US006502181B1

United States Patent

(12) (10) Patent No.: US 6,502,181 B1
MacKenna et al. 5) Date of Patent: Dec. 31, 2002
(54) METHOD AND APPARATUS FOR AN 4794524 A 12/1988 Carberry et al. 712/32
ENHANCED PROCESSOR 5,381,537 A 1/1995 Baum et al. 711/206
5,659,688 A 8/1997 Nimishakavi et al. 710/113
(75) Inventors: Craig MacKenna, Los Gatos, CA 5,774,686 A * 6/1998 Hammond et al. 703/26
(US); Gyle Yearsley, Boise, ID (US) 5815686 A * 9/1998 Farletal. .ocooovrvene... 7121209
5870535 A 2/1999 Duffin et al. 358/1.16
(73) Assignee: ZiLOG, Inc., San Jose, CA (US) 5,926,648 A 7/1999 Ayzenberg 710/36
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
Primary Examiner—Daniel H. Pan
(21) Appl. No.: 09/398,257 (74) Attorney, Agent, or Firm—Skjerven Morrill LLP
. No.: \
(22) Filed: Sep. 17, 1999 67 ABSTRACT
(51) Int. CL7 ..o, GO6F 15/76, GOGF 12/08; A controller for executing instructions has one the order of
GO6F 13/16 five addressing modes and can allow executing of processes
(52) US.CL ..o 712/32; 712/33; 712/210; concurrently in multiple modes. A specific embodiment can
) TH/A71; 71172125 711/203; 703/26; 703/27 effectively run legacy code written for the Z80 micoproces-
(58) Field of Search 703/26, 20, 27, sor without requiring recompﬂing of code. An optional
703/16, 28, 22, 17; 712/209, 15, 202, 41, . . .
42, 227, 228, 43, 217, 244, 132, 245, 30, embodiment includes autonomous Multiply/Accumulator
213, 210, 211, 32, 33; 711/202, 204, 203, Engine (MAC) optimized to perform sum-of-products
216, 207, 208, 123, 209, 152, 211, 171, (SOP) operations with little controller overhead, making the
212, 172, 213, 173, 217, 148, 220, 221 invention capable of more effectively handling a number of
(56) References Cited processing tasks, particularly tasks related to digital signal

U.S. PATENT DOCUMENTS
4,332,008 A 5/1982 Shima et al. 711/106

processing (DSP).

28 Claims, 42 Drawing Sheets

EZ80 LOGIC DIAGRAM

—{D7
—D6
—D5
—D4
—D3
—D2
—D1
— Do

—|WAIT

— RXAQ
— DCDO
— CTSO

A23
A22
A21
A20
A19
A18
A7
At6
At5
Al4
A13
Al2
ANl
A10
A9
A8
A7
A6
A5
A4
A3

TTTTTTTTTTTTTITETTITTITTTOT

o]

b+

=]
TTTTTTTTTTTTT

a4
£z
o o
[

=3
3
w
o
I

U.S. Patent

Dec. 31, 2002

Sheet 1 of 42

- EZ80 BLOCK DIAGRAM

\ daast

Y

Registers

ALU

Yvy

PC

Address
Selection
MBASE

— A23-0

*—9
Yy

~[SP

Y

Y

Data

Out
D7-0
Data

In

|

Control

FIG._1

Store

4

— > ctrl out
Execution

Control)
«— ctrlin

US 6,502,181 Bl

EZ80 LOGIC DIAGRAM

—D7
— D6
— D5
— D4
—D3
—D2
—{ D1
— DO

—CLK

— RESET

—WAIT

—NmI
—INTO

A23
A22
A21
A20
A19
A18
A17
A16
A15
A14
A13
A12
A1
A10
A9
A8
A7
AB
A5
A4
A3
A2
A1l
A0

MREQ
IORQ
RD
R
MRD
e
IORD
IOWR
INT AK

RXAOQ

DCDO
— CTSO

— BUSREQ BUSACK

INST RD
RETI
HALT

TXAO
CKAO
RTSO

FIG._2

US 6,502,181 Bl

Sheet 2 of 42

Dec. 31, 2002

U.S. Patent

d Olul uoyanysul

8y} Woy ssaippe alAq € e peo| {| AV doay i1dS Buisn alAg 10 B Moe)s 1dS Buisn ssaippe winjal a1Ag € B oels 144} I
Dd Ol uononJsul

By} wioyy ssaippe 8)Aq ¢ & peo| QY 19s 1dS Puisn 8149 00 e oels 1dS Buisn ssaippe uinjel [eaibo| 81Aq 2 e yoels yer 0
"Dd Ol uochonuisul 8y} Wolj sseippe [ealbo] slAg g e peo| gy 1e9)d idS Buisn ajAg 10 e oels i1dS Buisn ssaippe

uinal ey} Jo 81Agq SN aul oels ‘JSYaIN/NNIN Aq paddew gds Buisn ssaippe uinjes 8y} Jo selAq S 2 oY1 Joels gIr b
Dd Olu! uoioniisul 8y} wolj ssaippe [ealbo) a1Aq g e peo) ‘0 1av desy dS Buisn 81Ag 00 e doels

JSVAN/NIWN Aq paddew sds Buisn ssaippe uinjal [ealfo| a1Ag g e yoels gLr 0

"Dd Ol uolIdnJIsUl U} Wl Ssaippe a1Aq € e peo) (| 1y desy (1dS Buisn payor)s sseippe uinal 8lAq € e yoels SUON L
Dd Olul UOIONIISUl 8y} WoJ)

ssalppe [eolbo| 81Aq g e peo| :0 1ay desy ‘3SvaIN/NININ Ag peddew gds Buisn ssaippe uinel [eaibo) 814q g e yoels SUON 0

uonesadQ | xyaud 71vo [1av

NOILONY.LSNI T1VO 40 NOLLYHIAdO (1 =iqel)

£ "old

US 6,502,181 Bl

Sheet 3 of 42

Dec. 31, 2002

U.S. Patent

Od OuI XXQ000 Sseippe 8lAq g e peo) || 1ay desy (1d4S Buisn a3Aq |0 e yoels “14S Buisn sseippe wnjal alAq € Yoejs A 1

Od 01Ul XX0000 Sselppe 81Aq € & peo| gy 1es 11dS Buisn a14q 00 e 3oels “1dS Buisn sseippe winjai [eaibo; ajAq g € yorls ye 0
"Od OJul XXQ0 ssaippe [ealbo| 81Aq g & peo) (1qy Jesjo ‘dsS Buisn 814q |10 e yoels ‘F1ds Buisn ssaippe

winjal 8y} Jo 914q SIAl 8Ul XoBIS ‘JSYAIN/NININ AQ paddew S4S Buisn sseippe uinyal ay} Jo sa1Aq S 2 Yl Joels o'l 1
Od Ol XX0Q ssaippe [edlfo} 81Aq g e peo) ‘0 1ay deey (ds Buisn 814q 00 & Yoers

IASVYAW/NININ Aq peddew 4§ Buisn sseippe uinjal [eoibo] slAq Z e yoels gt 0

"Od OWI XX0000 SS8Ippe 81Aq ¢ ' peo| {| 1aV deey 1dS Buisn paxoels ssaippe uinjes alq € e yoels | suon !

Od O XX0Q SSaIppe | guop 0

[eaifo) 814q g e peo| {0 1av desy ‘ISyan/NININ Ag peddew S4S Buisn sseippe winjal [eaibo] elhq g e Yoels xuoid
uonesedo | 1SH [Iav

7V 13 1S4 40 NOILVYH3AdO (2 =1qe1)

Vi "OId

v "Oold

US 6,502,181 Bl

Sheet 4 of 42

Dec. 31, 2002

U.S. Patent

"Dd Olul JasiBal 8y} Woly ssalppe 81Ag-¢ e peo| “1ayv 18S

e X
"0Od ol Jsysibas ey) wouy ssaippe [eolbo| 8i1Ag-g e peo| ‘“1qQy Jes|d 91" X
| 1aV deay ‘Dd ol sa)siBal 8y} wolj ssalppe 9lAg-g e peo) BUON L
0 Qv desy {nd oul Jeysibal ay) wol) ssaippe [eoifo| 81AqQ-g e peo| BUON 0
uonesado xyaud dr [1av
(11) dr jo uonesadp

"Od Ol 1dS wouy ssaippe siAg-g e dod ‘| jns s1av i
"Od Oul 1dS wolj ssaippe [edlfo] 81Ag-g e dod ‘0 mou s11AV | 1AV O Hg SHUN S} peo| “1dS woyy sikqedod| vz 1o 9| b

h '0-510d o1 ISYAW/NININL AQ paddew

SdS wolj sejAq om} dod usy} ‘91-£20d O 1dS woly 8)kq e dod ‘| mou s17av §l Od ol ISYEW/NININ Ag
paddew S4S wolj ssaippe [ed1b0] 81Ag-z e dod ‘0 s s1 1AV 4 1AV Oul HY SHUN s} peo| “1dS wol) 8lAq e dod ¥g 1o gl” 0
| sAels 1ay Dd Olul 1dS wou) ssaippe [eaibo| a1Ag-¢ e dod BUON L
0 sfeis Qv :0d oWl ISYAIN/NININ Aq peddew SdS woyy sseippe [eaibo| 814g-g e dod BUON [0
uonesadQ | xyeud 134 |1QY

NL34 40 | 134 ‘L3Y Jo uonesadQ

"Od Olul uonon.sul 8y} wol ssalppe alAg-g e peo| 1Ay 1es cer X
"Od Ol uoonusul 8y} woiy ssalppe [eaibo| 8)Aq-g e peo| ‘“1qy Jes|d oLI X
L Qv desy {Dd ojul uononiisul Wody ssalppe 814Aq-g peo) BUON |
0 1AV desy :Dd ol uononasul Wwoy ssalppe eaibo| 814g-g peo) BUON 0
uonjesadQ | xyaud dr |1Qv

uuuu dp jo uonesadp

(panunuoo g sjqel)

ar "old

U.S. Patent Dec. 31, 2002 Sheet 5 of 42 US 6,502,181 B1

F I G. — 5 (Table 3)

Instruction (class) .16/.24 .i16/.i24
ADD/ADC/SUB/SBC/AND/OR/XOR/CP A, (HL/IX+d/IY+d) | Y
ADD/ADC/SBC rr,rr Y
BIT/SET/RES b,(HL/IX+d/IY+d) Y
CALL Y
CPI, CPIR, CPD, CPDR
DJNZ

EX DE,HL

EX (SP),HL/IX/Y
INC/DEC (HL/IX+d/IY+d)
INC/DEC rr

INI, INIR, IND, INDR

JP nnnn Y
JP ce,nnnn Y
JP (HL/IX/1Y)

JR

LD r,(HL/IX+d/IY+d)
LD (HUIX+d/1Y+d),r
LD (HL/IX+d/1Y+d),n

<|<|=|<l=<[<l<

LD A,(BC/DE)

LD (BC/DE),A

LD SPHL/IX/IY

LD SP,nnnn Y
LD r,(nnnn)

LD (nnnn),r

LD rr,nnnn [rr other than SP]

LD rr,(nnnn) [incl. IX, 1Y, SP] Y
LD rr,(HL/IX+d/1Y+d)

LD (HL/IX+d/1Y+d),rr

LD (nnnn),rr [incl. IX, 1Y, SP] Y

LDI, LDIR, LDD, LDDR
OUTI, OTIR, OUTD, OTDR

POP

PUSH

RET

RETI

RETN

RLC/RL/RRC/RR/SLA/SRA/SRL (HL/IX+d/IY+d)
RST

TST (HL)

<<= <<= == |=<=<]|=<|<]|< << < |<|<<|< <]|<|<|<|<|<

US 6,502,181 Bl

Sheet 6 of 42

Dec. 31, 2002

U.S. Patent

"uofjonJIsul YZ NI ue Buisn ‘suoneoo| 8ssy} WoJj pesl
8Q UBD 9NnjeA PajeNWNOdE 8y "SUOIEO0| 8SOY) 0} USHIIM &Q UBD Jojejnwinooe ay) 104 anjea Buiue)s y

¥-00V

Mueq siyi ul paiyioads

uone|nojes ay) sejejdwod 31 uaym jdnusjul ue }senbai [jim DYIA 8Ul ‘L SI g SIY) JI :ejqeul] idnusyy

['ng Juewaioepauawaloul Ag paocejdal aq

PINOD] "-0DV 0} Usium anjeA sy} mojaq pepuadde eq pinoys 1eyl (s)iq ay; ‘osez-uou si YIYS U| Ji :SSION
‘'sa01ez Japio-ybiy Jo

Jagquinu siy} apnjoul |jiIM $OV Buipesa) ‘olaz-uou S| pjal} SIU} | ‘peal ale $-00y usym ‘Buijiys Agq pepieosip
8Q p|noys ey} uolie|nwindoe ayj Jo Siiq 19pJ0-MO| JO JIaquinu ay) saiioads jeyl anjea 1g-g e :Jiys 5%
‘paioubl

ale s)q Japio-ybiy Jo 1aquinu SIY} ‘USHLIM SI DY PUR 018Z-UOU SI P|al) SIYL J| “H#-0DY O} Usllim anjea
8y} mojeq psepuadde og pinoys Jeys slq JopIo-moj Jo Jaquunu 8yl seiloads ey} anjeA JIg-¢ B :HIUS uj
:sisjewesed BuIMO||0) BY} JO [[B JO BWIOS SUIBIUOD }| “UsiLM SI 1aisiBal sily) uaym pases|d si Jojejnwinode ey |

[e211F]e}g)

‘paje|NWIN22E pue paljdiinw aq 0} senjea jo siied Jo Jaquinu 8y

tibue

(ssauppe Bunjiom ayy ol J8)sibal peojey Buipuodsariod sy} Jo SJUSIUOD BY) SPRO| DYIN Ul
‘Bunuswiaioul Jo pesisul Jeysibal pug Buipuodsaliod ay) saydlew sselppe Buniiom e §| ‘senjea Jo Jied
1xau 8y} o1 186 01 sassalppe Buppom sy sjusweloul AjjeaidAy 1 ‘uone|nojes sy swilopyad DY Ul SY)
"INVH yoee ul Jaynq Jenalid ayi jo Buluuibaq ayy J0 ‘SNVH A PUB X 9U} Ul Sassalppy

peo|eYy
AX

"INVY Yoea ul laynq Jejndlid 8y} Jo pus 8yl JO ‘SINYH A PUB X 8U} Ul Sessalppy

pua A'X

‘paidiynw aq o} senjeA 1si1} 8y} Jo ‘Ajpanoedsal 'SNYY A Pue X 8y} Ul sessaippe ey

Hels A'X

1018160y

(v @19eL) 9 l.@Pns

US 6,502,181 Bl

Sheet 7 of 42

Dec. 31, 2002

U.S. Patent

"L1‘00 01 sebueyo siels syl ‘Ynsal isilj 84} 1IN0 speal)l UBYAL “Jeylis Jo | nsal sy 1no
peal 1,usey a/emyos Ing ‘suolenodfed om] peje|dwiod sey DY\ 8yl ‘euoq jualng ‘euoq ByiQ

L

b

“LL‘LL 01 sebueyo ajeis

8y} ‘Ynsel snotraid ay} INO Speal a1eMYOS 810J8q SaysIul} DVIA Ul §| "00°0L 01 sebueyo ajels
8Y} ‘saysiul DY 8yl 810jaq SIYl Seop alemyos §| "uonejnoed snoiraid ay) Jo Jnsal ayy Jno peal
19A JoU sey aiem)os pue ‘uolenojed e uo Bupjiom sI DA 8yl ‘euoq juauny ‘ssaibold uj lsyi0

HE

0]

"L1‘01 01 sebueyd ejels eyl pue Joyio ay} o} Uo s0B Y ‘uoiie|NDJED BUO YlIIM SBysIul)
DVIN Yl UBYpA jueq JaisiBal Juslind sy} Ojul UOIIBINDJEeD 1Xau 8y} Jo uoiiesynads ey} pepeo| sey
lossaoo0idoidiw 8y} pue ‘uolie|noed e uo Bunjiom st DI 8yl ‘Apesy ualng ‘ssaiboid uj 18yl

0

(]8

"00°00 0} seob
a]els 9yl ‘0s seop aleMyos USUAA -0V WOl peal ag ued Uoe|NWNIOR }NSal 8y} pur “ueq
la1s1bai s1y} ul palyoads uole|nofed eyl pale|dwod sey DY 8yt ‘auog juaung ‘Adwg 18yl

L

00

18)s168.1 snyeyg ay) 01 08 xay e Bunum Ag 11‘00 alels 01

Syueq ay} dijj ued)i ‘UOIIBINWINJOE }NSal 8y} peal 0] SJuBM 8I1eM|JOS PUB BUop 8q O} UOI}e|nd|ed
1Xau ou s| aJayl §| “LL‘OL 01 0 |Im B1els ay] ‘os Saop aiemyos §| ueq Jsisibal Jusino sy ol
uole|Noje 1xau 8y} Jo uonesljioads ay) papeo 194 Jou sey Ing ‘uolie|noes snolaaid Aue Jo jnsal
8y} peal sey a1emyos ey ‘uole|nojed e pajejdwod sey Dy 8yl Aidw3 ueung ‘euoq 1BUi0

00

H

"00° L} 0} s906 alels au) ‘uone|noled Ixeu sy} soeds NdIN 8y} 810j8q saysiuly OVIN 84Ul Jl “L0‘0L
0} s20b ajels ayl ‘saysiuly DYIN 2yl 210jog 0S Sa0p Il | Mueq JaisiBal Jusiund ay) Olul UOKE|ND[ED
1Xau ay} jo uoneoypads ay) papeo] 194 Jou sey Ing ‘uoleinofed snoiaald Aue Jo jnsal ay) peal
sey Jossaooidoioiw 8y| "uonendjed e uo Bupiom st Dy oyl Aidw3 waling ‘ssaiboud uj loyiQ

00

0l

‘00‘01 0} seob ajels DN 8y) yueq leisibal ay) 0] oads
UOIIe|N3[BD MBU B SOILIM IBMOS }| "OJels SIU} 0} Josal spiel asay] Aldwg juaing ‘Aidwig 1eyi0

00

00

snjels DVIN

yueg uaun)
:0-1 sug

yueg Jay10
:2-€ sig

(s ®19el)

Z "Old

U.S. Patent

FIG._8

Dec. 31, 2002

Sheet 8 of 42

US 6,502,181 Bl

(Table 6) STATE OF IEF1 AND IEF2

CPU Operation |1EF1 IEF2 Remarks

RESET 0 0 inhibits the interrupt except NMI and TRAP
NMI 0 IEF1 Copies the contents of IEF1 to |[EF2

RETN IEF1 Not affected | Returns from the NMI service Routine
Interrupt except |0 0 Inhibits the interrupt except NMI and TRAP
NMI and Trap

RETI Not affected |Not affected

TRAP Not affected | Not affected

El 1 1

DI 0 0

LDA, | Not affected | Not affected | Transfer the contents of IEF2 to P/V flag
LDA R Not affected | Not affected | Transfers the contents of IEF2 to P/V flag

FIG._9

US 6,502,181 Bl

Sheet 9 of 42

Dec. 31, 2002

U.S. Patent

‘s8j0A0 abpejmounoe

snq Buunp aou ‘Jesay Buunp au| Sy} SALIP 10U SE0P 0873

ay] "ssaooe Jo adA) sy} eredlput suid YAA pue gy 8y "ededs
O/I Ul uolyeoo| e Buissedoe si 0873 8Ul Jeu sa1edipul Mo| DHOI

alels-¢ ‘Mol aAnoe ‘indinp

1senbay Oy

OHOI

"$810A0 abpajmousoe snq Bulnp Jou ‘Jesay
Buunp aul| sy} eALp 10U SB0P 0873 SUL SN BIEP 8y} OJLO BJep
a1eb o} [eubis siy) sesn ao1nap O/ passelppe oy “aoeds Q| ul
uoieoo| e wouy eyep Buipeas si 0873 8y} ey} sejedlpul mo| 40|

ajels-g ‘moj aAnoe ‘indinQ

pesd O/l

adol

's9|0A0 abpamounoe snq Buunp Jou
‘Josey Bunp aull siY} 8ALp 10U Seop 08Z3 8YL * 0LNI uo 1senbai
1dnusju ue BuiBpaimousioe si 0873 8Ul 1Byl SBIRIIPUI MO| MVLNI

ajeIs-g ‘moj aanoe ‘indinQ

abpajmounoy 1dniie)

