
USOO6502181B1

(12) United States Patent (10) Patent No.: US 6,502,181 B1
MacKenna et al. (45) Date of Patent: Dec. 31, 2002

54) METHOD AND APPARATUS FOR AN 4,794,524. A 12/1988 Carberry et al. 712/32 (54) y
ENHANCED PROCESSOR 5,381,537 A 1/1995 Baum et al. 711/206

5,659,688 A 8/1997 Nimishakavi et al. 710/113
(75) Inventors: Craig MacKenna, Los Gatos, CA 5,774,686 A * 6/1998 Hammond et al. 703/26

(US); Gyle Yearsley, Boise, ID (US) 5,815,686 A 9/1998 Earl et al. 712/209
5,870,535 A 2/1999 Duffin et al. 358/1.16

(73) Assignee: ZiLOG, Inc., San Jose, CA (US) 5,926,648 A 7/1999 Ayzenberg 710/36

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Primary Examiner Daniel H. Pan
(21) Appl. No.: 09/398,257 (74) Attorney, Agent, or Firm-Skjerven Morrill LLP
(22) Filed: Sep. 17, 1999 (57) ABSTRACT

(51) Int. Cl." G06F 15/76; G06F 12/08: A controller for executing instructions has one the order of
G06F 13/16 five addressing modes and can allow executing of processes

(52) U.S. Cl. 712/32; 712/33; 712/210; concurrently in multiple modes. A specific embodiment can
711/171; 711/212; 711/203; 703/26; 703/27 effectively run legacy code written for the Z80 micoproces

(58) Field of Search 703/26, 20, 27, Sor without requiring recompiling of code. An optional
703/16, 28, 22, 17; 712/209, 15, 202, 41,
42, 227, 228, 43, 217, 244, 132, 245, 30,
213, 210, 211, 32,33; 711/202, 204, 203, Engine (MAC) optimized to perform Sum-of-products
216, 207, 208, 123, 209, 152, 211, 171, (SOP) operations with little controller overhead, making the
212, 172, 213, 173, 217, 148, 220, 221 invention capable of more effectively handling a number of

processing tasks, particularly tasks related to digital Signal

embodiment includes autonomous Multiply/Accumulator

(56) References Cited
processing (DSP).

U.S. PATENT DOCUMENTS

4,332,008 A 5/1982 Shima et al. 711/106 28 Claims, 42 Drawing Sheets

EZ80 LOGCDAGRAM

U.S. Patent Dec. 31, 2002 Sheet 1 of 42

EZ80 BLOCK DIAGRAM

Address
Selection

A23-0

US 6,502,181 B1

EZ80 LOGIC DAGRAM

A9
A8
A7
A6
A5
A4
A3
A2
A1
AO

WAT MRECR
IORG
RD
WR
MRD
MWR

ar IORD

NMI IOWR
INTO INTAK
BUSREO BUSACK

INSTRD
RET
HALT

RXAO TXAO
DCDO CKAO
CTSO RTSO

FIG.2

US 6,502,181 B1 Sheet 2 of 42 Dec. 31, 2002 U.S. Patent

NOILOñ??LSNITTVO HO NOLLVHEIdO (L eIqeL)8| 1"50|-||

US 6,502,181 B1 Sheet 3 of 42 Dec. 31, 2002 U.S. Patent

US 6,502,181 B1 Sheet 4 of 42 Dec. 31, 2002 U.S. Patent

(uu) d^ jo uo?euado

|-e |-

US 6,502,181 B1 Sheet 6 of 42 Dec. 31, 2002 U.S. Patent

US 6,502,181 B1 Sheet 7 of 42 Dec. 31, 2002 U.S. Patent

(G ?Iqel)

U.S. Patent Dec. 31, 2002 Sheet 8 of 42 US 6,502,181 B1

FIG. 8 (Table 6) STATE OFIEF1AND EF2
CPU Operation EF1 EF2
RESET 0 inhibits the interrupt except NM and TRAP

EF1 Copies the contents of EF1 to EF2
RETN IEF Not affected Returns from the NMI Service Routine

are are Inhibits the interrupt except NMI and TRAP
NM and Trap
RET Not affected Not affected

LDA, Not affecte
LDA, R Not affected Transfers the contents of IEF2 to PN flag

FIG.9 FIG.9B

U.S. Patent Dec. 31, 2002 Sheet 11 of 42 US 6,502,181 B1

FIG. 1 O (Table 8) COMMON BASE REGISTER (OO38H) CBR
Bit 7 6 5 4 3 2 1 0

Base of Common Area 1
R/W

Reset 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0
NOTE: R = Read W = Write X = Indeterminate

BitPOSition Bit/Field

7-O Common 1 R/W If the comparison of bits 15-12 of a
Area Base logical address indicates that the

address is in Common Area 1, this
value (shifted left 12 bits, times 4096)
is added to the logical address to
form the physical address.

