the high order 8-bits of the indirect address while
the interrupting device provides the lower 8-bits of the
address. This feature allows interrupt routines to be
dynamically located anywhere in memory with abso
lute minimal access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU
contains a memory refresh counter to enable dynamic
memories to be used with the same ease as static memo
ries. This 7-bit register is automatically incremented
after each instruction fetch. The data in the refresh
counter is sent out on the lower portion of the address
bus along with a refresh control signal while the CPU is
decoding and executing the fetched instruction. This
mode of refresh is totally transparent to the program
mer and does not slow down the CPU operation. The
programmer can load the R register for testing pur
poses, but this register is normally not used by the pro
grammer.
Accumulator and Flag Registers
The CPU includes two independent 8-bit accumula

tors and associated 8-bit flag registers. The accumulator
holds the results of 8-bit arithmetic or logical operations
while the flag register indicates specific conditions for 8
or 16-bit operations, such as indicating whether or not
the result of an operation is equal to zero. The program
mer selects the accumulator and flag pair that he wishes
to work with with a single exchange instruction so that
he may easily work with either pair.
General Purpose Registers
There are two matched sets of general purpose regis

ters, each set containing six 8-bit registers that may be
used individually as 8-bit registers or as 16-bit register
pairs by the programmer, One set is called BC.DE and
III while the complementary set is called BC'. DE' and
III". At any one time the programmer can select either

4,332,008
5

set of registers to work with through a single exchange
command for the entire set. In systems where last inter
rupt response is required, one set of general purpose
registers and an accumulator/flag register may be re
served for handling this very last routine. Only a simple
exchange commands need be executed to go between
the routines. This greatly reduces interrupt service time
by eliminating the requirement for saving and retrieving
register contents in the external stack during interrupt
or subroutine processing. These general purpose regis
ters are used for a wide range of applications by the
programmer. They also simplify programming, espe
cially in ROM based systems where little external
read/write memory is available.

ARITHMETIC & LOGIC UNIT (ALU)
The 8-bit arithmetic and logical instructions of the

CPU are executed in the ALU. Internally the ALU
communicates with the registers and the external data
bus on the internal data bus. The type of functions per
formed by the ALU include:
Add
Left or right shifts or rotates (arithmetic and logical)
Subtract
Increment
Logical AND
Decrement
Logical OR
Set bit
Logical Exclusive OR
Reset bit
Compare
Test bit

INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is
placed in the instruction register and decoded. The
control sections performs this function and then gener
ates and supplies all of the control signals necessary to
read or write data from or to the registers, control the
ALU and provide all required external control signals.
FIG. 3 shows a block diagram of a very simple digital

processor system using the CPU. In a practical system
the following five elements are required: power supply,
oscillator (a source of clock signals), memory devices,
I/O circuits, and the CPU.

Since the Z80-CPU only requires a single 5 volt sup
ply, most small systems can be implemented using only
this single supply.
The oscillator can be very simple since the only re

quirement is that it be a 5 volt square wave. For systems
not running at full speed, a simple RC oscillator can be
used. When the CPU is operated near the highest possi
ble frequency, a crystal oscillator is generally required
because the system timing will not tolerate the drift or
jitter that an RC network will generate. A crystal oscil
lator can be made from inverters and a few discrete
components or monolithic circuits are widely available.
The external memory can be any mixture of standard

RAM, ROM, or PROM. In this simple example we
have shown a single 8K bit ROM (1K bytes) being
utilized as the entire memory system. For this example
we have assumed that the Z-80 internal register config
uration contains sufficient Read/Write storage so that
external RAM memory is not required.

Every computer system requires I/O circuits to
allow it to interface to the "real world." In this simple
example it is assumed that the output is an 8-bit control

10

15

20

25

30

35

45

50

55

65

6
vector and the input is an 8 bit status word. The input
data could be gated onto the data bus using any stan
dard tri-state driver while the output data could be
latched with any type of standard TTL latch. For this
example we have used a Z80-PIO for the I/O circuit.
This single circuit attaches to the data bus as shown and
provides the required 16 bits of TTL compatible I/O.
(Refer to the Z80-PIO manual for details on the opera
tion of this circuit.) Notice in this example that with
only three LSI circuits, a simple oscillator and a single
5 volt power supply, a powerful computer has been
implemented.