AVINI

"9AlJORU| BI8
sfeubis DIHSNG PU. [N SU} PUE ‘Pajgeus s Ji Ji 8joAd uonoNnsul
1ua1INd 8 Jo pus 8y} Je 1senbai siyy 0} spuodsel Jossesold oy

1dnusjul ue 3senbai 0} MO| BUI| SIL} SALP UBD S82IASP [BUISIXT

Mo aAloe ‘induy

0 1senbay 1dnusju|

OLNI

"$9|0A2 abpajmounoe snq Buunp Jou ‘1esey Buunp auy siul
SALP Jou Sa0p (0873 8y “Aowsw woly uononasul ue Buiyoe) si
08Z3 8u} ey} sajedipul (Mo] AHIN Pue DIHIN Yim) mo] Y 1SN

ajels-¢ ‘Moj aAljoe ‘indinp

peay uolonisu|

Q4L1SNI

'UONONIISUI 475 10 [TVH €
jo asneoaq paddois s1 0873 au 1eul sapeaipur uid SIY) UO MO| Y

MO| 8AIOE ‘INdinO

HeH

1IvH

'S8J0AD ajuMm Bulinp AJUO saul| 8SaY) SBALIP 0873 8L ‘S8dIASp
Aiowaw pue /| WOl pue 0} UOITRLLIOUI J8jSuel) Saulj 8say |

a1els-g ‘[eUOloalIPIg

sng ejeq

0-4a

‘0823 8U} JO X00[0 Jajsew 9y |

indu

49010

A0

‘Mo| au| siy Buiaup Aq ‘esn
iy} Jo} snqg 8y} ases|al 0} 0873 8U} 9210} UBD SBDIASP [RUlaIXT

MO| 9AjOE ‘Indu|

}senbail sng

o3dsng

"mo| aul| siy1 Buiaup pue sjeufis |01jU00 pue ‘eep ‘ssalppe
au) Bupers-¢ Ag ‘D3HSNG U0 mo| e 0} spuodsal 0gz3 ayL

Mo| aAioe ‘ndinQ

abpamounoy sng

A0vSNg

'sojoAo abpaimouoe snq [euieixa
Jou Jasel Buunp sauyj 8saUy) SALP JoU S80p 08ZT 8UL "USHLM 10
peaJ 8q 0} 82eds (/] Jo Alowaw Ul UoIeI0| & 100[8s Seul| 958y |

slels-¢ ‘feuonoalipig

sng ssaippy

0-€cv

uonduasag

adAL

uonound

Nid

loquis

SNOILdIYOS3Aa Nid 32IA3Ad ANY HOSSIDO0Hd (2 @1qel)

v6 "OId

US 6,502,181 Bl

Sheet 10 of 42

Dec. 31, 2002

U.S. Patent

"Mo| aul| siLy BuiaLp Aq
‘%00J0 BUO UBY) 810W 0} $819AD SN pUBIXe UBD S0IASP [eulalXg

MoO| aAloe ‘nduy

Hep

1IVM

‘Alleusaixa abe}jon swies sy 0 pai) 8q
1snw A8y | "8o1nap 8y} Joj saoualayal punolb sy ese suid esay |

punoJx)

SSA

‘Alrewsixa abe)jon swes
8L} 0} pan 8q 1snw Aey | “adinep ay o} Jlamod Aured suld asey |

,>_Qa:w lamod

PPA

"uononJsul
1134 ue Bunoaxe sI 0873 &y} 1oy} SSJBOIpUI SUI| SIU) L0 MO| Y/

Mo[sAlloe Indino

ydnusyu| wol uimey

1134

"sawin asl DY Moj[e o} Jabbuy Jiwyog e sepnjoul indul
SIUL *9IgelS SI 00[0 B} |IUN MO| p[ey 89 1SN pue ‘Sajoko 300[0
WielsAs JO Jaquunu WNWIUIW € 10} MO 8q 1snwi Indul siy wielsAs
U} Ul S30IASD JBUI0 PUB 0gZ3 SU} aZIeriul o} pesn s| [eubis siy|

Mo| aanoe ‘IndinQandu|

oS8y IoiseiN

13S34

'SaLul asu QY Mo|fe o} 1e66u nwyas e sepnjoul indul sy 1 "HI900
uoieoo| 0} uoinoexe Jossaoold seoioy [eubis siy] sdoj-diy ajqeus

1dnuisjul ay; Jo siels ay) Jo ssejpsebal ‘uononusul Ue Jo pus ey
1e paziubooas sAeme s| pue oI N| ueyl Auoud Jeybiy e sey AN

aAoe abpa-buye;} ‘indu

1dnuiisiu s|qeysewuoN

IANN

"s$810A0 afipsimounoe snq Buunp Jou ‘lesay Buunp
8ul| SIU} ©ALIP 10U SB0P 0873 8y "Uoled0| Alowsll passalppe
9y} 1B paIols 89 0} elep pjoy 0-2Q ey saredipul mo] YMIN

alels-g ‘Mo| aAloe ‘Indino

8l Moway

HMIN

'sa19A0 abpajmouioe snq

Buunp Jou 9esey Buunp aulj Sy} BAUP Jou S0P 0873 8Y L 'SSevoe
Jo edA} ey} ejedipul suid GH1SNI PUe ‘UM ‘Y 8y L Aowsuw

ul uoleoo| e Buissaooe s| 0873 aui Jeu} SajeoIpul Mo| DIHIN

8le]s-¢ ‘Moj aAloe ‘Indinp

1senbay Aloway

O3HN

*$810A0 ebpajmouoe snqg Buunp lou ‘lesey Buunp

8Ul} SIU} SALP JoU SB0P 0873 SYL 'SNq elep sy} ojuo vyep ayeb
0} [eubis siy) sesn Alowew passelppe ay] "ededs Aiowsiu u
uoljeoo] e wiolj eyep buipess si 0873 8} ieyl sejedipul mo| AHIN

ajels-¢ ‘mo| saoe ndino

peeay Alowepy

adw

'$810A0 abpamounoe snq Buunp Jou ‘Jesay
Buunp aul| SIU} SALIP 10U SBOP 08ZF 8Y L "UOIEBIO| (/| pesselppe
8y} Je palols 8q 0} ejep pjoy 0-L3 eyl ssjedipul mo| YAOI

alels-¢ ‘Moj aAlloe ‘indinp

SHIM O/

dMOl

uonduaseqg

adAL

uonoung

uld

|loquAg

SNOILdIHOS3d Nid 3JIA3d ANV HOSS3D0Hd (panunuoo £ ajqey)

g6 "Old

U.S. Patent

FIG._10

Dec. 31, 2002 Sheet 11 of 42 US 6,502,181 B1

(Table 8) COMMON BASE REGISTER (0038H) CBR

Bit 7 | 6 | 5 [4 | 3 [2 [1)

Bit/Field Base of Common Area 1

R/W R/W

Reset 0 | 0 | o I | o | 0 [o | o

NOTE: R = Read W = Write X = Indeterminate

Bit Position | Bit/Field R/W | Value | Description

7-0 Common 1 R/W If the comparison of bits 15-12 of a

Area Base logical address indicates that the

address is in Common Area 1, this
value (shifted left 12 bits, times 4096)
is added to the logical address to
form the physical address.

FIG._11

(Table 9) BANK BASE REGISTER (0039H) BBR

Bit 7 | 6 | 5 | 4 [3 [2 [1 L 0

Bit/Field Base of Bank Area

R/W R/W

Reset 0 [o | 0 | o | o [o [0 | o

R = Read W = Write X = Indeterminate

Bit Position | Bit/Field R/W | Value | Description

7-0 Bank Area Base | R/'W If the comparison of bits 15-12 of a
logical address indicates that the
address is in the Bank Area, this value
(shifted left 12 bits, times 4096) is
added to the logical address to form
the physical address.

U.S. Patent Dec. 31, 2002

FIG._12

Sheet 12 of 42

US 6,502,181 Bl

(Table 10) COMMON/BANK REGISTER (003AH) CBAR

Bit 7 | 6 | 5 1 4 3 | 2 1 1+ [o
Bit/Field Bank/Common 1 Boundary Common 0/Bank Boundary
R/W R/W R/W
Reset 1 1] 1 o [o | o | o
R = Read W = Write X = Indeterminate
Bit Position | Bit/Field R/W [Value { Description
7-4 Bank/Common R/W If bits 15-12 of a logical address are
1B greater than or equal to this value,
oundary the address is in Common Area 1.
3-0 Common 0/Bank | R/'W If bits 15-12 of a logical address are
Boun less than this value, the address is
undary in Common Area 0.
NOTE: If bits 3-0 of this reg < bits 15-12 of a logical address < bits 7-4 of this reg,
the address is in the Bank Area. Do not program this register so that bits 3-0 > bits
7-4. All comparisons are unsigned.

FIG._13

(Table 11) LOAD INSTRUCTIONS

Mnemonic | Operands | Instruction

LD dst,src Load

LEA qq,IX/Yd Load Effective Address
PEA IX/Yd Push Effective Address
POP dst Pop

PUSH src Push

FIG._14

(Table 12) ARITHMETIC INSTRUCTIONS

Mnemonic | Operands | Instruction

ADC dst,src Add with Carry

ADD dst,src Add

CP A,src Compare

CPD(R) Block Scan, decrementing (and Repeat)
CPI(R) Block Scan, incrementing (and Repeat)
DAA Decimal Adjust Accumulator

DEC dst Decrement

INC dst Increment

MLT rr Multiply

NEG Negate Accumulator

SBC dst,src Subtract with Carry

SUB A,src Subtract

U.S. Patent
FIG._15

Dec. 31,

2002 Sheet 13 of 42

(Table 13) LOGICAL INSTRUCTIONS

Mnemonic | Operands | Instruction

AND A,src Logical AND

CPL Complement accumulator
OR A,src Logical OR

TST A src Test accumulator

XOR Asrc Logical Exclusive OR

FIG._16

(Table 14) EXCHANGE INSTRUCTIONS

Mnemonic Operands | Instruction

EX AF AF' Exchange Accumulator and Flags
EX DE,HL Exchange DE and HL

EX (SP),rr Exchange register and top of stack
EXX Exchange register banks

FIG._17

(Tabl

e 15) PROGRAM CONTROL INSTRUCTIONS

Mnemonic | Operands | Instruction

CALL cc,dst Conditional Call

CALL dst Call

DJNZ dst Decrement and Jump if Non-Zero
JP cc,dst Conditional Jump

JP dst Jump

JR cc',dst Conditional Jump Relative

JR dst Jump Relative

RET cc Conditional Return

RET Return

RETI Return from Interrupt

RETN Return from Nonmaskable interrupt
RST dst Restart

FIG._18

(Table 16) BIT MANIPULATION INSTRUCTIONS

Mnemonic | Operands | Instruction
BIT n,src Bit test
RES n,dst Reset bit
SET n,dst Set bit

FIG._19

(Table 17) BLOCK TRANSFER INSTRUCTIONS

Mnemonic | Operands | Instruction
LDD(R) Block Move, decrementing (and Repeat)
LDI(R) Block Move, incrementing (and Repeat)

US 6,502,181 Bl

U.S. Patent Dec. 31, 2002 Sheet 14 of 42 US 6,502,181 B1

(Table 18) ROTATE AND SHIFT INSTRUCTIONS

FIG._20

Mnemonic Operands | Instruction

RL dst Rotate Left

RLA Rotate Left Accumulator

RLC dst Rotate Left Circular

RLCA Rotate Left Circular Accumulator

RLD Rotate Left Decimal

RR dst Rotate Right

RRA Rotate Right Accumulator

RRC dst Rotate Right Circular

RRCA Rotate Right Circular Accumulator

RRD Rotate Right Decimal

SLA dst Shift Left

SRA dst Shift Right Arithmetic

SRL dst Shift Right Logical

FIG._21 (Table 19) INPUT/OUTPUT INSTRUCTIONS
Mnemonic Operands | Instruction

IN A (n) Input to A from port n

IN r, (C) Input to register from port in BC

INO r, (n) Input to r from port n in page 0

IND(R) Block Input, decrement HL (and Repeat)

IND2(R) Block Input, decrement both (and Repeat)
INDM(R) Block Input, page 0, decrement both (and Repeat)
INI(R) Block Input, increment HL (and Repeat)

INI2(R) Block Input, decrement both (and Repeat)
INIM(R) Block Input, page 0, increment both (and Repeat)
OTDM(R) Block Output, page 0, decrement both (and Repeat)
OTIM(R) Block Output, page 0, increment both (and Repeat)
ouT (n), A Output from A to port n

ouT), r Output from register to port in BC

OuUTOo (n), r Output from register to port n in page 0

OUTD (OTDR) Block Output, decrement HL (and Repeat)
OUTD2 (OTD2R) Block Output, decrement both (and Repeat)
OUTI (OTIR) Block Output, increment HL (and Repeat)

OUTI2 (OTI2R) Block Output. decrement both (and Repeat)
TSTIO n Test port (0,C) under mask

U.S. Patent

Dec. 31, 2002

Sheet 15 of 42

US 6,502,181 Bl

FIG._22 (Table 20) PROCESSOR CONTROL INSTRUCTIONS
Mnemonic | Operands | Instruction
CCF Complement Carry Flag
DI Disable Interrupts
El Enable Interrupts
HALT Halt
M 0/1/2 Interrupt Mode
NOP No Operation
RSMIX Reset Mix Flag
SCF Set Carry Flag
SLP Sleep
STMIX Set Mix Flag
FIG._23 (Table 21) FLAG REGISTER
Bit 7 6 5 4 3 2 1 0
Name S Z X HC| x |PV| N | CF
Reset 0 0 X 0 X 0 0 0
X=Indeterminate
Bit/Field Bit Position | Description
S 7 Sign Flag
Z 6 Zero Flag
5 reserved
HC 4 Half-carry Flag
3 reserved
P/V 2 Parity or Overflow Flag
N 1 Add/Subtract Flag
CF 0 Carry Flag

U.S. Patent

Dec. 31, 2002

Sheet 16 of 42

US 6,502,181 Bl

FIlG._ 24 (Table 22) FLAG SETTINGS DEFINITIONS
Symbol Definition
0 Clearedto O
1 Setto 1
* Set or cleared according to the result of the operation
- Unaffected
X Undefined
Vv Set if Overflow or Underflow
P Set if Parity or result is Even
NZ Set if the count in B or BC is non-zero
FIG._25 (Table 23) CONDITION CODES
Mnemonic Definition Flag Settings Valid in JR?
C Carry CF=1 Y
NC No Carry CF=0 Y
4 Zero Z=1 Y
NZ Non-Zero Z=0 Y
M Minus S=1 N
P Positive or zero S=0 N
PE Parity Even P/V =1 N
PO Parity Odd P/V=0 N
\Y Overflow P/V =1 N
NV No Overflow PV =0 N

U.S. Patent Dec. 31, 2002 Sheet 17 of 42 US 6,502,181 B1

FIG._26

FIG- _26A (Table 24) INSTRUCTION CODING SYMBOLS

Symbol Definition

(aa) (mn), (IXd), (IYd), (BC), (DE), or (HL).

(BC), (DE), (HL) | The 8-bit contents of memory, at the address pointed to by a register
pair. (HL) can also indicate a 16-bit value in memory.

(1Xd), (1Yd) The 8- or 16-bit content of memory at the address formed by adding
the contents of the index register and the signed displacement d in
the instruction.

(mn) The 8-bit content of memory at the direct address mn

(SP) The 16-bit contents of memory at the address pointed to by SP, and
the next higher address.

d Since d is signed, it would be more correct to just write + instead. But
we write to emphasize that d is signed.

AF A concatenated with F, with A as the more significant byte

b A bit number 0-7

cc A condition code C, NC, Z, NZ, S, M, PE, PV, V, or NV

cc' A condition code C, NC, Z, or NZ

d An 8-bit signed displacement -128 to +127

ee A 16-bit register BC, DE, HL, SP, IX, or IY

IEF1,2 The processor's two Interrupt Enable Flags.

ih IXH or IYH

il IYHorlYL

ir IXH, IXL, IYH, or IYL

m An 8-bit variable A, B, C, D, E, H, L, (HL), (IXd), or (IYd)

mn A 16-bit immediate data value or direct address

n A 8-bit immediate value or port number, 0-255 or 0-FFH

U.S. Patent Dec. 31, 2002 Sheet 18 of 42 US 6,502,181 B1

FIG- _263 (Table 24 continued) INSTRUCTION CODING SYMBOLS

Symbol Definition

op1-op2 A range of opcode values, that includes some of the values between
the low and high values. See the Note.

PC Program Counter

pp A 16-bit register BC, DE, HL, SP, IX, IY, or AF

q A, B, C,D, E, H, L, IXH, IXL, IYH, IYL, (HL), (IXd), or (IYd)

qq A 16-bit register BC, DE, HL, IX, or IY

nr An 8-bit register A, B, C, D, E, H,or L.

rae An 8-bit register A, B, C, D, or E

rr A 16-bit register HL, IX, or IY.

s A, B,C,D, E, H, L, IXH, IXH, IYH, IYL, n, (HL), (IXd), or (IYd)

SP Stack Pointer

Ss A 16-bit register BC, DE, HL., or SP.

ssH, ssbL The more- and less-significant eight bits of a register pair

tt A 16-bit register like ss, except that the value that designates HL in the
ss encoding, here means same as the destination register HL, IX, or IY.

Note: The symbol - between op codes (op1-op2), in the op codes column of the

Instruction Summary table, indicates all the binary values between the indicated

lower and upper limits inclusive, that can be formed by incrementing the set of bits

that differ between the lower and upper value.

Example: 00-CO represents 00, 40, 80, and CO, while 40-BF represents all the values

in that range.

U.S. Patent

FIG._27A

Dec. 31, 2002

Sheet 19 of 42

US 6,502,181 Bl

(Table 25)
Instruction Summary
Address Mode Op (ci_;;i(;(s) Flags Affected
g‘;;’r":t’;‘:'r"“ and dst src Z [He|pv|N|cF
r 88-8F
ADC Ass ir DD/FD 8C-8D . .
A"A+s+CF n CE v |o
(HL) 8E
(IX/Yd)] DD/FD 8E
ADC HL,ss P N
HL " HL+ ss + CF ED 4A-7A Vo
r 80-87
ir DD/FD 84-85
AODAS n C6 “|«|v]o|~
(HL) 86
(IX/Yd)| DD/FD 86
ADD rr tt HL 09-39 N B B P
o+t IX'Y DD/FD 09-39
r AQ-A7
AND As ir DD/FD A4-A5 .
A" Aands n E6 1| P|O|O
(HL) AB
(IX’Yd)| DD/FD A6
r CB 40-7F
BIT b,m (HL) CB 46-7E 1] xlol-
Z " not (bit b of m) (1X/Yd) DD/FD CB d 46-
7E
CALL cc,Mmn
IFec{SP"SP-2
(SP) " PC15-0.
IF ADL {SPL." SPL - 1
(SPL) " PC23-0}
IF.i16 OR .i24 { C4-FC -l -] - 1-1-
SPL " SPL-1
(SPL) " ADL
ADL".i1670: 1}
PC15-0 "mn
IF ADL {PC23-16 “ M}}
CALL Mmn
SP"SP-2
(SP) " PC15-0
IF ADL {SPL " SPL - 1 cD N R N
(SPL) " PC23-0}
IF .i16 OR .i24 {
SPL " SPL-1
(SPL) " ADL
ADL“.i16 ?0: 1}

U.S. Patent

Dec. 31, 2002

Sheet 20 of 42

US 6,502,181 Bl

FIG._27B (Table 25 continued)
Instruction Summary
OpCode(s
Address Mode p(Hex)() Flags Affected
Instruction and
Operation dst src S| Z |HCi{P/V|N|CF
PC15-0 “mn
IF ADL {PC23-16 “ M}
CCF . R
CF "not CF SF T - |0
r B8-BF
ir DD/FD BC-BD
g'?:’s n FE sl v
(HL) BE
(IX/Yd) DD/FD BE
CPD
A- (HL) o | x|
HL " HL - 1 ED A9 NZ|1] -
BC "BC-1
CPDR
repeat {A - (HL)
HL "HL-1 o | x|«
BC “BC - 1 ED B9 NZ{ 1| -
} while (not Z and
BC!=0)
CPI
A-(HL) o |]
HL " HL + 1 ED A1 NZ|1] -
BC "BC-1
CPIR
repeat {A - (HL)
HL "HL + 1 N
BC " BC - 1 ED B1 NZ|1] -
} while (not Z and
BC!=0)
CPL
A not A 2F - -1 - {1 -
DAA * * * *
A " decimal adjust (A,F) 27 Pl-
DEC ee ss 0B-3B N R T
ee "ee-1 IX/Y DD/FD 2B
r 05-3D
DEC q ir DD/FD25/2D | . | . | . Vil -
q'q-1 (HL) 35
(IX/Yd) DD/FD 35
DI
IEF1,2" 0 F3 AN
DJNZ d
B"'B-1 10 -t -1 - 0-1-
if Bl=0 {PC " PCd}

U.S. Patent

FIG._27C

Dec. 31, 2002

Sheet 21 of 42

US 6,502,181 Bl

(Table 25 continued)

Instruction Summary
OpCode(s)
Address Mode (Hex) Flags Affected
Instruction and
Operation dst src Z (HC|P/V|N|CF
El
IEF1,2" 1 FB gk
EX AF AF' | x| ow x| »
AF * AF' 08
EX (SP),rr HL E3 - S R R I
(SP) " rr IX/Y DD/FD E3
EXX
BC "BC'
DE ' DE' D9 B
HL "HL
HALT 76 =l -1 -t-1-
IMn ED 40-58 -l -1 - |-1-
IN A/(n)
A" (n) DB =l -1 - 1-]-
IN r,(C) R * -
r* (BC) ED 40-78 Of{P|O
INO r,(n) . * -
£ (n) ED 00-38 oO|P|O
INC ee ss 03-33 I A R
ee "ee + 1 XY DD/FD 23
r 04-3C
INC q ir DD/FD 24/2C | +«1vlol-
g q+1 (HL) 34
(IX/Yd) DD/FD 34
IND
(HL) " (BC) * B}
B"B- 1 ED AA X{ X |1
HL "HL - 1
IND2
(HL) " (BC)
B"B-1 ED 8C XX |1 -
c'C-1
HL "HL -1
IND2R
do {(HL) " (BC)
B"B-1
CC-1 ED 9C 1T (Xt X 11] -
HL"HL-1
}whileB!=0
INDM
(HL) " (0.C)
B"B-1 ED 8A P
C"C-1
HL "HL- 1

U.S. Patent

FiG._27D

Dec. 31, 2002

Sheet 22 of 42

US 6,502,181 Bl

(Table 25 continued)

Instruction Summary

Address Mode

OpCode(s)
{Hex)

Flags Affected

Instruction and
Operation

dst

Src

z

HC|P/V|N |CF

INDMR
do {(HL) " (0,C)
B"B-1

c C-1

HL " HL - 1

} while B 1=0

ED 9A

INDR

do {(HL) " (BC)
B"B-1
HL " HL - 1

} while B 1= 0

ED BA

IN
(HL) " (BC)
B"B-1

HL " HL + 1

ED A2

INI2

(HL) " (BC)
B"B-1
C'C+1
HL "HL + 1

ED 84

INI2R

do {(HL) " (BC)
B"B-1
C"C+1
HL"HL +1
}while B!=0

ED 94

INIM

(HL) " (0,C)
B"B-1
C'C+1
HL "HL + 1

ED 82

INIMR

do {(HL) " (0,C)
B"B-1
C"C+1

HL "HL +1

} while B 1= 0

ED 92

INIR
do {(HL) " (BC)
B B-1

HL " HL + 1

} while B1=0

ED B2

JP (1)

PC"rmr

IF .i16 {ADL " 0}
ELIF .i32 {ADL “ 1}

(HL)

E9

U.S. Patent

Dec. 31, 2002

Sheet 23 of 42

US 6,502,181 Bl

F IG._2 7 E (Table 25 continued)
Instruction Summary
OpCode(s)
Address Mode (Hex) Flags Affected
Instruction and
Operation dst src Z (HC|P/VIN |CF
(0 DD/FD E9
JP cc,Mmn
if cc {
IF .i16 {ADL " 0}
ELIF .i32 {ADL " 1} C2-FA ol I e
PC " mn
IF ADL {PC23-16 " M}}
JP Mmn
IF .i16 {ADL ~ 0}
ELIF .i32 {ADL " 1} C3 -1 - - -1 -
PC15-0 " mn
IF ADL {PC23-16 " M}
JRcc' d . .).
if o' {PC PC d} 10-38
JRd
PC " PC d 18]
(BC) 02
LD (aa),A (DE) 12
(@a) " A (HL) 77 - - -
(mn) 32
(IX/Yd) DD/FD 77
HL 22
(Ln?n()"?rgéee ss ED 43-73 - -] -
IX/Y DD/FD 22
BC,DE,]
LD (HL).qq GL ED OF-2F o]
(HL) " qq IX ED 3F
Y ED 3E
BC.DE,]
LD (1X/¥d).qq L DD/FD OF-2F N
(IX/Yd) " qq same | DD/FD 3F
other | DD/FD 3E
(BC) 0A
LD A(aa) (DE) 1A
A" (@) (HL) 7E R R
{(mn) 3A
(IX/Yd) DD/FD 7E
oA ED 57 | o |eFo] -
LD AMB
if ADL, A~ MB ED 6E SRS
LD AR ED 5F | o lEF20] -
LD ee,mn ss 01-31
ee” mn [N R A

U.S. Patent

Dec. 31, 2002

Sheet 24 of 42

US 6,502,181 Bl

F I G._2 7 F (Table 25 continued)
Instruction Summary
Address Mode OP&ZC:S(S) Flags Affected
g‘;;’r:‘t’itéz“ and dst src z |He|pv [N |cF
IX/Y DD/FD 21
HL 2A
'(;2.9(?;1(3”) ss ED 4B-7B - -] -
IX1Y DD/FD 2A
LD LA
[" A ED 47 -l -1 - -] -
LD MBA
if ADL, MB ~ A ED 6D L
r 06-3E
LD qg,n ir DD/FD 26/2E
qn (HL) 36 I e
(IX/Yd) DD/FD 36
r 40-7F
LD q,r ir DD/FD 60-6F
qr (HL) 70-77 [I A
(IX/Yd) DD/FD 70-77
LD qq,(HL) BC,I'D)I(E,HL E232727 e B
qq " (HL) Y ED 31
I - NN N
qq " (IX/Yd)
other | DD/FD 31
LD RA
R-A ED 4F S I I I
r 40-7F
rae ih DD/FD 44-7C
(note 1)
LDrs rae i DD/FD 45-7D . ol
r’s (note 1)
n 06-3E
(HL) 46-7E
(IX/Yd)| DD/FD 46-7E
LD SP,ir HL F9
SP“rr IX/Y DD/FD F9 RN
LDD
(DE) " (HL)
DE "DE-1 ED A8 - 10 notZ{0| -
HL "HL- 1
BC "BC-1
LDDR
do {(DE) " (HL)
DE "DE - 1 ED B8 -0 0730] -
HL"HL-1
BC "BC-1

U.S. Patent Dec. 31, 2002 Sheet 25 of 42 US 6,502,181 B1

F I G._2 7 G (Table 25 continued)
Instruction Summary
Address Mode OP(%O;S(S) Flags Affected
Instruction and
Operation dst src S| Z |HC|P/V|N|CF
} while BC =0
LDI
(DE) " (HL)
DE "DE + 1 ED AO - -10|notZ| O] -
HL "HL + 1
BC "BC-1
LDIR
do {(DE) ~ (HL)
DE "DE + 1
HL " HL + 1 ED BO -1 -1010 (0] -
BC "BC -1
} while BC =0
BC,DE,HL ED 02-22
LEA gq,IXd IX ED 32 -t -] -
qq " Ixd Y ED 55
BC,DE,HL ED 03-23
LEA qq,IYd X ED 54 N I I
qq " lvd Iy ED 33
MLT ss
ss ” ssL * ssH ED 4C-7C N
NEG R «
A"0-A ED 44 V|1
NOP 00 -1 -1 - = |- -
r B0-B7
ORAs ir DD/FD B4-B5 1
A"AORSs n F6 o|P|0O}lO
(HL) B6
(IX/Yd) DD/FD B6
OTD2R
do {(BC) " (HL)
B"B-1
C"C-1 EDBC XI1IX[X[|1]-
HL "HL -1
}while B !=0
OTDM
(0,C) " (HL)
B 3 B - 1 ED 8B * * * P * *
cC"C-1
HL "HL -1
OTDMR
do {(0,C) " (HL)
B"B-1 ED 9B c|11]0 1 *10
c'C-1
HL " HL - 1

U.S. Patent

FIG._27H

Dec. 31, 2002

Sheet 26 of 42

US 6,502,181 Bl

(Table 25 continued)

Instruction Summary

Address Mode

OpCode(s)
(Hex)

Flags Affected

Instruction and

Operation

dst

SIc

Z |[HC|P/V{N

CF

Y while B 1= 0

OTDR
do {(BC) " (HL)
B"B-1
HL " HL - 1

} while B != 0

ED BB

OTi2R

do {(BC) " (HL)
B"B-1
C"C+1

HL "HL + 1

} while B 1=0

ED B4

OTIM
(0,C) " (HL)
B"B-1
C'C+1
HL "HL +1

ED 83

OTIMR

do {(0,C) " (HL)
B"B-1
C"C+1

HL "HL + 1

} while B1=0

ED 93

OTIR

do {(BC) " (HL)
B"B-1

HL “HL + 1

} while B = 0

ED B3

OuUT (O)r
(BC) " r

ED 41-79

OUT (n),A
(n)"A

D3

OUTO (n),r
O,n) " r

ED 01-39

OuUTD
(BC) " (HL)
B"B-1

HL “HL - 1

ED AB

OUTD2
(BC) " (HL)
B"B-1
C"C-1
HL " HL - 1

ED AC

OuTI
(BC) " (HL)

ED A3

U.S. Patent

FIG._271

Dec. 31, 2002

Sheet 27 of 42

US 6,502,181 Bl

(Table 25 continued)

Instruction Summary

Address Mode

OpCode(s)
(Hex)

Flags Affected

Instruction and
Operation

dst

Src

Z |HC|P/V|N|CF

B B-1
HL "HL + 1

OUTI2
(BC) " (HL)
B"B-1
C"'C+1
HL "HL + 1

ED A4

PEA IX/Yd
SP " SP-2
(SP) " IX/Yd

ED 65/66

POP pp

pp " (SP)
SP"SP+2

qq

C1-F1

DD/FD E1

(no change unless
operand is AF)

PUSH pp
SP " SP-2
(SP) "pp

q9

C5-F5

DD/FD E5

RES b,m
m " m and not (2/b)

CB 80-BF

(HL)

CB 86-BE

(IX/Yd)

DD/FD CB d 86-
BE

RET
if 16 OR .24 {
newADL “ (SPL)
SPL " SPL+1
if TADL {
if newADL {
PC23-16 " (SPL)
SPL " SPL+1}
PC15-0 " (SPS)
SPS " SPS+2}
else [ADL is 1] {
if newADL {
PC23-0 " (SPL)
SPL " SPL+3
}else {
PC15-0 " (SPL)
SPL " SPL+2}}
ADL " newADL}
else [no prefix] {
if ADL {
PC23-0 " (SPL)
SPL " SPL+3
}else {
PC15-0 " (SPS)
SPS " SPS+2}}

C9

U.S. Patent

FIG._27J

Dec. 31, 2002 Sheet 28 of 42 US 6,502,181 B1

(Table 25 continued)

Instruction Summary
OpCode(s)
Address Mode (Hex) Flags Affected
Instruction and
Operation dst sre Z |HC|P/V|N|CF
RET cc
it cc {as RET above} co-re g
RETI
as RET above +
recognition by Z80 ED 4D B D R O
peripherals
RETN
as RET above + IEF1 "~ ED 45 -1-1 - 1-1-
IEF2
RLm ——— r CB 10-17
X X] (HL) CB 16 *10| PO} "™
(CF,m) " rotL{CF,m) (IX/Yd) DD/FD CB d 16
RLA —————
o] 17 -10} - |0|*
(CF,A) " rotL(CF ,A)
RLC m r CB 00-07
G HD CB 06 “lolPlof-*
(CF,m) " rotL.(m) (IX/Yd) DD/FD CB d 06
RLCA ——
07 -10| - |0f"”
(CF,A) " rotL(A)
RLD
tmp " A[3:0]
A[3:0] " (HL)[7:4] ED 6F *10f P |O] -
(HL)[7:4] " (HL)[3:0]
(HL)[3:0] "tmp
RR m r CB 18-1F
La = 0 CB 1E “lo|Plo|"
(CF,m) " rotR(CF,m) (IX/Yd) DD/FD CBd 1E
RRA [
i 1F ol - lol-
(CF,A) " rotR(CF,A)
RRC m r CB 08-0F
A0 CB OE ~lo|Plo]~
(CF,m) " rotR(m) (IX/Yd) DD/FD CB d OE
RRCA
% OF ol - o]~
(CF,A) " rotR(A)
RRD
tmp " (HL)[3:0]
(HL)[3:0] " (HL)[7:4] ED 67 *10|(P |O] -
(HL)[7:4] * A[3:0]
A[3:0] " tmp
RSMIX ED 7E =l -] - f-]-

U.S. Patent Dec. 31, 2002 Sheet 29 of 42 US 6,502,181 B1

F I G._.2 7 K (Table 25 continued)
Instruction Summary
OpCode(s)
Address Mode (Hex) Flags Affected
Instruction and
Operation dst src S| Z |HC|P/V|N|CF
mix_flag " 0
RSTp
SP"SP-2
(SP)"PC
IF ADL {SPL " SPL -1
(SPL) " PC23-0}
IF .i16 OR .i24 { C7-FF *I*]0| P |O]f -
SPL " SPL-1
(SPL) " ADL
ADL".i16 ?70: 1}
PC"0,p
note p=0,8,10,18,...38H
r 98-9F
SBC As ir DD/FBé)C-QD ALyl
A"A-s-CF n
(HL) 9E
(IX/Yd) DD/FD 9SE
SBC HL,ss P B *
HL " HL - s - CF r ED 42-72 vV |1
SCF
CF " 1 37 -1 -101] - 10} 1
r CB CO-FF
SET bm (HL) cBceFE | | | | |.|.
m " m or (2"b) (IX/Yd) DD/FDFE)EB d Cé6-
SLAm r CB 20-27
(g EEY o (HD) CB 26 *|+lo|Plof*
(CF,m) "m+m (IX/Yd) DD/FD CB d 26
SLP [ED 76 -1 -7 -1
SRA m r CB 28-2F
[+] _+]
(HL) CB 2E *[*jo|lP|oO]|*
(m,CF) " arith_shR(m) (IX/Yd) DD/FD CB d 2E
SRL m r CB 38-3F
XX _xi~{ol (HD) CB 3E ol*|o|Plo]f*
(m,CF) " logic_shR(m) (IX/Yd) DD/FD CB d 3E
STMIX ED 7D N I R
mix_flag " 1
r 90-97
SUBAs ir DD/FB 94-95 L. .
A“A-s n 6 vV |1
(HL) 96
(IX7Yd) DD/FD 96
r ED 04-3C
TSTAs o | =
AAND s n ED 64 1 P o]0

U.S. Patent Dec. 31, 2002 Sheet 30 of 42 US 6,502,181 B1

' FIG._-27A .
———————— -
! '
_FIG..27B
! l
|_FIG..27C
! 1
1
| FIG._27D
tTT T 1
! 1
: FIG._.27E |
Tt TTT 1
! 1
_FIG._27F |
! \
\ FIG._27G !
e
' 1
\ FIG._27H
I==-==---5
\ FIG._27] |
=== ===--- al
' 1
' FIG.-27J
I=======- l
! 1
' FIG.-27K |
e =
FIG._27 : ric..2n |
FIG._27L (Table 25 continued)
Instruction Summary
OpCode(s)
Address Mode (Hex) Flags Affected
Instruction and
Operation dst src S| Z |HC|P/V|N|CF
(HL) ED 34
TSTIOn N
(0.C) AND n ED 34 1| P 0|0
r A8-AF
XOR A.s ir DD/FD AC-AD .
A~ AXOR S n EE O|P|O}O
(HL) AE
(1X/Yd) DD/FD AE
Notes: Some of the values in this range are used by other instructions,
which "override" this range.