ADDING RAM

Most computer systems require some amount of ex
ternal Read/Write memory for data storage and to
implement a "stack." FIG. 4 illustrates how 256 bytes of
static memory can be added to the previous example. In
this example the memory space is assumed to be orga
nized as follows:

Address
1K bytes 0000H

ROM 03FFH
256 bytes 0400H
RAM

In this diagram the address space is described in hex
idecimal notation. For this example, address bit A10
separates the ROM space from the RAM space so that
it can be used for the chip select function. For larger
amounts of external ROM or RAM, a simple TTL de
coder will be required to form the chip selects.

CPU TIMING

The Z-80 CPU executes instructions by stepping
through a very precise set of a few basic operations.
These include:
Memory read or write
I/O device read or write
Interrupt acknowledge

All instructions are merely a series of these basic opera
tions. Each of these basic operations can take from three
to six clock periods to complete or they can be length
ened to synchronize the CPU to the speed of external
devices. The basic clock periods are referred to as T
cycles and the basic operations are referred to as M (for
machine) cycles. FIG. 5 illustrates how a typical in
struction will be merely a series of specific M and T
cycles. Notice that this instruction consists of three
machine cycles (M1, M2 and M3). The first machine
cycle of any instruction is a fetch cycle which is four,
five or six T cycles long (unless lengthened by the wait
signal which will be fully described in the next section).
The fetch cycle (M1) is used to fetch the OP code of the
next instruction to be executed. Subsequent machine
cycles move data between the CPU and memory or I/O
devices and they may have anywhere from three to five
T cycles (again they may be lengthened by wait states
to synchronize the external devices to the CPU). The
following paragraphs describe the timing which occurs
within any of the basic machine cycles. In section 10,
the exact timing for each instruction is specified.
Dynamic RAM's (random access memories) require a

periodic "refreshing" of their memory contents to pre
vent loss of memory. This is accomplished by address

4,332,008
7

ing the rows of the dynamic RAM while enabling the
RAM. Prior art processing systems have typically em
ployed elaborate logic external to the CPU to refresh
dynamic RAM's. According to the present invention,
the refresh signals are generated within the CPU. How- 5
ever, the generation is "totally transparent" and does
not affect the CPU speed. The refresh signals are gener
ated during a timing cycle in which the CPU address
output is not otherwise in use. Such a suitable time
occurs after the CPU fetches an instruction from a 10
Inemory and is processing the instruction. The dynamic
RAM memory addresses for refresh are incremented
after each refresh time.

INSTRUCTION FETCH 15

FIG. 6 shows the timing during an M cycle (OP
code fetch). Notice that the PC is placed on the address
bus immediately at the start of the cycle (this is done to
minimize memory access time requirements). One half
clock time later the MREQ signal goes active. At this 2O
time the address to the memory has had time to stabilize
so that the falling edge of MREQ can be used directly
as a chip enable clock to dynamic memories. The RD
line also goes active to indicate that the memory read
data should be enabled onto the CPU data bus. The
CPU samples the data from the memory on the data bus
with the rising edge of the clock of state T3 and this
same edge is used by the CPU to turn off the RD and
MRQ signals. Thus the data has already been sampled
by the CPU before the RD signal becomes inactive.
Clock state T3 and T4 of a fetch cycle are used to re
fresh dynamic memories. (The CPU uses this time to
decode and execute the fetched instruction so that other
operation could be performed at this time). During T3 is
and T4 the lower 7 bits of the address bus contain a
memory refresh address and the RFSH signal becomes
active to indicate that a refresh read of all dynamic
memories should be accomplished. Notice that a RD
signal is not generated during refresh time to prevent 40
data from different memory segments from being gated
onto the data bus. The MREQ signal during refresh
time should be used to perform a refresh read of all
memory elements. The refresh signal can not be used by
itself since the refresh address is only guaranteed to be 45
stable during MREQ time.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use
slow memories to reduce costs. The WAIT line on the 50
CPU allows the Z-80 to operate with any speed men
ory. By referring back to section 4 you will notice that
the memory access time requirements are most severe
during the M cycle instruction fetch. All other mem
ory accesses have an additional one half of a clock cycle 55
to be completed. For this reason it may be desirable in
some applications to add one wait state to the MI cycle
so that slower memories can be used. FIG. 7A is an
example of a simple circuit that will accomplish this
task. This circuit can be changed to add a single wait 60
state to any memory access as shown in FIG. 7B.

FIG. 8 illustrates how the fetch cycle is delayed if the
memory activates the WAIT line. During T2 and every
subsequent Tw, the CPU samples the WAIT line with
the falling edge of db. If the WAIT line is active at this 65
time, another wait state will be entered. Using the tech
nique the read cycle can be lengthened to match the
access time of any type of memory device.