US 6,502,181 Bl

Sheet 31 of 42

Dec. 31, 2002

U.S. Patent

vv [OH'V| 7V | HY | 3V | dVv [OV [8V [VY [OHIY] 1V | HY | 3V | dV | OV | 9V
08S | 085 | 098 | 08S | 088 | 089S | 08S | 085S [4ANS | 9NS [gnsS | 8nsS | ans | ans | 8ns | ans
vy [OH)'V| 1V | HY [3v [@V [OV | v | vV |[OH)Y] 1V | HY | 3V | dV | OV | v
oav | Oav | Oav | Oav | oav | OAv | OQv | 0av | O4AV | aav | aav | adv | aavy | aav | aav | aav
vv [OH)VY| 1y | HY | 3V | a'v | Ov | gV [V(IH) 17VH 1O [HOH |3 OH)| ' CH) [0 CIHY |8 (TH)
a o | a| a | al al al al ai al | a | a al a1 | al
vVa IO [W [37 | a7 |07] 871 | VH [OH'H] 1TH | HH | 3H | GH | OH | gH
al gy | a | a | al al al al an|la | a| a | a an al | a
va [OH)3| 73 | H3 [xyedd] @3 [D03 | 83 | via |OHa| 1a [Ha | 3a | xad | o'a | ga
al | a1 | a | ai (gerve| al al al al | a | a | a | a1 {verer| a | al
vO [(R)DO] 70 [HO [30 | a0 [xyeid| g0 | vO |((OH'a| 18 | HE | 39 | ag | o' |xyaid
a|ar |l a | a | a ail |9ive| al air | a1 | a | a | a al ail |ouet
409 Uy | v v dS | (W)'v [dS"H| PO 405 uH) | (OH) | (GH) | ds | v'(uu) Juu'ds| p'oON
gl {030 | ONI |03a| a1 |a4av | 4r ai |93a| ONl | ONI | a1 ail | dr

145 u 7 7 H W AH)IHAH] PZ wWa u'H H H TH [H(WU)JuuH| pZN
gl [03a | ONI | D3d| a1 |aav | dr atl | 93a | ONI | ONI | a1 ail | ur

VY u‘g 3 3 aa [3a)v([3aH| P VK u‘g a a 3g |v'(3qQ)|uw3al p
gl |O03a | ONI |03 | 41 |aQav | dr a1 [O3d | ONI | ONI | @1 al |[zNra

ug 0 0 08 |(09)'V [09H| VIV u‘g g g 08 |v'(0g) juu'og
voud a1 |o3a | om |03a| a1 |aav| xa | O™ g1 | 03a | ONI | ONI | @1 al dON
4 3 a 0 9 v 6 8 L 9 3 v 3 2 b 0
(X3H) 37194IN H3ddn = [easA ‘31949IN HIMO1 = [BIUOZIOH —_
(3009 dO 1S1) dVIN 309D dO (92 81qel) h |_\®N musl

pueiadQ puoosg puetadQ 18414

oluowsupy ——->aNVv <Alwﬁ%n_VZQO mmwl-wsm

v leddn

)

8|qqIN epop do lemo L _______._

US 6,502,181 Bl

Juswieorldsip Hg-g paubls=p-¢ = ——-=—

®Ip 10 IPPE HG-9) = Ul 'Z | 4V8E™OId
a BlEp Hg-8 =U '}]
M iSO10N
- 4 [3] aJ] o s v 6 8 /] 9 § v € 2] 0
m H8E | u'v | (b€ [UUW 3 UW'N [TH'dS| W [Hoe | u'v | 4v | w'd i uu'd | dv d 5
m 1SH | 40 |8igel)| 1vD dt | @71 | 134 | 1SH | HO [HSNd| 1vD dr | dOd | 134
Hee | u'v | (ee |uu'3d|[IH'3a|uu‘ad | (OH) | 3d 0z | Uv¥ | TH [w'od I.A._n_mv ur'od| 1H | od 3
a 1SH | HOX |®8lgeL | TWvD | X3 | dr dr | 134 | 1SH | ANV {HSNd| TIvD 3 dr | dOd | 134
& H8L | u'y | (ge |uuD [(u)y | w O | HOL | UV | 3Q [uu'ON| V() |uuON| 3a | 2N
m. 1SH | 08S |e|gel) 1V | NI ar | X3 134 | 1sH | ans |Hsnd|Tvo | 1no | dr | dod | 13y | ©
m 8 uy | uu fuuz| (1e | wz au| 2 0 Uy | 08 [UUZN| uu [uuZN| 08 | 2N 5
1SH | 0av | 1TvO | 1O |elqel)| dr 1349 | LSH | QQV [HSNd| TIvD | df df | dOd | 134
vv (OHV) 1V | HY [3v | Vv | OV | 9V | ¥V [ORA)VY] 1V | HY | 3V | dV | OV | gV q
= d0) | d0 | dO | d0 | dO | d0 | dO | d0 | HO | HO | HO | HO | HO | HO | HO | HO
k) vv [OH'V| 1V | HY | 3v | vV [OV | 8V | VvV [OR'VY| TV | HV | 3V | dV | OV | gV v
Dnm HOX | HOX | HOX | HOX | HOX | HOX | HOX | HOX | GNV | ONV | ONV | ONV | ONV | ONV | ANV | GNV
S” (penunuos 9z aiqel) c-vV8c .mushs
-]

US 6,502,181 Bl

Sheet 33 of 42

Dec. 31, 2002

U.S. Patent

vie [OH)e] 7e | He | 3¢ | Q¢ | Oc | 8¢ [ve |[OHZ] 12 | HZ | 3¢ | d2 | D¢ | d¢
S3H | S3Y | S3H [S3H | S3” | S3Y | S3H | S3Y [S3IH | S3H | S3H | S3H | S3AH | S3H | S3H | S3H
Ve (ORI THE 3P] ar 1O | gt [vo [OW0o] 70 [HO | 30 | @0 | o0 | g0
S3Y | S3Y | S3Y | S3H | SIH | S3H | S3Y | S3IY [S3Y | S3AH | S3H | S3Y | S3AY | S3H | S3H | S3Y
Ve [OHYZ] T2 [W2 | 32] a2 [02| 82 | vo [(OHF9] 19 | H9 | 39 | a9 | 09 | g9
e | ue jug | ug | g | ug [ua | ug | L8 {u8 | ua | ua | ug | ug | ug | 18
vs [(OH)S] 1's [Hs | 3¢ | das [DS | a5 | v¢ |OHY| 1v | HY | 3v | av | Ov | g+
g {ug [ua | ug | ua | ug | ug | L8 | ue | u8 | ua | ug | u8 | ug | ug | ug
ve [(GH)e| 1'¢ | He | 3¢ | a¢ | 0¢ | g¢ | ve [OH2E| 12 | H2 | 32 | a2 | D2 | 8¢
e | ug | ug | ug | U9 | ug | ua | L8 | L8 | L9 | ua | ug | ug | ua | ug | g
Ve [OH)L T [HE [3 [@y [O1 | ar | vo [(QRYo] 10 | HO | 30 | @0 | D0 | g0
g | L8 [ug | ug | U9 | ug | ug | L8 | L8 [L8 | u8 | L8 | ug | ug | Lg | L8
v [(OH) | 1 H 3 a 0 g
THS | 1HS | 1HS | THS | 1HS | 7HS | 1US | 1S
v | (QH) | 1 H 3 a o) 9 v [OH) | 1 H 3 a o) g
VHS | VHS | VHS | VHS | VHS | VHS |VHS | VHS | VIS | VIS | VIS | VIS | VIS | VIS | VIS | VIS
v |(OH | 1 H 3 a o) g v [OH | 1 H 3 a 0 g
HH | HH | WH | YH | "4 | HH | "HH | "4 | 34 | 79 | 19 | 18 | 1™ 1 H | ™
v |(OH) | 1 H 3 a 0 g |[voud| (OH) | 1 H 3 a 0 g
O"HY | OHH | OHY [OWH | O”Y | O”HY [OHY | OHY | 074 | O0H | O7H | 91" | D" | 91" | O™ | 01y
4 3 a o) g9 v 6 8 L 9 3 v € F2 b 0
(HE00 HILAV dO PUZ) dVIN 3009 dO (22 3IqeL) L-V6cCc ©DiId

US 6,502,181 Bl

puelsedQ puoosssg pueiadQ 1sii4
-« —
JluoWwaup ——>»S3y o
. pug Jo mmN mv u\
™ 8|qaIN seddn s

9poD dO pug jo o|qqIN 18mo

vz-vez—old, W6E& "D

Sheet 34 of 42

Dec. 31, 2002

U.S. Patent

viZ [OHYL] A2 [HZ | 32 a2 [O0¢r] &2 [ve OWS] 19 | H9 | 39 | a9 | D9 | 99 4
138 | 13S | 13S | 138|138 | 138 | 13S | 135S | 138 | 13S | 13S | 138 | 138 | 138 | 135 | 138
v's [OH)S| 7 | HS | 3¢ | @S [26 | g5 | vv |[OHV| 1v | HY | 3v | av | OF | a+ 5
13§ | 135 | 13S | 13S | 13S | 138 | 13S | 13S | 13S | 138 | 13S | 138 | 138 | 138 | 138 | 138
ve [OH)'e| 7'e | He | 3¢ | @t | O¢ | g¢ | ve |(OH)2| 1¢ | He | 3¢ | de | O¢ | 8¢ q
13§ | 13S | 138 | 13S | 13S | 138 | 13S | 135S [138 | 138 | 138 | 138 | 13S | 138 | 138 | 13S
ViE OS] TP THY [30 [ay [O | 81 | vo |OH)Of| 10 | HO | 30 | @0 | o0 | g0 5
135 | 13S | 138 | 13S | 138 | 138 | 13S | 13S | 13S | 13S | 13S | 138 | 13S | 138 | 138 | 13
vie |OHZ] Y2 [HL2 [321 a2 [o2 a2z [ve |[(GH9] 19 | H9 | 39 | a9 | D09 | g9 q
S3H | S3H | S3H | S3H | S3H | S3H | S34 | S3H | S3IH [S3IH [S3H | S3H | S3H | S3Y | S3Y | S3H
vs |[OH)'S| 7s | HS | 36 | Qs | 06 | S | vv |[GHVY| 1¥ | HY | 3% | Q¥ | OFv | aF v
S3H | S3H | S3H | S3H | S3H | S3H | S34 | S3H | S3H | S3IH [S3H | S3Y | S3IH | S3IY | S3H | S3H
(ponunuos /g o|qel) z- —\m Nl.mu I .&

US 6,502,181 Bl

Sheet 35 of 42

Dec. 31, 2002

U.S. Patent

A_&_v IXI'Y | HXI'Y (PXD) | IXI'V | HXI'VY
. 0gs | 04as vans| ans | ans
A&; IXI'Y | HXI'Y (X1 | IXI'Y | HXI'VY
oqy oav | oav vaav| aav | aav
(P [IXI'VY [HXI'Y v'(p TP [HP | 2P| aP | 0w [galx)
vaili| a1 | a1 X @l X) @i | xn aixn ai|xy ai{xy ail al
vIXE | (PXD [AXE [HAXE[37X aaxi [27X [axit | YHXE | (ex)) | THXI [HHX 3T HX | @ HX | O'HXI | g'HXI
a|"ayao|aa|a | a | a al | 'Ha1 | a1 al |l a | a1 | al al
(PXD [IXI'3 [HXI'T (Px1) | IX1'a [HxI'd
‘3q1| a1 | a1 ‘agl | a anl
(X [IXI'D [HXI'D (px) | Ixi1'a [HXI'g
'oal| a1 | al ‘aq1 | al anl
XI'P | AI'(P ds'Xi (bxi) | uwlp | (px1) | (PxI) (PX1)
XD a1 |xp ail aav 'XIai| xai| 23a | ONI ‘Al a1
P U] axe | |oxe [uayxil xitxi (pX1) | U'HXI | HXI | HXI | Xt [x17(uu)] uu'x
XVai| a1 [o23a | oNI | 03a | a1 | aav “Ha1| ai 03Q | ONI | ONI | @1 | a1
3a‘(p 3a'xi (PX1)
X1 a1 aav ‘3a a1
og'(p 29'X| (PXI)
X) a1 aav ‘oa a1
4 3 a) g v 6 8)2 9 G v 3 2 ! 0
(HaQ@o Y314V 3A0D dO Pug) dVIN 3A0D dO (82 aiqel) hn_\QM. I.G shs

US 6,502,181 Bl

Sheet 36 of 42

Dec. 31, 2002

U.S. Patent

Juswieoe|dsip Ng-g paubis =p ‘¢

pueladQ puooesg pueladQ i1s114
//x_.n_m\“_\Al apo) do
ouowsup —+—Qq-1 Uz 10
6 9|qqIN Jeddn

9poD dQO pug 40 SIqQIN 18Mmo]

qg0¢ Old

€Jep 10 Jppe IQ-9} = uu g 1 b-Y0ET"OI4 m
Blep Jig-g = u | " :
s®@o0N @ fmmmemmme
4 3 a o) g 6 L 9 G ¥ £ 3 b 0
XI'dS
al 3
(x1) Xl XI'(dS) Xl 5
dr HSNd X3 dod
a
(ce 5
a|qel)
(PXD | IXI'Y [HXI'VY (PxD | IXI'Y [HXI'Y q
'VdO| dD0 | dD ‘'VHO | HO | HO
(PX1) _ _ _ .
' IXI'Y | HXI'Y (PX1) | IXI'Y | HXI'Y v
HOX HOX | HOX VANV | ANV | aNV
(penunuoo gz ajqel) c-V0E ‘O

US 6,502,181 Bl

Sheet 37 of 42

Dec. 31, 2002

U.S. Patent

qry |BWY[YEN | TH HUWIHPHTH] 7)1 (07 quy | PA | PXE UV AHTUURHAHEH(O) T (OFH
al| a1l | 1w | a1 |oav | 1no | NI Vad | vad | ISL | Q1 | 08S | 1NO | NI
LI A s o e P R e g P A I
val | val | ai
o] (] e T R o s o3 | 2 50
o) | X WAl e | o || s
a1 | al V3l | vaT
.M_._ﬂv v T'W) | W | OH) H'Y ﬂﬁ m_v_ﬂ.__ H'(u) | (U)'H
@ 181 0LNO| ONI [TH a1 1SL | o | ygq [OLNO| ONI
w e S || s ||
an val | val
| ol [ove | ||| e ||
an val | val
i 73] a 0 g v | 6 | 8 Z s [s | ¥ € Z ! 0
(HQ30 Y314V dO PUZ) dVIN 3A0D dO (62 2iqel) —
L-VIE "Old

US 6,502,181 Bl

Sheet 38 of 42

Dec. 31, 2002

U.S. Patent

d d
puels O_ucoomm//r . L\\ncmhm Q18414
ooy 088 |" <080 gy amupy g
. puz
2 S|qqIN Jeddn
8poD dO puz jo 8jqgIN 18Mo7
vicou 1€ DI
IviE O
3 a o) g] 6 8 . 9 S v € 2 1 0
4
3
a
o)
HedlO | HAlO | HANI ["ado | "aal HellO| HILO | HINI [HIdD [HIa1 | 8
2a1lno|{atno | aNI | add | aan SILNO[ILNO | INI | 14D | 107 |V
H
2
HZ2AaNI [HNALO NaNI H2INI [HINILO| HWINI 6
2aNI | Na10 [WaNI ZINI | WILO | WINI 8
d
X ds [(uu)'dS|dSTH| V(D) | (O)'V u . dS“H (0)'4
XINL uu
INSH S 1IN al [o%av | 1n0 | NI d1S olLsL mn_A._) 0gS NI ¢
(panunuoo gz ajqey) Nu—\ h .m.l.mvs l

US 6,502,181 Bl

Sheet 39 of 42

Dec. 31, 2002

U.S. Patent

(PAD [IAI'Y | HAI'Y (PAD) | IAI'Y | HAI'Y
‘v Ogs| 09s | 089S ‘v ans| ans | 9ns
(PAD [IAI'Y [HAI'Y (PAI) | JAI'Y | HAI'Y
‘v OQv| oav | oav ‘'Y aav| aav | aav
(PAD | TAI'Y [HAI'Y v'(p TP [HP [I | alp | O | 8l
vYai| ai ail AD @l AD @Al aijAd aillAn aijAnl ai|An al
VAL (PAD | 779A1 [HTAAL] 3TA1 [@A [OTAL] G71A1 [VHAT | (PAD | THAI | HHAI | 3'HAI | G'HAT | O'HAI | 8 HAI
al | 1ail| ai al a | ai al al ail ['Ha1| a1 al al | ai al al
(PAN | JAI'T [HAI'T (PAI) | TAI'AQ [HAI'Q
Ag1| a1 al ‘agl| al al
(PAD | TAI'D [HAID (PAI) | TAI'E [HAI'G
‘0oaill ai al ‘aql| ai anl
AP | XI'(p dS'Al (PAD | u(Pp | (PAI) | (PAI) (PA1)
A @i Al ai aav ‘Al@i|Al) @1} 930 | ONI ‘X1 Q7
FH (P | UTAL | A | Al Al [{UU)'All AFA (PAD [UHAI| HAI | HAI Al [AI(uu) [uu'p
ADQ@1| a1 | D03a | ONI | D930 | a1 | aav “HQa1| @1 | 23a | ONl | ONI | a1 al
3a‘(p 3a'Al (PAD
Al al aav ‘ag al
og'(p og'Al (PAI)
Al al aav ‘08 a1l
4 3 a o) g v 6 8 L 9 S v 3 2 I 0
(HA40 4314V dO PuZ) dVIN 3a09 dO (o€ elqel) —
L-Vc€ "Oid

US 6,502,181 Bl

Sheet 40 of 42

Dec. 31, 2002

U.S. Patent

ueladQ puode ueladoQ s
puesado puosss ~_ >_.n_mk_o M_V 4
4 9po) aQ pug
OIOWSUN ——> a1 0 91qqIN Jaddn
6

apo) dQO pug Jo BIqqIN JemoT]

dce Old

' I-VZE~OI |
3 a 0 g 6 8 L 9 g b 3 7 b 0
Al'dS
al d
(Al Al Al'(dS) Al 5
dr HSNd X3 d0d
a
(9¢ 5
a|gqel)
(PAD | JAI'Y [HAI'Y (PAD | TAI'Y | HAI'Y q
‘VdO | d2 | dD ‘'YHO| HO | HO
(PAI
.<q JAI'Y | HAI'Y (PAD | TAI'Y | HAI'Y v
HOX HOX | HOX Y ONV| GNV | ANV
(panunuoo og ajqey) z _\le.mus m

U.S. Patent Dec. 31, 2002 Sheet 41 of 42 US 6,502,181 B1

FiG._33A

(Table 31) OP CODE MAP (4th BYTE, AFTER 0DDH, 0CBH, AND D)

ol1/2[3l4l5| 6 |7/8lslalBlc|D| E |F
. RLC RRC
(1Xd) (1Xd)
RL RR
1 (IXd) (IXd)
) SLA SRA
(IXd) (IXd)
SRL
8 (IXd)
s BIT 0, BIT 1,
(1Xd) (1Xd)
5 BIT 2, BIT 3,
(IXd) (IXd)
6 BIT 4, BIT 5,
(IXd) (IXd)
. BIT 6, BIT 7,
(IXd) (IXd)
RES 0, RES 1,
8 (IXd) (IXd)
o RES 2, RES 3,
(IXd) (IXd)
R RES 4, RES 5,
(IXd) (IXd)
5 RES 6, RES 7,
(IXd) (IXd)
c SET 0, - |sETY,
(IXd) (IXd)
5 SET 2, SET 3,
(1Xd) (1Xd)
£ SET 4, SET 5,
(IXd) (IXd)
- SET 6, SET 7,
(IXd) (IXd)

o/1]l2|3lals5| 6 |7|8|l9]lA|Blc|D| E |F

¢Lower Nibble of 4th Byte
6

FIG._33B "&inBye—s| BIT < Mrnemonic
First Operand — £ ¥~ Second Operand

US 6,502,181 Bl

Sheet 42 of 42

Dec. 31, 2002

U.S. Patent

puesadQ puooes ~

™

olUoWBUN ——> 119

P+AD0“]

_— puelsadQ 1si114
¥ <« a1Ag Y Jo

8|qqIN Jeddn
9
o¥ig Wi 40 alqaiN somo
3 ajoja|v|e|sjz 9 Slv|ele|t|oO
(PAD ‘2 13S (PAD) ‘9 13S 3
(PAI) 'S 13S (PAI) ¥ 138 3
(PAl) ‘€ 13S (PAI) 2 13S a
(PAI) ‘L 13S (PAD) ‘0 L3S 0
(PAD "2 S3H (PAI) ‘9 S3Y g
(PAI) ‘s S3YH (PAD) v S3H v
(PAI) "¢ S3H (PAD 2 S3H 6
(PAD) ‘1 S3H (PAD) ‘0 S3H 8
(PAl) *Z 118 (PAI) ‘9 LI L
(PAI) ‘'S 1I18 (PAD ¥ LI9 9
(PAI) '€ LIS (PAI) T 118 G
(PAI) ‘1L LI (PAI) ‘0 119 v
(PAI) THS 3
(PAl) VHS (PAI) VIS FZ
(PAI) Uy (PAI) 1H b
(PAI) OHH (PAI) O 0
3 alolal|v|é6]|8]|z 9 slvieleltr]o

(@ ANV ‘HED0 ‘HA40 YLV ‘ILAS YY) dVIN 30D dO (2€ @19.L)

are "9ld

vve "Old

US 6,502,181 B1

1

METHOD AND APPARATUS FOR AN
ENHANCED PROCESSOR

FIELD OF THE INVENTION

The present invention is in the field of methods and
devices for digital processors and processor cores. More
specifically, the present invention is directed to an enhanced
processor that maintains backwards compatibility with a
number of.earlier designs in the same family, including
earlier processors with different address space and data
widths.

BACKGROUND OF THE INVENTION

Alarge literature exists regarding the history of processor
development and evolution. A brief summary of this history
is presented below. The reader is referred to
infopad.eecs.berkeley.edu/CIC /archive/cpu__history.html
and its cited documents for more information.

While processors have evolved dramatically over the last
several decades, in many design applications and environ-
ments there remains an extensive interest in utilizing mature
processor designs. Older designs have the advantage of a
well-designed tool set, a large base of engineering expertise
and familiarity, and in some cases a large investment in
software code.