25

30

8

INTERFACING DYNAMIC MEMORIES
This section is intended only to serve as a brief intro

duction to interfacing dynamic memories. Each individ
ual dynamic RAM has varying specifications that will
require minor modifications to the description given
here and no attempt will be made in this document to
give details for any particular RAM. Separate applica
tion notes showing how the Z80-CPU can be interfaced
to most popular dynamic RAM's are available from
Zilog.

FIG. 9 illustrates the logic necessary to interface 8K
bytes of dynamic RAM using 18 pin 4K dynamic mem
ories. This figure assumes that the RAM's are the only
memory in the system so that A12 is used to select be
tween the two pages of memory. During refresh time,
all memories in the system must be read. The CPU
provides the proper refresh address on lines Ao through
A6. To add additional memory to the system it is neces
sary to only replace the two gates that operate on A12
with a decoder that operates on all required address
bits. For larger systems, buffering for the address and
data bus is also generally required.

FIG. 9A shows the CPU logic for generating the
RFSH and MREQ signals used by FIG. 9.

Prior art techniques for refreshing dynamic memories
are well-known, as are the signal requirements required
for refreshing such memories.
One such prior art refresh controller (the Intel 3222)

which operates outside of the CPU is shown in FIG, 10.
The Intel 3222 is a refresh controller for dynamic

RAMs requiring refresh of up to 6 low order (Ao-As)
input addresses, (e.g. for a device organized as 64 rows
by 64 columns). In normal operation, the device serves
as an address multiplexer that outputs addresses from
either a refresh counter or a system address bus. Al
though the part was specifically designed for use with
the Intel (R) 2107B, it will work with any dynamic RAM
requiring refresh of up to 64 rows.
The timer control is an oscillator whose period can be

set by an externally connected RC network, such that
the refresh period can match the memory system that is
being controlled. The period of the oscillator is given
by the formula:

T - = 63 Rycy (1)

where
TREF is the RAM refresh period in ms.
r is the number of RAM rows.
R is the external resistor in KS).
CY is the external resistor in uF.
For example, in the 16 Kx 18 system described in

Section 2, the refresh period for the 2107B is 2.0 ms and
there are 64 rows to be refreshed so:
TREF= 2.0
r = 64

or, from equation 1

Rrcy = to = .0496; or R = 5.0KO
Cy = 014 F

The accuracy of this timer is guaranteed to be +6%
from device to device, and E2% from cycle to cycle
for a given device.

4,332,008
9

The control portion of the device, shown below in
FIG, 10 contains all of the I/O control elements of the
device. These include:

1. The Refresh Request flip-flop, which is set by the

10
In accordance with the present invention, a novel

CPU internal data bus architecture is used to overcome
the aforementioned problems.
A typical CPU contains the following functional

timer, will be set up and remain set until the re- 5 blocks (or digital devices):
quest, for refresh is removed.

2. The priority flip-flop which is the decision making
element of the 3222. Whenever either of the cycle
request inputs REFREQ or CYREQ go true, the
other is locked out until the cycle is finished, thus
preventing simultaneous cycle requests.

3. The Execute Refresh flip-flop, which holds the
refresh state of the 3222 and is enabled by the
BUSY signal.

The 6-bit refresh counter holds the address of the
next row to be refreshed and is advanced by the rising
edge of BUSY following a refresh cycle. This portion
also contains a refresh count flip-flop which prevents
false counting of the refresh counter during priority
indecision. A delay element is added to further prevent
priority glitching from falsely advancing the counter. If
the device is in the refresh state the flip-flop is cleared;
when BUSY goes true, it is toggled and advances the
refresh counter.
The Address Multiplexer presents the low order sys

tem address inputs to the RAM whenever the memory
is not involved in a refresh cycle. It also presents the
counter outputs as the six low order addresses during a
refresh cycle.