The Z-80 processor is one older processor design in which
there remains a large interest. The Z-80 was originally
developed to be a successor to the Intel 8080 and was
regarded at the time as a vast improvement. Like the 8080,
the Z-80 used 8 bit data and 16 bit addressing. The Z-80
could execute all of the 8080 instructions and included 80
additional instructions (1, 4, 8 and 16 bit operations and
block move and block I/0). The register set was doubled
from the 8080, with two banks of data registers (including
A and F) that could be switched between. This allowed fast
operating system or interrupt context switches. The Z-80
also added two index registers (IX and IY) and 2 types of
relocatable vectored interrupts (direct or via the 8-bit I
register). Aspects of the Z80 are described in U.S. patent
application No. 4,332,008.

One characteristic that made the Z-80 popular in designs
was the memory interface—the CPU generated its own
RAM refresh signals, which meant easier design and lower
system cost, the deciding factor in its selection for the Radio
Shack TRS-80 Model 1, introduced on Aug. 3, 1977.

Like many processors, the Z-80 featured many undocu-
mented instructions. In some cases, they were a by-product
of early designs (which did not trap invalid op codes, but
tried to interpret them as best they could), and in other cases
chip area near the edge was used for added instructions, but
fabrication made the failure rate high. Instructions that often
failed were not documented, increasing chip yield. Later
fabrication made these more reliable.

After its introduced, many variants of the Z-80 were
developed and produced by a variety of manufacturers. A
number of these processors were sold with peripheral com-
ponents included on-chip. More recently, Z80 family pro-
cessors are developed and distributed as soft-core specifi-
cations in a register transfer language (RTL), which can then
be combined with other components to produce ASICs.

Hitachi produced the 64180 (1984) with added compo-
nents (two 16 bit timers, two DMA controllers, three serial
ports, and a segmented MMU mapping a 20 bit (1M) address
space to any three variable sized segments in the 16 bit
(64K) Z-80 memory map).

10

15

20

25

35

40

45

50

55

60

65

2

Zilog produced the Z-180, compatible with Z-80 periph-
eral chips, plus variants (Z-181, Z-182). The Z-280 was a 16
bit version introduced about July, 1987, with a paged (like
Z-180) 24 bit (16M) MMU (8 or 16 bit bus resizing),
user/supervisor modes and features for multitasking, a 256
byte (4-way) cache, 4 channel DMA, and a large number of
new op codes added (total of almost 3,500, including
previously undocumented Z-80 instructions).

A 16/32 bit Z-380 version also exists (1994) with an
added 32-bit linear addressing mode that is not Z-80 com-
patible.

Z380

Another addition to the Z80 family is the Z380. While the
Z380 was intended as an advanced 32-bit version of the Z&0,
with 16 Mb linear addressing, the processor had mixed
results. One problem was that Z80 binary code could not run
on the 380 without recompiling, therefore Z380 systems
were not “turn-key” compatible with software written for the
Z80. A further difficulty is that the Z380 mechanisms for
extending the capabilities of the Z80 and Z180, while
maintaining binary program compatibility, were inconve-
nient for both assembly-language programmers and C com-
piler writers, and expanded the code space requirements for
both kinds of programs. The Z380’s multi-byte op-code
prefixes meant that every time a 24- or 32-bit address or data
value was used in an instruction, the instruction not only had
to extend by the necessary 8 or 16 bits, but by another 16 bits
of “DDIR prefix” as well. This has proved to be linear
addressing and wider data at too high a price in code size.

Despite all the further developments made in mP design
since 1977, there remains continuing interest in Z80-based
processing. For many computer control applications, Z80
processing remains a versatile, reliable and inexpensive
solution. As a result of this continued interest, a substantial
body of tools and support components for the Z80, including
emulators, compilers, etc. continues to be distributed. See,
for example, the resources listed at www.geocities.com/
SiliconValley/Peaks/3938/z80__home.htm.

Zilog, Inc., continues to produce a sell a number proces-
sors in the Z80 family. A brief comparison of the features of
these processors is presented in the table below. Further
information is available at http://www.zilog.com/resources/
z80r.html.

7.80/7180/7380 Comparison

Z80 7180 7380
External Data Bus Width 8-bit 8-bit 16/32-bit
Address Space 64k 1 Mb 16 Mb Linear
Number of register sets 2 2 8 16-bit
Number of register planes 1 1 4
Static core no yes yes
CPU Speed 10 33 33
Clocks/Inst. Min 4 3 2

Memory Management

An important enhancement in processor design is the
ability to address a large address space. The address space is
determined by the number of bits the processor can manipu-
late and output as an address

Most 8 bit processors are limited to addressing 64k of
memory, using two 8-bit words to address each memory
location. A 16 bit CPU generally can support 1 to 16 Mb of
memory. To support these larger address spaces, the pro-
cesses generally utilize a memory management unit (MMU)
to access an address space larger than 64k, but still maintain

US 6,502,181 B1

3

compatibility with earlier instruction sets. Under one MMU
scheme, all instructions, in all modes, issue 16 bit addresses.
The MMU converts these 16 bit addresses to 20 bits.

In such a scheme, physical memory generally refers to the
entire universe of memory addressible by the processor. The
memory that can be addressed with any one map, or
configuration, of the MMU is called the logical address
space. In this scheme, every address generated by a user’s
program is a logical address and the MMU’s role is to
translate these logical addresses into physical ones. On
power up, the MMU may translate every logical address to
exactly the same physical address (which simulates the
Z380).

In an MMU scheme, address references made by a
program is passed through the MMU before being presented
to the physical memory space. If the address matches a range
previously programmed into the MMU, then the MMU will
add an offset to that address, forming the physical address.
Exd Z80

A number of years ago, Zilog purchased the exclusive
rights to the Exd Z80 softcore. One advantage of the ExdZ80
was its single clock bus cycles. As implemented and
marketed, the core was “pure” Z80, even including hidden
Z80 instructions from 1975.

While the Z180 family has long advertised 20-bit address
capability, its mechanism for achieving this, called the
Memory Management Unit or MMU, is difficult to use and
has impeded the use of this family into larger-scale appli-
cations. One would like to add a 24-bit mode in which the
processor automatically fetches longer addresses and data,
so that no prefix is required for most instructions.

What is needed is a processor “between” the Z18x and
Z38x families, that provides 24-bit linear addressing, is
more natural and convenient to program than the MMU or
380, and allows more compact programs than the 380.

SUMMARY OF THE INVENTION

The present invention is a controller for executing instruc-
tions. A controller according to the invention may exist in a
wide variety of embodiments, including, but not limited to,
an integrated circuit, a part of an integrated circuit, a
“soft-core” RTL descriptor language module, etc.

In one specific embodiment, a controller according to the
invention is designed to maximize compatibility with Z80
and 18x applications at the binary level, while simulta-
neously minimizing code space and maximizing program-
ming convenience for upgrades and new applications that
utilize 24-bit operation.

According to a further embodiment, an instruction set for
a controller is basically that of the Z18x family, with some
optional new facilities to enable 24-bit addresses and data
and further provides a Z80 derivative with 24-bit linear
addressing and 24-bit ALU, but an external 8-bit data path.

In a further embodiment, the present invention provides a
mP or mP core with multiple modes of memory addressing.
These modes are designed to allow for backwards compat-
ibility with legacy processor code. According to the present
invention, these modes can operationally coexist, with pro-
cesses written for different modes sharing the processor
under control of a supervising or kernel process.

In a specific embodiment, these modes consist of at least
five key modes, which may may be referred to as:

10

15

20

25

30

35

40

45

50

55

60

65

Native Z80
Virtual Z80
Native 8180

First 64K of memory;

Any 64K of memory,

First 1M of memory (Uses MMU
only)

Any 1M of memory (Uses MMU
plus MBASE register.);

16 M “linear addressed” memory
space.

Virtual 8180

ADL (Address Data Long) Mode

Note that while specific memory address space sizes are
given above, the invention may in other embodiments have
different memory space sizes.

In one specific embodiment, the invention can include an
autonomous Multiply/Accumulator Engine (MAC). This
engine is optimized to perform sum-of-products (SOP)
operations with little CPU overhead, making the invention
capable of more effectively handling a number of processing
tasks, particularly tasks related to digitalsignal processing
(DSP).

A further understanding of the invention can be had from
the detailed discussion of specific embodiments below. For
purposes of clarity, this discussion refers to devices,
methods, and concepts in terms of specific examples.
However, the method of the present invention may operate
within a variety of types of logical devices. It is therefore
intended that the invention not be limited except as provided
in the attached claims.

Furthermore, it is well knowvn in the art that logic
systems can include a wide variety of different components
and different functions in a modular fashion. Different
embodiments of a system can include different mixtures of
elements and functions and may group various functions as
parts of various elements. For purposes of clarity, the
invention is described in terms of systems that include many
different innovative components and innovative combina-
tions of components. No inference should be taken to limit
the invention to combinations containing all of the innova-
tive components listed in any illustrative embodiment in this
specification.

All publications, patents, and patent applications cited or
listed herein are hereby incorporated by reference in their
entirety for all purposes. The invention will be better under-
stood with reference to the following drawings and detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a processor according to an
embodiment of the invention.

FIG. 2 is a block diagram showing pinout of an example
processor according to an embodiment of the invention.

FIG. 3 (Table 1) indicates operation of CALL Instruction
according to an embodiment of the invention.

FIGS. 4, 4A, 4B (Table 2) indicate operation of RST et al
according to an embodiment of the invention.

FIG. 5 (Table 3) indicates which prefix selection affects
each (class of) instruction according to an embodiment of
the invention.

FIG. 6 (Table 4) indicates register loading to enable a
MAC status according to an embodiment of the invention.

FIG. 7 (Table 5) indicates bits indicating MAC status
according to an embodiment of the invention.

FIG. 8 (Table 6) indicates State of IEF1 and IEF2 accord-
ing to an embodiment of the invention.

US 6,502,181 B1

5

FIGS. 9, 9A, 9B (Table 7) indicate Processor and Device
Pin Descriptions according to an embodiment of the inven-
tion.

FIG. 10 (Table 8) indicates Common Base Register
(0038H) CBR according to an embodiment of the invention.

FIG. 11 (Table 9) indicates Bank Base Register (0039H)
BBR according to an embodiment of the invention.

FIG. 12 (Table 10) indicates Common/Bank Area Regis-
ter (003AH) CBAR according to an embodiment of the
invention.

FIG. 13 (Table 11) indicates Load Instructions according
to an embodiment of the invention.

FIG. 14 (Table 12) indicates Arithmetic Instructions
according to an embodiment of the invention.

FIG. 15 (Table 13) indicates Logical Instructions accord-
ing to an embodiment of the invention.

FIG. 16 (Table 14) indicates Exchange Instructions
according to an embodiment of the invention.

FIG. 17 (Table 15) indicates Program Control Instructions
according to an embodiment of the invention.

FIG. 18 (Table 16) indicates Bit Manipulation Instruc-
tions according to an embodiment of the invention.

FIG. 19 (Table 17) indicates Block Transfer Instructions
according to an embodiment of the invention.

FIG. 20 (Table 18) indicates Rotate and Shift Instructions
according to an embodiment of the invention.

FIG. 21 (Table 19) indicates Input/Output Instructions
according to an embodiment of the invention.

FIG. 22 (Table 20) indicates Processor Control Instruc-
tions according to an embodiment of the invention.

FIG. 23 (Table 21) indicates Flag Register according to an
embodiment of the invention.

FIG. 24 (Table 22) indicates Flag Settings Definitions
according to an embodiment of the invention.

FIG. 25 (Table 23) indicates Condition Codes according
to an embodiment of the invention.

FIGS. 26A, 26B (Table 24) indicate Instruction Summary
according to an embodiment of the of the invention.

FIGS. 27, 27A-27L (Table 25) indicates Op Code Map
(1st Op Code) according to an embodiment of the invention.

FIGS. 28A, 28A-1, 29A-2 (Table 26) indicates Op Code
Map (1st Op Code) according to an embodiment of the
invention.

FIG. 28B shows the organization of the table of FIG. 28A.

FIGS. 29A, 29A-1, 29A-2 (Table 27) indicate Op Code
Map (2nd Op Code after OCBH) according to an embodi-
ment of the invention.

FIG. 29B shows the organization of the table of FIG. 29A.

FIGS. 30A, 30A-1, 30A-2 (Table 28) indicate Op Code
Map (2nd Op Code After ODDH) according to an embodi-
ment of the invention.

FIG. 30B shows the organization of the table of FIG. 30A.

FIGS. 31A, 31A-1, 31A-2 (Table 29) indicate Op Code
Map (2nd Op Code After OBDH) according to an embodi-
ment of the invention.

FIG. 31B shows the organization of the table of FIG. 31A.

FIGS. 32A, 32A-1, 32A-2 (Table 30) indicate Op Code
Map (2nd Op Code After OFDH) according to an embodi-
ment of the invention.

FIG. 32B shows the organization of the table of FIG. 32A.

FIG. 33A (Table 31) indicates Op Code Map (4th Byte,
after ODDH, OCBH, and d) according to an embodiment of
the invention.

10

15

20

25

30

35

40

45

50

55

60

65

6
FIG. 33B shows the organization of the table of FIG. 33A.

FIG. 34A (Table 32) indicates Op Code Map (4th Byte,
after OFDH, OCBH, and d) according to an embodiment of
the invention.

FIG. 34B shows the organization of the table of FIG. 34A
DESCRIPTION OF SPECIFIC EMBODIMENTS

As is known in the art, a controller according to the
invention can be selected with various configurations and
capabilities. A large number of specific operations will now
be described. It should be understood that a controller
according to the invention can include or not include various
of these components and modes of operation and the
description of specific embodiments here shouild inot be
taken as limiting of the claimed invention.

According to a further embodiment, the invention can
provide a processor with a a 24-bit mode having an Interrupt
service routine that operates consistently, regardless of the
mode and context of the code that was interrupted and is able
to restore a mode and context upon completion of interrupt
processing.

According to a further embodiment, the invention is able
to be used with a master process, i.e. an operating system,
Real Time Executive Programs, or kernel, that itself operates
in 24-bit mode, while supervising the operation of multiple
processes (e.g. programs/routines/tasks) where some of the
supervised processes were originally written for the legacy
Z80 or Z18x processor and run in one of the other four
modes.

Addressing

One major mode bit, called ADL (or Address Data Long),
determines the operation of the EZ80 with respect to 16 vs.
24 bit addresses and data. When ADL is 0, address bits
A23-16 are normally taken from the output of the Z18x
MMU with 4 high order zeroes, plus the contents of a new
8-bit register called MBASE. Both ADL and MBASE are
cleared to zero by Reset. In one embodiment, MBASE can
only be written when ADL is 1, thus avoiding problems with
changing MBASE “on the fly” i.e. while MBASE is being
used.

When a program or task operates with ADL=0 and
doesn’t use the MMU (e.g., a Z80 program or task), MBASE
directly selects a 64K byte block of memory in which the
program or task operates.

Registers PC, SPL, BC, DE, HL, IX, IY, BC', DE/, and
HL' are extended from 16 to 24 bits for 24 bit operation as
are the associated data paths and ALU. When ADL is 1,
address pins A23-16 are normally taken from these register
extensions, as described in the next section.

There are two SP (stack pointer) registers, called SPS
(short) and SPL (long). SPS includes only 16 bits, and is
used as SP (with the MMU and MBASE) when ADL is 0 or
when a 16-bit prefix precedes an instruction (when the
assembler opcode is suffixed with “0.16”). Values pushed
and popped via SPS are always 16 bits.

SPL includes 24 bits, and is used as SP when ADL is 1 or
when a 0.24 prefix precedes an instruction. Most values
pushed and popped via SPL are 24 bits.

For most instructions that are affected by ADL as
described in the next section, instruction prefixes can be
used to override ADL without affecting its long-term state.
Instructions and sequences affected by ADL

If ADL is 1, A23-16 for instruction fetches come from bits
23-16 of the Program Counter, while if ADL is O, these bits
come from the MMU and/or the MBASE register. There is
no override facility for this choice.

US 6,502,181 B1

7

Indirect Resister Addressing

LD r,(HL/AX+d/IY+d)

LD (HL/IX+d/TY+d),r

LD (HL/IX+d/TY+d),n

LD A, (BC/DE)

LD (BC/DE),A

ADD/ADC/SUB/SBC/AND/OR/XOR/CP A, (HL/AX+d/

IY+d)

INC/DEC (HLAX+d/TY+d)

RLC/RL/RRC/RR/SLA/SRA/SRL (HLAX+d/TY+d)

BIT/SET/RES b,(HL/IX+d/TY+d)

In these instructions, when ADL is 1, A23-16 of the
memory address for the execution cycle(s) are taken from
the high-order 8 bits of the 24-bit register, while when ADL
is O these address lines are taken from the MMU and/or the
MBASE register. These conventions can be overridden for
one of these instructions by preceding it with a prefix
(suffixing its assembler opcode with “0.16” or “0.24”).
Stack Pointer

EX (SP),HL/IXAY, PUSH, POP, LD SP(nnnn), LD

(nnnn),SP, LD SP,nnnn

These instructions use SPL if ADL is 1, while if ADL is
0 they use SPS, mapped by the MMU and MBASE. This
convention can be overridden for one instruction by preced-
ing it with a prefix (assembler opcode suffix “0.16” or
“0.24”).

Direct Addresses

LD r,(nnnn), LD (nnnn),r, LD rr,(nnnn), and LD (nnnn),rr,

When fetching these instructions, after fetching the first
two bytes of address the processor fetches a third (MS) byte
to use as A23-16 if ADL is 1, while if ADL is O the processor
fetches only two bytes of address, and uses the MMU and
MBASE for A23-16. This convention can be overridden for
one instruction by preceding it with a prefix (assembler
opcode suffix .16 or .i24).

Multi-byte Immediate Data

LD rr,nnnn

When fetching the instruction, after fetching the first two
bytes of address or data the processor fetches a third (MS)
byte if ADLis 1, while if ADL is O the processor fetches only
two bytes of address or data, and takes bits 23-16 of the
value as zero. This convention can be overridden for one
instruction by preceding it with a prefix (assembler opcode
suffix .i16 or .i24).

16 vs. 24-bit Memory Data
EX (SP),HL/IX/TY, LD BC/DE/HL/SP/IX/1Y,(nnnn), LD
(nnnn), BC/DE/HL/SPAX/TY, PUSH*, and POP*

In execution/stack cycles for these instructions, the pro-
cessor stores and/or fetches a third (MS) byte in memory
after the first two if ADL is one, but not if ADL is zero. For
memory-fetch cycles (including POP) when ADL is zero,
the processor zeroes bits 23-16 of the affected register. This
convention can be overridden for one instruction by preced-
ing it with a prefix (assembler opcode suffix 0.16 or 0.24).
Note that PUSH AF and POP AF with ADL=1 are special
cases. For these, SP is incremented or decremented by 3 as
for other stack operations, but there is no reason to actually
read or write a third data byte.

Internal 16- vs. 24-bit Operations

LD SPHLAX/TY,

EX DEHL,

LDI, LDIR, LDD, LDDR, CPI, CPIR, CPD, CPDR,

ADD/SUB/SBC HL,1,

ADD IX/TY,rr,

10

15

20

25

30

35

40

45

50

55

60

INC/DEC rr,

JR ¢, JR cc,e, DINZ e,

INL, INIR, IND, INDR, OUTI, OTIR, OUTD, and OTDR,

For these instructions, if ADL is 1 the operation affects all
24 bits of registers that are loaded or modified, otherwise
bits 23-16 of affected registers are zeroed. This convention
can be overridden for one instruction by preceding it with a
prefix (assembler opcode suffix 0.16 or 0.24).

Condition Codes
ADD/ADC/SBC rr,rr and BC decrementing in LDI,

LDIR, LDD, LDDR, CPI, CPIR, CPD, CPDR,

For these instructions, the result condition code reflects
the 24-bit result if ADL is 1, else it reflects the 16-bit result
as on the 18x. This convention can be overridden for one
instruction by preceding it with a prefix (assembler opcode
suffix 0.16 or 0.24).

CALL. RST, and RETurn
There are no special instructions to change ADL, because

after such an instruction PC would undergo an unmanage-

able shift in interpretation. ADL can be changed only by
prefixing a CALL, or JP nnnn instruction with a .i16 or .i24
prefix, or a RST, RET or JP (rr) instruction with a 0.16 or

0.32 prefix. Table 1 describes the operation of CALL. Table

2 describes the operation of RST, JP nnnn., RET, RETI, or

RETN, JP (1r)

In “mixed ADL” applications:

1. All routines must be CALLed in the mode for which they
were compiled or assembled;

2. Routines that may be CALLed from the opposite mode,
must be called with a prefix, even from the same mode;

3. Routines that may be CALLed from the opposite mode,
must return using a RET or JP (rr) instruction prefixed
with 0.16 or 0.24;

For RET, execution is the same for either prefix. A byte is
popped off SPL and its units bit is loaded into a holding bit
we’ll call newADL. If ADL is 0 and newADL is 1, another
byte is popped using SPL, into PC23-16. If ADL is 0, two
bytes are popped into PC15-0, from SPS mapped by the
MMU and MBASE. If ADL isI and newADL is 0, two bytes
are popped from SPL into PC. If ADL and newADL are both
1, 3 bytes are popped into PC from SPL.

Finally, newADL is loaded into ADL. For JP (rr) the
routine must know the mode of the caller; ADL is set for a
0.24 prefix and cleared for a 0.16 prefix.

4. If calling code operating in one mode must pass stack-
based operands/arguments to a routine compiled or
assembled for a different mode, it must use prefixed
instructions to set up the operands/arguments. For PUSH,
0.16 and 0.24 prefixes control both whether SPS or SPL
is used, and whether the operands/arguments are stored as
2-byte or 3-byte values.

A multitasking routine or debug monitor would typically
operate with ADL set. Such a multitasking routine can save
and restore SP 16 for a 16-bit task by means of LD. 16124
(memloc),SP and LD. 16i24 SP,(memloc) instructions
respectively.

If a 24-bit debug monitor or multitasking executive needs
to access memory in the same way a 16-bit task running
under it would, it can use instructions like LD.16 r/rr,(rr) and
LD.16 (rr),r/rr. These will apply the MMU and/or MBASE
to the address in the register, as the 16-bit task would.
Instruction Prefixes

EZ80 instruction prefixes occupy one byte, not two as on
the Z380. The lower-left quadrant of the main op-code map
of the Intel 8080 and Zilog Z80, op codes 40 to 7F, is
composed of 8-bit register-to-register Load instructions. The
original Z80 architects noted that one of the opcodes on s the

US 6,502,181 B1

9

diagonal of this quadrant, 76, would be LD (HL),(HL) which
is a NOP, so they used this opcode for the HALT instruction.
What neither they nor subsequent architects have taken
advantage of, is the fact that the same diagonal includes
several other opcodes that are equivalent to NOP and that
can be used for other purposes. The following table shows
these opcodes and their operation on the EZ80:

Op On Zx8x On EZ80
40 1D BB .16i16 prefix
49 1D CC .24i16 prefix
52 LD D,D .16i24 prefix
5B IDEE .24i24 prefix
ED7E SETMIX
ED7F CLRMIX

As for the traditional Z80 prefix bytes, the EZ80 does not
allow an interrupt to occur between fetching one of these
prefix bytes and fetching the following instruction. These
prefix bytes must precede traditional Z80 prefix bytes.

Table 3 shows which prefix selection affects each (class
of) instruction. If an instruction is not shown in the table, its
operation is not affected by these prefixes.

Interrupts, Instruction Traps, and Multitasking
The I register is not extended from 8 to 16 bits. Appli-

cations in which all routines that have interrupts enabled
operate in the same ADL mode, should leave a global state
called “mixed ADL” 0, as it is after reset. But applications
that include routines that have interrupts enabled and use
both ADL modes, should set the “mixed ADL” state by
executing the new SETMLX instruction. At the time of an
interrupt or instruction trap:

1. if ADL and mixed ADL are both 0, a 2-byte logical return
address is stacked using SPS as mapped by the MMUJ
and MBASE.

2. If ADL is 0 and mixed ADL is 1, a 2-byte logical return
address is stacked using SPL.

3.If ADLis 1, a 3 byte return address is stacked using SPL.
Next, if “mixed ADL” is 1, a byte containing the ADL

state of the interrupted process is pushed onto SPL, and ADL

is then set to 1. If ADL is now 0:

1.for NMI, INTO mode O (assuming RST from the
peripheral), or INTO mode 1, the logical interrupt address
00xx is loaded into PC.

2. For INTO mode 2 or any of the 80180-type autovectors,
the address formed by concatenating the I register and the
vector, as mapped by the MMU and MBASE, is used to
fetch a two-byte ISR address which is loaded into PC.
In cither of these ADL=0 cases, the new PC value is

mapped by the MMU and MBASE. All ISRs must operate

using the same initial MMU configuration.

If ADL is now 1:

1. For NMI or INTO mode O (assuming RST from the
peripheral), or INTO mode 1, the interrupt address
0000xx is loaded into PC.

2. For INTO mode 2 or any of the 80180-type autovector, the
address formed by concatenating the I register and the
vector, with A23-16 all zero, is used to fetch a two-byte
ISR address which is loaded into PC with 8 high-order
zeroes. The interrupt vector table must be located in the
first 65K of memory.

In either ADL=1 case, all interrupt service routines must
start in the first 65K bytes of memory.

If “mixed ADL” is 1, the interrupt service routine must
end with a RET, RETI, or RETN instruction prefixed with
0.16 or 0.24. Operation is the same for either prefix: a byte

10

15

20

25

30

35

40

45

50

55

60

65

10

is popped off SPL and its units bit is loaded into ADL. If
ADL is (now) 0, the return instruction fetches a 2-byte
logical return address from SPL, and loads it into PC, in
which it is then mapped by the MMU and MBASE. If ADL
is still 1, the return instruction fetches a 3-byte return
address from SPL and loads it into PC.

If “mixed ADL” is 0, interrupt service routines should end
with an unprefixed RET, RETI, or RETN instruction.
Optional Add-on Multiply-accumulate Module (MAC)

Processors are often called on to perform functions of
Digital Signal Processing. The most significant process in
digital signal processing is the multiply-accumulate
function, which forms a sum of products

Zn: X; xXY;
i=1

where X and Y are vectors (tables of values, one-

dimensional arrays) in memory. According to this embodi-

ment of the present invention, a processor can optionally be
configured to include an engine that can perform this kind of
calculation at competitive performance levels.

MAC General Architecture
The MAC feature includes the following elements:

1. A 16x16 bit multiplier, the 32-bit product output of which
goes to one input of an adder, the other input of which is
the currently selected one of two 40 bit accumulator
registers, the output of the adder also being the write side
of that accumulator.

2. Two dual-port RAMs called X and Y. One port of each
RAM is 16-bit read-only and feeds one side of the
multiplier, and the second port is 8-bit read-write and is
connected to the microprocessor bus, such that the RAMs
are part of the microprocessor’s memory space.

3. A set of registers in the microprocessor’s I/O space, via
which software can provide calculation parameters, start
MAC operation, determine when the MAC has completed
a calculation, and retrieve the result accumulation.

Key Design Points

1. A major point affecting the MAC design is whether the
size of the X and Y RAMs is less than or equal to 512
bytes (256 values) each. If 256 values are sufficient for the
class of applications to be addressed, then the Base, Start,
Top, and Length values described below fit in a single
byte. If more RAM is needed, these values require two
bytes each. This is important mainly in terms of the
number of bytes the MPU must transfer in order to set up
and specify a new calculation.

2. The hardware may be made simpler if one or both of the
in-shift and out-shift values described below is/are not
needed.

3. DSPs often offer a choice of incrementing or decrement-
ing through a vector (table, array). If this capability is
desired in this module, the option can be specified in the
Control register described below, in place of the Noise bit.

Register Blocks
The MAC register block is in the I/O space and can be

block loaded using an OT12R instruction. Actually there are

two register blocks in the MAC, one of which is accessible
to the processor and the other of which can be used by the

MAUQ, in a ping-pong fashion. Each register block includes

the values as listed in Table 4.

The MAC also provides one Status register in I/O space
that indicates the state of both register banks. Common
(non-transient) states of this register are shown in Table 5.

The MAC is designed so that software can write its
register block using OT12R instructions and read it using

US 6,502,181 B1

11

IN12R instructions. (IN12R is like INIR except that it
increments the I/O address in the C register as part of each
cycle.) These instructions drive the value in the B register,
which is the number of bytes remaining to transfer, onto the
A 15-8 lines. The MAC decodes its I/O addresses only from
the A7-0 lines, but does detect the last transfer of a block by
decoding A 15-8 for 01.

If the Control byte or any of the ACO-3 registers is written
with A15-8 equal to 01,,, indicating the last byte to be
written, or if AC4 is written regardless of A 15-8:

If other bank is “in progress”, the MAC changes the state
of the current bank from “empty” to “ready”.

If the other bank is “empty” or “done”, the MAC changes
the state of the current bank to “in progress” and then swaps
the banks.

If any of the ACO-3 registers is read with A15-8 equal to
01,,, indicating the last byte to be read, or if AC4 is read
regardless of A15-8, the MAC changes the state of the
current bank from “done” to “empty”. Then if the state of the
other bank is “done”, the MAC swaps the banks.

Whenever the MAC completes a calculation, it changes
the state of the other bank from “in progress” to “done”. If
the current bank is “ready”, the MAC then swaps the banks,
changes the “new other” bank’s state to “in progress”, and
starts doing the new calculation.

If software reads the state “other done, current empty”
from the status register, and it has no “next calculation” to
program, it can write a hex 80 to the status register. This
simply swaps the banks, to “other empty, current done”.
Software can then access the result in the accumulator.

MAC Software View
To set up a new calculation, software proceeds as follows:

1. Read the status register. If the current status is “ready”, the
MAC hasn’t yet started the previous calculation, and
software will have to wait until it does. (At which time the
current status changes to “done”.)

2. If the current status is “done”, software should read the
result accumulation from as many of the ACO-3 registers
as are needed, as described in the following procedure.
(This will change the current status to “empty”.)

3. If the current status is “empty”, software should set up the
HL register pair to point to the block describing the new
calculation, C to the corresponding starting I/o address,
and B to the number of bytes in the block. Then it should
perform an OTI2R instruction.

To retrieve the result of a calculation, software should:

1. Read the status register. If the current status is “ready”, the
MAC hasn’t yet started the last calculation that software
provided, and software will have to wait until it does. (At
which time the current status will change to “done™.)

2. If the current status is “empty” and the other status is
“done”, write 8016 to the status register. This swaps the
register banks so that the current status is now “done”.

3. If both status fields say “empty”, there is no result to
retrieve.

4. If the current status is “done”, software should read as
many of ACO-3 as are needed. Since the MAC decodes
the A15-8 lines to tell when such a transfer is complete,
this can be done with an IN12R instruction. Alternatively,
software can use NO instructions to read all 5 bytes into
registers (AC4 last), or can use INO to read the first 0-3
bytes into registers, and one of the following two
sequences to read the last byte needed:

10

15

20

25

30

35

40

45

50

55

60

65

12

LD
IN

BC,base+n+100h
1 (O

LD
IN

or Al

A, (base+n)

5. Reading the last byte of the result changes the current
status to “empty” unless there’s another result to retrieve,
in which case the “other” status will be “empty” and the
current status will be “done”.

Interrupts
The EZ80 has multiple sources of interrupts. In addition

to Trap, there is the NMI, INTO and a possible of 64

vectored interrupts. Trap is a vectored interrupt which

occurs when an undefined instruction is fetched. NMI is a

non-maskable vectored interrupt. All other interrupts can be

masked by resetting the IEF1 bit. Interrupt vectors consist of

24 bits.

Trap
A trap occurs when an undefined second or third opcode

is fetched. When a trap occurs it pushes the Program Counter

on the stack and then begins execution at address 000000h.

During the Trap the TRAP<1:0>bus puts out a value depend-

ing upon which opcode and which type of fetch was being

executed. These signals are valid on every clock rising edge.

TRAP TRAP Type

00 Normal Execution

01 TRAP First Instruction
10 TRAP Second Instruction
11 Reserved

INT Interrupts

The INT interrupt can be set to operate in three different
modes. INT Mode 0, Mode 1 and Mode 2.
Mode O Interrupt

Mode O interrupts require the peripheral to provide a RST
or Call instruction when an interrupt is generated. The only
valid commands that will be supported in this mode is the
RST and Call instructions. Other commands will be pro-
cessed as a NOP.
Mode 1 Intermpt

When a mode 1 interrupt is generated the EZ80 will push
the Program Counter on the stack and then vector to the
address 000038hex.
Mode 2 Interrupt

Mode 2 interrupt behave the same as the Z80.
Vectored Interrupts

The EZ80 has the ability to generate 128 vectored inter-
rupts. The generation of the vectored interrupt is done by
asserting INTV low and providing the vector on the IVS bus.
Interrupt Priority Table

Priority ISR starts at Interrupt Source
Highest 0000 TRAP

0066H /NMI

IMO:n/a IM1:0038H /INTO

IM2:(I: value from device)
Lowest (I: <7:1>: IVS : 0) /INTV

Interrupt Enable Flag 1,2 (IEF1, IEF2)

IEF1 controls the overall enabling and disabling of all
interrupts except for NMI and TRAP.

If IEF1=0, all maskable interrupts are disabled. IEF1 can
be reset to 0 by the DI(Disable Interrupts) instruction and set
to 1 by the EI(Enable Interrupts) instruction.

US 6,502,181 B1

13

The purpose of IEF2 is to correctly manage the occur-
rence of NMI. During NMI, the prior interrupt reception
state is saved and all maskable interrupts are automatically
disabled (IEF1 is copied to IEF2 and then IEF1 is cleared to
0). At the end of the NMI interrupt service routine, execution
of the RETN (Return from Non-maskable Interrupt) will
automatically restore the state the interrupt receiving state
(by copying IEF2 to IEF1) prior to the occurrence of NMI.

IEF?2 state can be reflected in the PN bit of the CPU Status
Register by executing LD A, I or LD A, R instructions as
shown in Table 6
Architectural Overview For Specific EZ80 Release

What follows is a description in more detail of an EZ80
product the incorporates many aspects of the current inven-
tion and is anticipated to be announced in the last half of
1999. This processor will include many of the features thus
discussed, including the following:

Upward-code-compatible from Z80 & Z180

Several address-generation modes including 24-bit linear
addressing
24-bit registers and ALU
One-clock-minimum bus cycles
Optional autonomous Multiply-Accumulate engine for
DSP applications
FIG. 1 is a block diagram of this EZ80. FIG. 2 shows the
logic diagram of the EZ80. Processor and Device Pin
Descriptions describes the processor and device pins.

OPERATIONAL DESCRIPTION

This section describes, using text and the attached tables,
and figures, how the various parts of the EZ80 operate. This
description is presented from the processor outward to the
peripherals. In the latter parts of this section, refer to the
corresponding section of I/O Registers. The Appendix
includes additional information about a specific EZ80 con-
figuration with additional components.

Processor Description

The EZ80 is an 8-bit microprocessor that performs certain
16- or 24-bit operations. In both data sizes, the processor
includes an accumulator. Register A is the accumulator for
8-bit operations, and the HL register pair is the accumulator
for 16- and 24-bit operations.

Processor Procram Reeisters

In addition to register A, there are six more 8-bit registers
named B, C, D, E, H, and L, which can also be operated on
as register pairs BC, DE, and HL. . Flag register F completes
the basic register bank.

Two of these basic register banks are included in all Z80
and Z180 processors. High-speed exchange between these
banks can be used by a program internally, or one bank can
be allocated to the mainline program and the other to
interrupt service routines.

Finally, two Index registers IX and IY allow base and
displacement addressing in memory. IX and IY are not
included in the register banks on the Z80 and Z 180; there
is only one copy of each.

The EZ80 expands the width of the BC, DE, HL,, IX, and
IY registers from 16 to 24 bits. The Arithmetic/Logic Unit
and internal data paths are similarly expanded to 24 bits.
Processor Control Reeisters

In addition to the data-oriented registers described above,
the EZ80 processor includes several other control registers.
Unlike the registers in I/O space that are described in Section
4, these control registers have no addresses, but are used
implicitly in certain processor operations.

Program Counter (PC)

10

15

20

25

30

35

40

45

50

55

60

65

14

This 16- or 24-bit register tracks program execution by
the processor, which automatically increments PC while
fetching instructions. The processor stores PC on the stack
when it executes a CALL or RST instruction, or an interrupt
or Trap occurs. It loads PC with a new value when it
executes a JUMP, CALL, RST, or RET instruction, and
when an interrupt, Trap, or Reset occurs. PC resets to 0000.
Stack Pointer (SPS or SPL)

SPS is a 16-bit register that is used when the ADL bit is
cleared, while SPL is a 24-bit register that is used when ADL
is set. The processor decrements the current SP register by
2 or 3, and stores a 16- or 24-bit value in memory at this
updated address, when it executes a PUSH, CALL, or RST
instruction, and when an interrupt or Trap occurs. The
processor fetches a 16- or 24-bit value from memory at the
address in SP, and then increments SP by 2 or 3, when it
executes a POP, RET, RETI, or RETN instruction. Software
can store the value in SP in memory, load SP from memory
or another register, or load it with a constant/immediate
value. Further, software can add or subtract the value in SP
to or from another register, and can increment or decrement
SP. Finally, software can exchange the 16- or 24-bit value in
memory, to which SP currently points, with the contents of
a 16- or 24-bit register. SP resets to 0000.

Flags (F)

The processor includes two Flag registers each containing
six bits, named Zero (Z), Carry (CF), Sign (S), Parity or
Overflow (P/), Half-Carry (HC) and Add/Subtract (N).
Certain flags are automatically updated as part of executing
certain instructions. Subsequent instructions can then use the
flags, either as an operand (A DC, SBC, DAA), or to
determine whether to perform a JUMP, CALL, or RET
operation. The flags can be saved on the stack with a PUSH
instruction, or restored from the stack with a POP instruc-
tion. The two sets of flag registers are paired with the two A
accumulators; the current pair is toggled by the EXAFAF'
instruction.

Operating Modes

The multiple operating modes of the processor allows Z80
and Z180 code to be run without change in “virtual Z80” or
“virtual Z180” partitions, in the same application with new
code that takes advantage of the EZ80’s 16M byte linear
addressing space and enhanced instruction set.

These operating modes are governed by four factors:

a state bit called ADL, which stands for Address and Data

Long,

another state bit called “mixed ADL”,

an 8-bit register called MBASE, and

the state of the EZ80’s 80180-compatible Memory Man-

agement Unit (MMU).
Native Z80 Mode

ADL, mixed ADL, and MBASE reset to zero, and the
MMU resets to an inactive state. In this Native Z80 state, the
programming model includes 16-bit registers and addresses,
and a 64K byte memory space at the start of the EZ80’s
potential 16M byte memory space.

Virtual Z80 Mode

If ADL is cleared, the MMU is not enabled, but MBASE
contains a non-zero value, the programming model still
includes 16-bit registers and a 64K byte memory space, but
this space is relocated by MBASE. In this mode, several
tasks can each have their own Z80 partition.

Native Z180 Mode

If ADL is cleared, MBASE contains zero, and the MMU
is active, the programming model is fully Z80186 compat-
ible. The model includes 16-bit registers and a 64K byte
logical memory addressing space, but the MMU translates

US 6,502,181 B1

15

these logical addresses to 20-bit physical addresses. The
64K byte logical address space can be divided into one to
three areas, two of which can be relocated anywhere within
the first 1 M bytes of the EZ80’s potential 16M byte memory
space.