Integrated circuits have become increasingly com
plex over the past several years and many improved and
up-dated microprocessors have been marketed. How
ever, the architecture of the internal data bus of the
microprocessor have heretofore remained relatively
unimproved.
FIGS. 1 and 3 show a microprocessor system having

a CPU interfacing with an external memory and periph
eral devices, directly or indirectly through T2L. The
CPU is the heart of the system: its function is to obtain
instructions from the memory and perform the desired
operation.
At the beginning of each memory cycle, for example,

the contents of the program counter is sent to the exter
nal memory through the address bus and at the same
time the program counter is incremented to update,
internally. Next, the addressed memory sends back the
instruction to the CPU through the data bus, it is stored
in the instruction register and the desired function is
executed. For example, the instruction

A-B-A

means add B and A, then store the result in A (the
accumulator).
Dynamic type random access memories are com

monly used by microprocessor system designers. The
CPU of the present invention incorporates a memory
refresh counter, as explained above. Also, in order to
improve total software times, the present CPU includes
two accumulators and associated flag registers such as
carry flip-flop, zero detection flip-flop, parity check
flip-flop, etc.
These addition functions would tend to require more

complex CPU logic, larger LSI chip size for the CPU
and the loss of CPU speed if prior art internal data bus
architecture were used.

O

40

program counter, memory refresh counter
address bus associated with the incrementor and

latches which can store the address information
general purpose data registers
accumulators and flags register
arithmetic unit
data input/output register
instruction register
The internal bus architecture of the present invention

15 can better be appreciated in view of the various prior
art internal bus architectures shown in FIGS. 11-14.
FIG. 15 is one exemplary form of the bus architecture
of the present invention and FIG. 16 compares operat
ing times for exemplary operations in the architectures

20 of FIGS. 11-15.
FIG. 11 has a single time multiplexing bidirectional

bus carrying both data and address information. Only
the single bus communicates with the external world.
Its advantage is to reduce LSI chip pin count and mini

25 mize LSI circuit area, however, the total instruction
speed is so long as to be not acceptable and is not shown
in FIG. 16.
The architecture of FIG. 12 adds an address bus,

however, as shown in FIG. 16 the total instruction
30 speed is still slow.

In FIG. 13, the general purpose registers and accu
mulators are separated from the program counter and
memory refresh counter. Nearly 40% of the operating
time is saved compared to the architecture of FIG. 12,

35 as shown in FIG. 16. However, the approach has draw
backs: the read/write buffer for the new internal mem
ory must be duplicated and considerable time is re
quired to transfer the data from the general purpose
registers to the address bus.

In FIG. 14, the accumulators, flags and memory re
fresh counter are separated from the internal memory
(which includes the program counter and the general
purpose registers). The operation time (FIG. 16) is re
duced 60% compared to the architecture of FIG. 12,

45 however, it requires relatively large area to implement
the accumulators, flags, refresh counter and multiplex

S.

It will be apparent that the architecture of FIG. 12
provides reasonable chip size, although with unsatisfac

50 tory operating time and that the architecture of FIG. 14
provide acceptable operation time but at the expense of
chip size.
The internal bus structure of the present invention

minimizes chip circuit area while achieving satisfactory
55 operation time, as shown in FIG. 16.

One example of the present invention is shown in
FIG. 15. An organization similar to that of FIG. 12 is
used, however, a plurality of switches in the internal
data bus divides the several functional blocks into

60 groups depending on which of the switches are opened.
In each group, two or more blocks can communicate
with each other through portions of the internal bus. At
times when communications between two or more
groups are required, the switches, which sit between

65 two groups, will be turned on. As a result, each group
can perform the desired function at the same time, inde
pendently and whenever it is required, any groups can
be connected to each other through the same internal

gram.

S1, S2 and S3.

claims.

4,332,008
11

bus by turning on the switches. This architectural ap
proach provides great flexibility to the CPU without
increasing the ship size and operation time. MOS de
vices may be used to implement the switches.
FIG. 17A shows an exemplary timing diagram for 5

controlling the four switches of FIG. 15. FIG. 17B
shows an exemplary logic circuit suitable for control
ling the switches in accordance with the timing dia

A more general case of the present invention is O
shown in FIG. 18 which shows four pairs of functional
blocks or digital devices A-A', B-B, C-C and D-D',
all connected on a common bus having three switches

In establishing an architecture within an entity, such 15
as an LSI chip, the most frequent machine communica
tion pattern is determined and the communication pat
terns between functional blocks is observed. Blocks
capable of communicating at the same time most fre
quently are arranged in pairs such as A-A, B-B', etc.
The next most common communication paths are ar
ranged in adjacent pairs, such A and B'. The next most
common paths are arranged one pair removed, as A and
C" or B and D, for example. The least frequent commu
nication paths between blocks are disposed farthest
apart on the bus system, such as A-D', for example.
The switches are accordingly activated to shorten the

operation time. Thus if A and A' can communicate
while B and B' communicate then S1 is opened, and so
forth. In the example of FIG. 18 there are 32 or 8 differ
ent switching states, permitting substantial flexibility in