[Virtual Z]80 Mode

If ADL is cleared, the MMU is active, and MBASE
contains a non-zero value, the MMU handles mapping
within a 1M byte virtual physical address space that is
relocated by MBASE. In this mode, several tasks can each
have their own Z180 partition.

ADL Mode

If ADL is set, neither the MMU nor MBASE has any
effect on memory addressing. In this mode, the PC, BC, DE,
HL, IX and I'Y registers are expanded from 16 to 24 bits, and
a 24-bit Stack Pointer Long (SPL) register replaces the
16-bit Stack Pointer Short (SPS) register that is used in the
other modes. When the processor fetches an instruction that
includes a 16-bit address or immediate datum in the other
modes, it automatically fetches a 24-bit address or datum.
Thus, code that operates in ADL mode must be generated by
an EZ80-compatible compiler or assembler that generates
such instructions.

Mode Switching

The EZ80 switches between ADL mode and any of the
other modes only as part of a specially-prefixed CALL, JP,
RET, or RST instruction, or an interrupt or trap operation.
The MBASE register can be changed only in ADL mode.
The MMU can be programmed in any mode, but in a
non-ADL mode software must take care not to affect its
Program Counter when programming the MMU.

Interrupt and Traps

Applications that operate only in Native Z80 mode, ADL
mode, or Native Z180 mode with Common Bank 0 always
enabled, are relatively simple with respect to interrupts and
traps. In these modes, memory always starts at the start of
the EZ80’s potential 16M byte memory space, and the
interrupt and trap locations are never mapped.

However, applications that switch between modes, or
operate in Virtual Z80, Virtual Z 180, or Native Z180 mode
with Common Bank O disabled, can simplify interrupt and
trap handling by executing a STMIX instruction to set the
mixed ADL bit.

If the mixed ADL bit is 1, interrupts and instruction traps
stack the ADL state as well as the PC, and enter ADL mode
in the first 64K bytes of the EZ80’s potential 16M byte
memory space.

I/O Space

Aseparate I/O space includes on-chip and off-chip periph-
eral devices. On the Z80, 1/0 space included 8-bit addresses
and 256 bytes. All Z180 processors, and the EZ80, feature
an expanded I/O space with 16-bit addresses and 65K bytes.
The EZ80 includes a few on-chip peripherals in I/O space,
which can be augmented by external peripherals.

Other Processor Control Registers
Interrupt High Address (I)

The contents of this register are used as the eight high-
order address bits, when the processor fetches the address of
an interrupt service routine from memory, for an interrupt
from the INT1 or INT2 pin, or from an on-chip peripheral.
The I register points at a table of interrupt service routine
addresses, that starts at a 256-byte boundary in the 65K-byte
logical address space. The I register resets to zero, and can
be read or written by the dedicated instructions LD A,I and
LDLA.

R Counter (R)

On the Z80 18x family processors this register contains a
count of executed fetch cycles. R resets to zero, and can be
read or written by the dedicated instructions LD A,R and LD
R,A.

10

15

20

25

30

35

40

45

55

60

65

16

Illegal Instruction Traps

Like most processors, the defined instruction set for the
Z8018x family does not fully cover all possible sequences of
binary values. The op code maps shown in the Tables
include numerous blank cells. These represent op code
sequences for which no operation is defined, and are com-
monly called illegal instructions.

When a EZ80 or other Z8018x processor fetches one of
these sequences, it performs a Trap sequence as follows:

1. It sets the TRAP bit in the Interrupt/Trap Control
register.

2. If the processor detected the condition while fetching
the second byte of the instruction, it clears the UFO bit
in the Interrupt/Trap Control register. If it detected the
condition while fetching the third byte, it sets UFO.

3. The processor decrements the Stack Pointer (SP) by 2
and stores the 16-bit logical address from PC, in
memory at the new SP address. This address points to
the last byte of the illegal op code sequence.

4. The processor then clears PC and resumes execution at
logical address 0000.

Trap Handling

The code at logical address 0000 can optionally store the
value of SP in memory, and then set SP to an area of memory
dedicated to its private stack.

In all cases, the trap-handling routine must store as many
registers among AF, BC, DE, HL, IX, and IY as it may use
(worst case), by pushing them onto the stack. A general-
purpose routine will store all of these registers, those in the
alternate set, the value of I and the state of the Interrupt
Enable flag.

Next, the Trap-handling code must distinguish among the
four events that can bring execution to address 0000: a
Reset, a Trap, a RST O instruction, and a program error such
as a JUMP to a null pointer.

The code can detect a Trap by reading the Interrupt/Trap
Control register (ITC) and checking bit 7 (TRAP). If this bit
is 1, a Trap has occurred, and the code should handle it as
follows:

1. Clear the TRAP bit by writing a 0 to bit 7 of the ITC,

2. Fetch the PC value stored on the stack.

3. Examine bit 6 of the ITC (UFO).

4. If the UFO bit is 0, decrement the PC value by 1, else
decrement it by 2, so that it points to the start of the
illegal instruction.

The next action of the trap handling routine depends on

the application and its stage of development.
Extending the Instruction Set

Core software can use illegal instructions as extensions to
the Z8018x instruction set. To do this, the trap handler must
fetch and examine each illegal instruction. If an illegal
instruction is an extension, the trap handler performs the
extended operation that the instruction indicates. It then
advances the stacked PC value over the instruction, restores
the saved register values, and returns to the next instruction.
Error Message vs. Restart

Except for such extended instructions, the trap handling
software can either:

output an error message and wait for someone to examine
the situation and restart the application, or

attempt to restart the application immediately.

The former course is more common in the debugging/
development stages of an application, while the latter may
be more appropriate in the production/deployment stage. In
the latter case, software may log the event for future readout,
using an external storage medium or just in memory.

US 6,502,181 B1

17
Interrupts

ZiLLOG Z80 and Z80180 processors have a rich legacy of
sophisticated interrupt capabilities. The EZ80 includes
aspects of both families’ interrupt characteristics.

Interrupt Resources in the EZ80
IEF1 and IEF2

These bits are internal to the processor and can only be
affected and manipulated by certain specific events:

Reset clears IEF1 and IEF2

EI instructions set IEF1 and IEF2

DI instructions clear IEF1 and IEF2

An NMI sequence copies IEF1 to IEF2, then clears IEF1

A maskable interrupt clears IEF1 and IEF2

An LD Al or LD A,R instruction copies IEF2 to the P/V
flag

An RETN instruction copies IEF2 to IEF1

When IEF1 is 1, RESET and BUSREQ are both high, and
no falling edge has occurred on NMI, the EZ80 checks for
maskable interrupt requests from external pins and on-chip
peripherals, as it completes each instruction, or each instruc-
tion iteration for HALT, the block I/O instructions, block
move instructions, and block scan instructions.

The I Register

The EZ80 uses the contents of this register as A15-8 of the
logical address for fetching interrupt service routine
addresses from memory, and in response to interrupt
requests from internal peripherals.

Nonmaskable Interrupt (NMI)

The EZ80 latches falling edges on the NMI pin. Only a
low on RESET or on BUSREQ takes precedence over NMI.
Unless RESET or BUSREQ is low, the EZ80 checks for a
falling edge on NMI as it completes each instruction (each
instruction iteration of HALT, the block I/O instructions,
block move instructions, and block scan instructions), and
performs an NMI sequence if a falling edge has occurred.

An NMI sequence includes 4 steps:

1. The processor copies the state of the IEF1 bit to IEF2.

2. It clears IEF1 to prevent maskable interrupts.

3. It decrements SP by 2, and stores the logical address in
the PC in memory at the new address in SP . For most
interrupts, this is the address of the instruction the
processor would have executed next, if no interrupt had
occurred. If the processor was stopped by HALT or
SLP, it is the address of the next instruction. In the
event of an incomplete block transfer, block scan, or
block I/O instruction, it is the address of the instruction.

4. The processor loads 0066H into PC, and resumes
execution from that logical address.

NMI Handlin,

NMI routines fall into two categories, based on whether
the external hardware that drives NMI is capable of produc-
ing another falling edge on the pin, before the NMI service
routine has completed its execution and returned to the
interrupted process. We’ll call the case when this isn’t
possible “Single Edge Guaranteed” and the case when it is
possible “Repeated Edge Possible”. Debug monitors, which
may display the state of the interrupt process, fall into the
Repeated Edge category.

Single Edge Guaranteed

An NMI routine in this category is similar to other
interrupt service routines. This routine has the option of
storing the contents of SP in memory and loading SP with

10

15

20

25

30

35

40

45

50

55

60

65

18

the address of a memory area that is dedicated for its stack.
In any case it must store as many of the registers as it may
use during its execution (worst case).

Repeated Edee Possible

An NMI routine in this category should start with a PUSH
AF instruction, then load A from a dedicated location in
memory that indicates whether the interrupted process is the
NMI routine. If this location indicates that it is, the routine
should immediately POP AF and then do a RETN
instruction, to return to its former execution.

If the in NMI location is cleared, software should set it.
Then, if the NMI routine does either of the following:

a DI instruction in a “Save The Registers” routine that it

shares with other means of entry, or

displays the I register or the interrupt-enable state of the

interrupted process, and allows a user/programmer to
change these (in essence, a debug monitor) then it
should perform. LD A,I and PUSH AF instructions.
This stores the I register at the address in SP plus one,
and the interrupt enabled state (IEF2) in the P/V flag
and in bit 2 of the memory location pointed to by SP.

If the NMI routine uses a common “Save The Registers™
subroutine that it shares with other entry points, the save
subroutine can perform a DI instruction to prevent interrup-
tion by maskable interrupts.

The NMI routine has the option to store the SP value in
a dedicated location in memory, and load SP with the
address of a dedicated NMI stack area.

In any case, the NMI routine must PUSH as many other
registers as it will use (worst case). A debug monitor will
typically PUSH all registers in both banks, so that it can
display them.

Exiting The NMI Routine

On completion of its processing, an NMI routine should
restore the saved registers. If the routine used its own stack
area, it should then restore the SP value of the interrupted
process. If the routine set an in NMI memrory location on
the way in, it should clear this location.

NMI routines that did not save the I register and IEF2
state at the start, can conclude with POP AF and REIN
instructions. RETN copies the state of IEF2 back into IEF1,
to restore the interrupt enable state of the interrupted pro-
cess.

NMI routines which saved I and IEF2 at the start, should
conclude with a POP AF for the saved I register and IEF2 bit,
then an LD IA, followed by a JP V to a POP AF, EI, RET
sequence. The JP should be followed by LD LA, POP AF,
and RET instructions.

*INTO (or INTO)
*INTO Modes

The EZ80 can handle interrupts requested by a device on
the *INTO pin, in any of three ways called modes 0, 1, or
2. The special instructions IM 0, IM 1, and IM 2 select
among these three modes. Reset selects mode 0.

*INTO Processor Response

The EZ80 performs an *INTO interrupt sequence at the
end of an instruction (each instruction iteration for HALT,
the block I/O instructions, block move instructions, and
block scan instructions), if all of the following are true:

*INTO is low,

bit 0 of the Interrupt/Trap Control register is 1 to enable

*INTO,

US 6,502,181 B1

19

IEF1 is 1 to enable interrupts in general,

RESET and BUSREQ are both high, and

a negative edge on NMI has not been detected.

When all of these conditions occur simultaneously, the
EZ80 responds as follows:

1. it clears IEF1 and IEF2 to prevent further interrupts,
It drives INSTRD low.

It waits several clock cycles.

It drives IORQ low. Simultaneous lows on INSTRD
and IORQ indicate an *INTO interrupt acknowledge
cycle. In response to this condition, the highest-priority
peripheral that’s requesting an interrupt places an 8-bit
value on the D7-0 data bus.

5. It samples WAIT, and waits until it is high.

6. It terminates the cycle by driving INSTRD high, then

IORQ high.

While all *INTO acknowledge cycles follow this general
pattern, they differ as to what (if anything) the processor
does with the data on D7-0, and what it does after the
acknowledge cycle. These actions depend on the most
recently executed IM instruction (if any), as described in the
next three sections.

*INTO Mode 0

If no IM instruction was executed since Reset, or if the
most recently executed IM instruction was IM 0, the EZ80
completes an *INTO sequence as follows:

2.
3.
4.

7. It samples D7-0 and interprets the value as an instruc-
tion op code. In this mode, the vector registers of all
ZiLLOG daisy-chainable peripherals must be pro-
grammed to provide one of the RST opcodes C7, CF,
D7, DE, E7, EF, F7, or FF16.

Note: Read RST as “Restart™.

Note: The EZ80 does not automatically stack the contents
of the program counter during an *INTO Mode 0 interrupt
sequence. This means that the only other opcode that a
peripheral can return (assuming the interrupted process is to
be restarted) is a CALL instruction DC16. Intel 808x-family
interrupt controllers can return a three-byte CALL
instruction, but ZilLOG peripherals can’t.

8. If the opcode is CALL, the processor fetches two more
bytes to complete the instruction.

9. Given that the opcode was CALL or RST, the processor
decrements SP by 2, and stores the contents of PC in
memory at the new address in SP. Typically, this is the
address of the instruction the processor would have
executed next, if no interrupt had occurred. If the
processor was stopped by HALT or SLP, it’s the
address of the next instruction. For an incomplete block
transfer, block scan, or block I/O instruction, it’s the
address of the instruction.

10. If the opcode was RST, the processor resumes execu-
tion at logical address 0000, 0008, °, or 003816. If the
opcode was CALL, it resumes at the logical address
fetched in step 8.

In mode 0, each peripheral connected to *INTO needs to
have a register, the contents of which it returns on D7-0
when it sees FNSTRD and IORQ low, and it is requesting an
interrupt, and its IEI pin is high. Software should program
each such register with one of the RST opcodes C7, CF, D7,
°, FF16.

If a peripheral has a feature whereby it can replace the
low-order bits of this value with a code reflecting its status,
this feature must be turned off for mode O operation.

10

15

20

25

30

35

40

45

50

55

60

65

20

If the number of devices that can interrupt on *RNTO is
reasonable, each device can have its own RST instruction,
which improves interrupt response time by eliminating the
need for the interrupt service routine to poll multiple
devices.

If multiple devices have to share a RST instruction, that
interrupt service routine should poll these devices in the
same priority order that they are arranged on the IEI-IEO
daisy chain. This is because a Zil.OG peripheral sets its IUS
bit when it sees INSTRD and IORQ low, and it is requesting
an interrupt, and its IEI pin is high. To insure proper
operation of the daisy chain in the future, the polling process
must lead to servicing the device that did this, and then
clearing its IUS bit either explicitly, or for a Z80 peripheral
by concluding the ISR with a RETI instruction.

*INTO Mode 1

If the most recently executed IM instruction was IM 1, the
EZ80 completes an *INTO sequence as follows:

1. It ignores the data on D7-0. (Actually it proceeds as in
mode 0, but considers itself to have captured FF16
which is RST 38.)

2. It decrements SP by 2, and stores the contents of PC in
memory at the new logical address in SP. Typically, this
is the address of the instruction the processor would
have executed next, if no interrupt had occurred. If the
processor was stopped by HALT or SLP, it’s the
address of the next instruction. For an incomplete block
transfer, block scan, or block I/Q instruction, it’s the
address of the instruction:

3. It loads 003816 into PC, and resumes instruction
execution from that logical address.

In mode 1, the interrupt service routine has to poll all of
the devices connected to *INTO, to see which one generated
the interrupt. If any ZiLOG peripherals can request an
interrupt, this polling needs to be done in the same priority
order that the devices are arranged on the IEI-IEO daisy
chain. This is because a ZiLLOG peripheral sets its IUS bit
when it sees INSTRD and IORQ low, and it is requesting an
interrupt, and its IEI pin is high, regardless of the processor’s
IM status.

To insure proper operation of the daisy chain in the future,
the polling process must lead to servicing the device that did
this, and clearing its TUS bit either explicitly, or for a Z80
peripheral by concluding the ISR with a RETI instruction.
Probably the best way to insure this is by actually polling the
IUS bits, for devices that allow them to be read.

*INTO Mode 2

If the most recently executed IM instruction was IM 2, the
EZ80 completes an *INTO sequence as follows:

1. It captures the data from D7-0. This byte must have DO

low/0 for proper operation.

2. It decrements SP by 2, and stores the contents of PC in
memory at the new logical address in SP. Typically, this
is the address of the instruction the processor would
have executed next, if no interrupt had occurred. If the
processor was stopped by HALT or SLP, it’s the
address of the next instruction. For an incomplete block
transfer, block scan, or block I/O instruction, it’s the
address of the instruction.

3. It puts the contents of the I register on A 15-8, and the
value captured in step 7 on A7-0, and fetches the LS
byte of an interrupt service routine address from
memory at that address.

US 6,502,181 B1

21

4. It makes AO High/1, and fetches the MS byte of the
interrupt service routine address from memory at that
address.

5. It resumes execution at the logical address fetched in
steps 9-10.

In mode 2, each peripheral connected to *INTO must
have an Interrupt Vector Register, the contents of which it
returns when it sees INSTRD and IORQ low, and it is
requesting an interrupt, and its IEI pin is high. Software can
program each such register with any even binary value.

If a peripheral has a feature whereby it can replace the
low-order bits of this value with a code reflecting its status,
this feature can be enabled in mode 2, in which case the
peripheral “occupies more than one slot” in the interrupt
vector table. Such “status affects vector” or “vector includes
status” features can improve interrupt response time, by
reducing the amount of status-polling that the interrupt
service routine has to do, to identify the exact cause of the
interrupt.

Interrupt Handlng

Any Interrupt Service Routine (ISR) has the initial option
of saving the contents of SP in memory, and loading SP with
the address of a memory area that is dedicated to its stack.
Most interrupt service routines do not do this.

An *INTO ISR must save the contents of the registers it
uses (worst case), using PUSH and/or EX AF,AF' and EXX
instructions.

If the application includes a mechanism for allowing
nested interrupts, the ISR can begin as specified by that
mechanism, leading to an JE instruction that allows the ISR
to be interrupted by other interrupts. Most applications do
not do this.

The ISR must next read status registers from each device
that can request an interrupt on *INTO, to identify the cause
of the interrupt. The ISR must handle each interrupting
device according to this status, and the device and applica-
tion requirements.

Many ISRs read data from interrupting device(s), or write
data to interrupting device(s). In addition, the ISRs can write
registers in such a device, to modify its mode, status, or
operation.

When interrupt processing is complete, if nested inter-
rupts were allowed, the ISR should end as specified by the
nesting mechanism. If nested interrupts were not allowed,
the ISR should restore the saved registers and conclude with
EI and RET instructions.

the Z80 and Z80180 instruction sets include an RETI
instruction, that is used for servicing Z80 peripherals.
Since the EZ80 includes no such peripherals, nor does
it allow them to be connected externally, there is no
reason to ever conclude a EZ80 ISR with an RETI .
RET is both shorter and faster than RETI, and has the
same function.

Memory (ROM and RAM)

The EZ80 can operate in any of several address-
generation modes:

0 Native Z80 mode: the total memory address space is the
first 64K bytes of the overall EZ80 memory space.
Neither the Z80180-compatible Memory Management
Unit (MMU) nor the Memory Base (MBASE) register
has any effect on addressing.

Virtual Z80 mode: the memory address space can be any
64K bytes in the overall 16M byte EZ80 memory

10

15

20

25

30

35

40

45

50

55

60

65

22
space, under control of the MBASE register. The MMU
has no effect on memory addressing.

Native Z180 mode: the memory address space is the first
1M bytes of the overall EZ80 memory space, under
control of the Z180-compatible MMU. MBASE has no
effect on memory addressing.

Virtual Z180 mode: the memory address space can be any
1 M bytes of the overall 16M byte EZ80 memory space,
under control of the MBASE register. The MMU
operates within the selected 1 M space.

Address and Data Long (ADL) mode allows programs
compiled or assembled for the EZ80 to operate in a
16M byte linear address space. In this mode, the 16-bit
registers PC, BC, DE, HL,, IX, and I'Y expand to 24 bits,
as does the width of the ALU. The processor automati-
cally fetches an extra byte of address or immediate data
in those instructions that contain a 16-bit address or
datum in other modes.

Prefix-override bytes allow any instruction to operate as
in ADL mode in one of the first 4 modes, or to use 16 bits
and/or MMU or MBASE addressing in ADL mode.
Addressing Modes

Instructions can specify a memory address in several
ways. EZ80 addressing modes include:

Relative Addressing

JR and DINZ instructions include a signed 8-bit displace-
ment that specifies a range of addresses —126 to +129 from
the op code, to which program control can be transferred.
Direct Addressing

In this mode, instructions include a 16-bit or 24-bit logical
address, depending on the ADL mode bit.

Register Indirect Addressing

In this mode, the address is taken from one of the register
pairs BC, DE or HL.
Indexed Addressing

In this mode, instructions include an 8-bit signed dis-
placement from the address in an index register IX or JY.

Other contexts in which memory is accessed include
instruction fetching, interrupts, DMA operations, and cycles
generated by external masters while BUSACK is low.
Memory Management Unit (MMU)

The EZ80 includes an 80180-compatible Memory Man-
agement Unit in order to run programs written for an 8018x
family processor without change. For new code, the 24-bit
linear address mode is far more straightforward and easy to
use.

When the MMU is enabled, it translates the 16-bit
addresses used by software, called logical addresses, into
20-bit physical addresses, as part of all memory accesses
performed by the processor.

The MMU has no effect on accesses performed by the
DMA channels, which include 20-bit address registers. It
also has no effect on addresses in I/O space, which always
have A19-16 zero.

The MMU resets to a state in which it has no effect on
addresses in processor cycles, passing A15-0 through with-
out change and keeping A19-16 zero. If an application needs
65K bytes of memory or less, it need not concern itself with
the MMU.

Even when the MMU has been programmed to perform
active address transactions, it passes A11-0 from the logical
to the physical address. We say that the MMU manages
memory in 4K-byte blocks. Section MMU Registers below
shows the registers associated with the MMU.

US 6,502,181 B1

23
MMU Operation

The MMU compares bits 15-12 of each logical address to
two 4-bit fields in its Common/Base Address Register
(CBAR), in an unsigned manner.

If bits 15-12 of a logical address are less than the value in
bits 3-0 of the CBAR, the MMU considers the address to be
in Common Area 0. For such addresses, it passes bits 15-12
to the A15-12 pins unchanged, and sets pins A19-16 to 0.

If bits 15-12 of a logical address are greater than or equal
to the value in bits 3-0 of the CBAR, but are less than the
value in bits 7-4 of the CBAR, the MMU considers the
address to be in the Bank Area. For such addresses, it adds
the value in its 8-bit Bank Base Register (BBR) to bits 15-12
of the logical address, and outputs the 8-bit sum on pins
Al19-12.

If bits 15-12 of a logical address are greater than or equal
to the value in bits 74 of the CBAR, the MMU considers the
address to be in Common Area 1. For such addresses, it adds
the value in its 8-bit Common Base Register (CBR) to bits
15-12 of the logical address, and outputs the 8-bit sum on
A49-12.

The value in bits 7-4 of the CBAR must never be less than
the vaiue in bits 3-0 of the CBAR.

MMU Configurations

In the general case, the MMIU divides the 65K-byte
logical memory space into three parts, with Common Area
0 located at the start of the 1 Megabyte physical address
space, and the Bank Area and Common Area 1 relocatable
to other parts of the physical address space, under control of
the Bank Base Register and Common Base Register, respec-
tively.

Certain combinations of values in the CBAR result in the
logical address space being divided into fewer active areas:

If the CBAR contains zero, all logical addresses fall into
Common Area 1, and are relocated to a contiguous
65K-byte area starting at the address in the CBR times
4096.

If CBAR3-0 are zero but CBAR7-4 are non-zero, the
Bank Area and Common Area 1 are active. Logical
addresses less than (CBAR7-4)*4096 are relocated by
the Bank Base Register, while other addresses are
related by the Common Base Register.

If CBAR7-4 and CBAR3-0 are equal and not zero,
Common Area 0 and Common Area 1 are active.
Logical addresses less than (CBAR3-0)*4096 are not
relocated, and map to the start of physical memory.
Other addresses are relocated by the Common Base
Register.

The MMU After Reset

Because the CBAR resets to 11110000, logical addresses
0000-EFFFH are in the Bank Area and FOOO-FFFFH are in
Common Area 1 after Reset. But since the BBR and CBR
both reset to 0, the MMU passes all logical addresses
through without change, with A 19-16 all zero.
Input/Output

The EZ80 includes an I/O space that is distinct from
memory space. I/O space is accessed by means of IN and
OUT instructions rather than LD, PUSH, POP, and other
instructions that access memory space. The MMU passes
addresses in I/O space through without change; such
addresses always have A19-16 all zero.

I/O Instructions

The original Z80 featured a 256-byte I/O space. The

following instructions are specific to the Z80’s 256-byte I/O

24

space, and should not be used on the EZ80 except to access
external 1/0 devices that do not decode A 15-8:

OUT (port), A

IND

FNDR

INI

INIR

OTDR

OTIR

OUTD

OUTI

The following instructions ensure that A15-8 are all 0, and
can be used to access the EZ80’s on-chip I/O registers, as
well as external devices that decode A 15-8 as all zero:

INO r, (port)

OUTO (port), r

OTDM

OTDMR

OTIM

OTIMR

The following instructions drive Al15-0 from the BC
register pair, and can be used to access the fill 65K-byte I/O
space:

IN r,(C)

OUT (O), r

The following instruction can access the entire 65K-byte
I/O space, by pre-loading the MS 8 bits of the address into
A . (This step is not necessary for external devices that don’t
decode A15-8.)

IN A, (port)
Clock Circuits

The EZ80 requires a logic-level clock on its CLK pin.
This signal must be free of overshoot or ringing, must make
continuous, monotonic, and rapid transitions in both
directions, and must meet the minimum high and low times
specified in AC Characteristics.
Reset Conditions

The effects of Reset on each of the registers in I/O space
is described in Tables Listed Under Common Base Register
(0038H) CBR.—ASCI Time Constant High (001BH)
AS.TCH. in Section 4. Among processor registers, the
following registers and state bits are cleared to zero: ADL,
Mixed ADL, MBASE, PC, SP, 1, IEF1, IEF2, R, and F . The
following are not changed by Reset: A, B, C, D, E, H, L, IX,
and I'Y.
I/O Registers

Section Processor Description. describes the processor
registers and the EZ80’s programming model. This section
describes the registers in I/O space, that control the opera-
tion of the overall device and its on-chip peripherals. Reg-
ister addresses that don’t appear in this table are not used.
Basic Device Reeisters

In one embodiment of the invention, one of the design
goals was to keep basic device registers from beins specifi-
cally defined in the controller core. This allows flexibility
and adaptability of the controller core to applications that
may use different periperhal devices.

Typically, in controller designs, there is a core processor
with an accompanying collection of peripherals that are
accessed accessed by the controller via I/O operations. In the

10

20

25

30

40

45

55

US 6,502,181 B1

25

present invention, however, the core is made generic so that
these device registers are not defined in the core.
MMU Registers

See the Memory Management Unit section for more about
these registers.
Instruction Set

The EZ80 is descended from the ZiLOG Z80. Its 8-bit
data bus and 24-bit address space fit well into a wide variety
of mid-range embedded processing applications. This pro-
cessor provides significantly more computing power than a
microcontroller, at a fraction of the system cost of a larger
MIiCroprocessor.

Table 11 through Table 20 document a number of instruc-
tions and features of an EZ80 according to one embodiment
of the invention. Some of these are instructions that existed
in the Z80 but are undocumented, do not exist in the Z8018x
family, and are implemented and acknowledged in the EZ80.
Others are new to the EZS80.

Classes of Instructions
Processor Flags

Table 21 shows the Flag register. Bits in this register are
set and cleared by certain instructions as described in the
EZ80 User Manual. Some of the Flags are tested by condi-
tional JR, JP, CALL, and RET instructions, and some are
used by subsequent instructions such as ADC, SBC, and
DAA. The Flags can also be pushed and popped with
accumulator A.

Condition Codes

Flag Settings Definitions (Table 22) shows the codes used
in the Flags Affected columns of the Instruction Summary
Table to indicate how each flag is affected by each type of
instruction.

Table 23 (Condition Codes) shows the condition codes
that can be used in conditional JP, CALL, and RET instruc-
tions in assembly language. A subset of these codes can also
be used in JR instructions, which are shorter and faster than
JPs. Table 24 (Symbols) describes other notation used in the
Instruction Summary table.

Assembly Language Syntax

For two-operand instructions, Z80 assembly language
syntax puts the destination operand before the source oper-
and.

Example: LD A,(1234) is a Load instruction, while LD
(1234),A is a Store instruction.

Past Z80 assemblers allowed the destination operand to be
omitted (implicit) if the op code mnemonic only allowed one
destination operand, for example, AND L instead of AND
AL . Use of these short forms is discouraged because they
are a source of possible error (the programmer thinks that the
“implicit” destination is other than it really is). But for the
sake of legacy code, all known Z80 assemblers still accept
the short form.

Caution: the assembly language uses C ambiguously, to
designate one of the 8-bit registers as well as a condition
code to test the Carry flag. This Product Specification uses
CF to designate the Carry flag, and HC to designate the
Half-Carry flag (as opposed to the 8-bit register H)
Instruction Summary

Table 25 describes each type or class of instruction, using
the notation described in the preceding sections. The table is
sorted by the assembly language mnemonics.

CONCLUSION

The invention has now been explained with regard to
specific embodiments. Variations on these embodiments and

10

15

20

25

30

35

40

45

55

60

65

26

other embodiments will be apparent to those of skill in the
art. The invention therefore should not be limited except as
provided in the attached claims.

It is understood that the examples and embodiments
described herein are for illustrative purposes only and that
various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application and scope of
the appended claims. All publications, patents, and patent
applications cited herein are hereby incorporated by refer-
ence in their entirety for all purposes.

What is claimed is:

1. A processor with multiple addressing modes compris-
ing:

a first addressing mode allowing native addressing of a

memory block of a first size;

a second addressing mode allowing virtual addressing of
any memory block of approximately said first size;

a third addressing mode allowing native addressing of a
memory block of a second size, said second size at least
two times greater than said first size;

a fourth addressing mode allowing virtual addressing of
any memory block of approximately said second size;

a fifth addressing mode allowing linear addressing of a
memory block of a third size,

wherein said third size is at least two times greater than
said second size; and

wherein said processor is capable of switching among
said five modes.

2. A processor with multiple addressing modes compris-

ing:

a first addressing mode allowing native addressing of a
memory block of a first size;

a second addressing mode allowing virtual addressing of
any memory block of approximately said first size;

a third addressing mode allowing native addressing of a
memory block of a second size, said second size at least
two times greater than said first size;

a fourth addressing mode allowing virtual addressing of
any memory block of approximately said second size;

a fifth addressing mode allowing linear addressing of a
memory block of a third size,

wherein said third size is at least two times greater than
said second size; and

wherein said processor is capable of switching among
multiple running processes and wherein these pro-
cesses using different addressing modes can run con-
currently.

3. A processor with multiple addressing modes compris-

ing:

a first addressing mode allowing native addressing of a
memory block of a first size;

a second addressing mode allowing virtual addressing of
any memory block of approximately said first size;

a third addressing mode allowing native addressing of a
memory block of a second size, said second size at least
two times greater than said first size;

a fourth addressing mode allowing virtual addressing of
any memory block of approximately said second size;

a fifth addressing mode allowing linear addressing of a
memory block of a third size, wherein said third size is
at least two times greater than said second size; and

US 6,502,181 B1

27
interupt service processing that operates consistently
regardless of the addressing mode and context of a code
that was interrupted and that is able to restore said
mode and context upon completion of interrupt pro-
cessing.

4. A processor with multiple addressing modes compris-

ing:

a first addressing mode allowing native addressing of a
memory block of a first size;

a second addressing mode allowing virtual addressing of
any memory block of approximately said first size;

a third addressing mode allowing native addressing of a
memory block of a second size, said second size at least
two times greater than said first size;

a fourth addressing mode allowing virtual addressing of
any memory block of approximately said second size;

a fifth addressing mode allowing linear addressing of a
memory block of a third size, wherein said third size is
at least two times greater than said second size; and

a kernel process operating in said fifth mode and super-
vising operation of multiple processes operating in any
of the five modes.

5. A processor with multiple addressing modes compris-

ing:

a first addressing mode allowing native addressing of a
memory block of a first size;

a second addressing mode allowing virtual addressing of
any memory block of approximately said first size;

a third addressing mode allowing native addressing of a
memory block of a second size, said second size at least
two times greater than said first size;

a fourth addressing mode allowing virtual addressing of
any memory block of approximately said second size;

a fifth addressing mode allowing linear addressing of a
memory block of a third size, wherein said third size is
at least two times greater than said second size; and

ashort and a long stack pointer register wherein said short
stack pointer register is used as the stack pointer during
some addressing modes and said long stack pointer
register is used as a stack pointer during other address-
ing modes.

6. A processor with multiple addressing modes compris-

ing:

a first addressing mode allowing native addressing of a
memory block of a first size;

a second addressing mode allowing virtual addressing of
any memory block of approximately said first size;

a third addressing mode allowing native addressing of a
memory block of a second size, said second size at least
two times greater than said first size;

a fourth addressing mode allowing virtual addressing of
any memory block of approximately said second size;

a fifth addressing mode allowing linear addressing of a
memory block of a third size, wherein said third size is
at least two times greater than said second size; and an
autonomous MAC able to calculate a sum-of-products
from a set of values stored in a shared memory while
the processor is executing other operations.

7. The processor according to claim 6 wherein said MAC

is initialized by providing a start address and an indication
of the length of values to be calculated.

5

10

15

30

40

5

(o)

60

65

28

8. The processor according to claim 6 wherein said MAC
is initialized by said processor providing base, start, top, and
length values.

9. A Z80 compatible processor with multiple addressing
modes comprising:

a first native addressing mode allowing native addressing
of the first 64K memory block within a memory space
of at least 16M;

a second addressing mode allowing virtual addressing of
any 64K memory block within said memory space;

a third addressing mode allowing native addressing of a
first 1M memory block within said memory space;

a fourth addressing mode allowing virtual addressing of
any 1M memory block within said memory space;

a fifth addressing mode allowing linear addressing within
said memory space.

10. The processor according to claim 9 further compris-

ing:

a kernel process operating in said fifth mode and super-
vising the operation of multiple processes operating in
other modes, some of which may be originally written
for the Z80 and without modification under said pro-
CESSOL.

11. The processor according to claim 9 wherein at least
one of said addressing modes utilizes a memory manage-
ment unit.

12. The processor according to claim 9 further compris-
ing:

a major mode bit that detennines operation with respect to

16 vs. 24 bit addressing.

13. The processor according to claim 12 further compris-
ing:

wherein when said major mode bit is 0, address bits
A23-16 are normally taken from the output of a Z18x
memory management unit with 4 high order zeroes,
plus the contents of an 8-bit MBASE register;

wherein both said major mode bit and MBASE are
cleared to zero by a reset signal; and

wherein MBASE can only be written when ADL is 1.

14. The processor according to claim 12 further compris-
ing:

when a program or task operates with said major mode
bit=0 and does not use a memory management unit,
MBASE directly selects a 64K byte block of memory
in which the program or task operates.

15. The processor according to claim 9 further comprising

when 24-bit operation is indicated:

extending a plurality of processor registers from 16 to 24
bits;

extending an ALU from 16 to 24 bits; and

extending data paths from 16 to 24 bits.

16. The processor according to claim 15 further wherein
when 24-bit operation is indicated, address pins A23-16 are
normally taken from said register extensions.

17. The processor according to claim 16 capable of
executing an instruction having a prefix indicating that for
this instruction, addressing should use the MMU and
MBASE as in other modes.

18. The processor according to claim 9 further compris-
ing:

a short and a long stack pointer register wherein said short

stack pointer register includes only 16 bits and is used

US 6,502,181 B1

29
as a stack pointer (with the MMU and MBASE pro-

viding additional addressing information) when 16 bit

operation is indicated.
19. The system according to claim 9 wherein instruction

30

multiplier, and the second port being an 8-bit read-write
port connected to the microprocessor bus, such that the
RAMSs are part of the processor’s memory space; and

a set of registers in the processor’s I/O space, via which

5
refixes occupy one byte. . L .
P Py yie. . . . the processor is capable of providing calculation
20. The system according to claim 9 wherein a plurality . .
. . parameters, start MAC operation, determine when the
of opcodes that were equivalent to NOP codes in predeces- MAC b eted a calealati dretrd I
sor Z80 processors are used for other purposes. - as comp eted a calculation, and retrieve a result-
21. The system according to claim 20 wherein said 4 ing accumulation.
plurality of opcodes have the following operation: 24. The processor according to claim 22 wherein 256
values are sufficient for a class of applications to be
addressed, such that Base, Start, Top, and Length values
Op On Zx8x On EZ80 15 described below each fit in a single byte.
40 LD B,B .16116 prefix 25. The system according to claim 22 wherein a MAC
49 LD CC 24i16 prefix . .. ,
52 1D D.D 1624 prefix register block is in the processor’s I/O space and capable of
5B LD EE 24124 prefix being block loaded using an OT12R instruction.
ED7E SETMIX
ED7F CLRMIX. 20 26. The system according to claim 22 wherein there are
two register blocks in the MAC, one of which is accessible
. 22. The processor according to claim 9 further compris- to the processor and the other of which can be used by the
mg: . . .
& MAG, in a ping-pong fashion.
an autonomous MAC able to calculate a sum-of-products 25 . . .
from a set of values stored in the processor address 27. The system according to claim 22 wherein a MAC
space while the processor is executing other operations. register block includes the following values:
Register Function
XY The addresses in the X and Y RAMs, respectively, of first values to be
Start multiplied.
XY Addresses in the X and Y RAMs, of the end of a circular buffer in each
End RAM.
X, Y Addresses in the X and Y RAMs, of the beginning of the circular buffer
Reload in each RAM.
(As the MAC performs the calculation, it typically increments its
working addresses to get to the next pair of values. If a working address
matches the corresponding End register, instead of incrementing, the
MAC loads the contents of the corresponding Reload register into the
working address.)
Length The number of pairs of values to be multiplied and accumulated.
Control The accumulator is cleared when this register is written. It contains the
following parameters:
In Shift: a 3-bit value that specifies the number of low-order bits that
should be appended below a value written to ACO—4. If this field is non-
zero and AC4 is written, this number of high-order bits are ignored.
Out Shift: a 3-bit value that specifies the number of low-order bits of the
accumulation that should be discarded by shifting, when AC0—4 are read.
If this field is non-zero, reading AC4 will include this number of high-
order zeroes.
Noise: if In Shift is non-zero, the bit(s) that should be appended below
the value written to ACO—4 or replaced by an increment/decrement bit.
Interrupt Enable: if this bit is 1, the MAC will request an interrupt when
it completes the calculation specified in this bank.
AC04 A starting value for the accumulator capable of being written to these

locations. The accumulated value can be read from these locations, using
an INI2R instruction.

23. The processor according to claim 22 wherein said
MAC comprises: a 16x16 bit multiplier, the 32-bit product
output of which goes to one input of an adder, the other input
of which is the currently selected one of two 40 bit accu-
mulator registers, the output of the adder also being the write

side of that accumulator;

two dual-port RAMs, one port of each RAM being a
16-bit read-only port that feeds one side of the

and wherein MAC also provides one status register in 1/0

space that indicates the state of both register banks.
60

65

28. The system according to claim 22 wherein said MAC

is designed so that software can write its register block using
OTI2R instructions and read it using INI2R instructions and

wherein OTI2R and INI2R are like OTIR and FNIR except
that they increment the I/O address in the C register as part
of each cycle.