20

25

30

bus communication.
Although the present invention has been described in

connection with a specific SLI CPU and associated
microprocessor systems, it will be understood by those
of ordinary skill in the art that the invention is applica
ble to other digital processing apparatus. The scope of
the invention is therefore limited only by the appended

35

40

We claim:
1. A digital central processing unit, on a microcom

puter chip comprising:
a program counter,
a memory refresh counter,
address bus terminals,
data bus terminals,
means responsive to a clock signal for connecting the

value of said program counter to said address bus
terminals in a first period of a repetitive machine
operation fetch cycle, whereby controlling pro
gram operation codes can be obtained at the data
bus terminals from a memory connected to said
address bus and data bus terminals,

means responsive to an operation code received from
said data bus terminals during said first period for
carrying out during the second period of each such
machine cycle the operations specified by such
code,

means responsive to said clock signal for connecting
the value of said memory refresh counter to said
address bus terminals in a second period of time of
said fetch cycle, thereby to address according to
the value of said memory refresh counter, a portion
of any memory connected to the address bus termi
nals, said second period of time following immedi
ately said first period, and

45

50

55

65

12
means for incrementing each of said program and
memory refresh counters before the next succeed
ing of said machine operation code fetch cycles,

whereby an addressed protion of any memory con
nected to said address bus terminals is refreshed
during the second period of each such machine
cycle when the central processing unit otherwise
does not use the address but terminals, the refresh
ing of the entire memory occurring after a plurality
of such machine cycles occurs, all without slowing
down the processing unit.

2. A digital processor system, comprising:
means for generating clock signals,
dynamic random access memory means including

address and data terminals, said memory being of
the type that requires periodic refreshing,

central microprocessor unit means receiving said
clock signals for generating timing cycles, said
central microprocessor unit means including ad
dress and data terminals,

address bus means for connecting said central micro
processor unit means address terminals to said
memory means address terminals,

data bus means for connecting said central micro
processor unit data terminals to said memory
means data terminals,

said central microprocessor timing cycles including
time periods in which an instruction code is re
ceived by said central microprocessor via said data
bus means from said memory means in response to
an address applied to said memory means via said
address bus means by said central microprocessor
means, said central microprocessor unit processing
a received instruction code in time periods immedi
ately subsequent to the receipt of an instruction
code, and

said address refresh signals being generated during
said time periods in which said central micro
processor unit is processing a received instruction
code,

whereby memory refresh is accomplished while the
central processor does not need use of the address
bus, thereby accomplishing memory refresh with
out interrupting operation of the central micro
processor.

3. The combination of claim 2 wherein said central
processing unit is a digital microprocessor system cen
tral processing unit contained on a single large scale
integration circuit chip.

4. In a digital system having a central microprocess
ing unit (CPU) and refreshable memory connected to a
common address bus, wherein controlling program
instruction codes are stored in said memory for access
by said CPU, a process of accessing said program codes
by said CPU and maintaining said memory, comprising
repetitively performing the steps of:

placing on said address bus from said CPU an address
of a particular location in memory where a desired
instruction code is located,

reading that code into the CPU,
executing the instruction carried by the code in the
CPU, and

simultaneously with the execution step, addressing
from the CPU through said address bus a portion of
said memory to be refreshed and enabling said
memory, a different memory portion from the last
being addressed during each of sequential execu
tions of the process, whereby the memory is peri

4,332,008
13

odically refreshed when the CPU otherwise does
not need to use the address bus, thus accomplishing
memory refresh without having to slow down the
CPU.

5. In a digital system having a central microprocess
ing unit (CPU) and a dynamic memory connected to
common address and data buses, said CPU including a
repetitive machine cycle as part of its operation wherein
an instruction code location memory address is placed
on the address bus in a first increment of time and the
instruction code is received by the CPU on the data bus
in a second increment of time, followed by a third incre
ment of time in which the CPU executes the received

5

10

15

20

25

30

35

45

50

55

65

14
instruction, a method of refreshing said memory, com
prising the steps of placing on the address bus during
said third increment of time the address of a segment of
memory locations and enabling the memory, thereby to
refresh the addressed segment of the memory, these
steps being repeated in a similar manner in subsequent
machine cycles with a different segment of memory
locations being addressed each time until the entire
memory has been refreshed, at which time the process is
repeated, whereby the entire memory is periodically
refreshed without having to interrupt the CPU opera
tion for that purpose.

k k