FIG. 11 (Table 9). BANK BASE REGISTER (OO39H) BBR
Bit 7 || 6 || 5 || 4 || 3 || 2 || 1 || 0

Base of Bank Area
R/W

Reset O o O o O o O O
R = Read W = Write X - Indeterminate

Bit/Field
7-O Bank Area Base R/W if the comparison of bits 15-12 of a

logical address indicates that the
address is in the Bank Area, this value
(shifted left 12 bits, times 4096) is
added to the logical address to form
the physical address.

U.S. Patent Dec. 31, 2002 Sheet 12 of 42 US 6,502,181 B1

FIG.-12 (Table 10) COMMON BANK REGISTER (OO3AH) CBAR
Bit 6 5 4
Bit/Field Bank/Common 1 Bounda Common O/Bank Bounda
R/W R/ W R/W

Reset 1 1 1 1 o O O O
R = Read W = Write X = Indeterminate

Bit POSition Bit/Field

Bank/Common R/W lf bits 15-12 of a logical address are
1 B greater than or equal to this value,

Oundary the address is in Common Area 1.

Common O/Bank R/W lf bits 15-12 of a logical address are
Boundary less than this value, the address is

in Common Area O.

NOTE: If bits 3-0 of this regC bits 15-12 of a logical address < bits 7-4 of this reg,
the address is in the Bank Area. Do not program this register so that bits 3-0 > bits
7-4. All comparisons are unsigned.

FIG. 13 (Table 11) LOAD INSTRUCTIONS
Mnemonic operands

Load

qq, IX/Yd Load Effective Address
IX/Yo Push Effective Address

PUSH

FIG. 14 (Table 12) ARITHMETIC INSTRUCTIONS
Mnemonic operands Instruction

CPD(R) Block Scan, decrementing (and Repeat)
CPI(R) Block scan, incrementing (and Repeat)
DAA Decimal Adjust Accumulator

MLT

NEG Negate Accumulator

SUB

U.S. Patent Dec. 31, 2002 Sheet 13 of 42 US 6,502,181 B1

FIG. 15 (Table 13) LOGICAL INSTRUCTIONS

Operands
CC,dst
dst

Conditional Call
Call

Decrement and Jump if Non-Zero
Conditional Jump
Jump
Conditional Jump Relative
Jump Relative
Conditional Return
Return

Return from Interrupt
Return from Nonmaskable interrupt
ReStart

dst

CC,dst
dst

CC',dst
J

T

JJ RP

S tt
Mnemonic operands Instruction
LDD(R) Block Move, decrementing (and Repeat)
LDI(R) Block Move, incrementing (and Repeat)

U.S. Patent Dec. 31, 2002 Sheet 14 Of 42 US 6,502,181 B1

FIG. 20 (Table 18) ROTATE AND SHIFT INSTRUCTIONS
Mnemonic operands instruction

RLCA Rotate Left Circular Accumulator
RLD Rotate Left Decimal
RR dst Rotate Right
RRA Rotate Right Accumulator

RRCA Rotate Right Circular Accumulator
RRD Rotate Right Decimal

FIG.21 (Table 19) INPUTIOUTPUT INSTRUCTIONS
Mnemonic operands instruction

A, (
r, (C)

IND(R) Block input, decrement HL (and Repeat)
IND20R) Block input, decrement both (and Repeat)
INDM(R) Block input, page 0, decrement both (and Repeat)
INI(R) Block input, increment HL (and Repeat)
INI2(R) Block input, decrement both (and Repeat)
INIM(R) Block input, page o, increment both (and Repeat)
OTDM(R) Block Output, page 0, decrement both (and Repeat)
OTIM(R) Block output, page 0, increment both (and Repeat)

OUTD (OTDR) Block output, decrement HL (and Repeat)
OUTD2 (OTD2R). Block output, decrement both (and Repeat)
OUT (OTIR) Block Output, increment HL (and Repeat)
OUTI2 (OTI2R). Block output. decrement both (and Repeat)

Test port (0,C) under mask

U.S. Patent Dec. 31, 2002 Sheet 15 of 42 US 6,502,181 B1

FIG. 22 (Table 20) PROCESSOR CONTROLINSTRUCTIONS
Mnemonic operands instruction
CCF complement carry Flag
D Disable interrupts
El Enable Interrupts
HALT Halt
IM TO/1/2 Interrupt Mode
NOP No operation
RSMIX Reset Mix Flag
SCF Set Carry Flag
sLP I sleep
sTMIX Set Mix Flag

FIG.23 (Table 21) FLAG REGISTER

z 6 zero Flag

3 reserved

o

Parity or Overflow Flag
Add/Subtract Flag
Carry Flag

U.S. Patent Dec. 31, 2002 Sheet 16 of 42 US 6,502,181 B1

FIG.24 (Table 22) FLAG SETTINGS DEFINITIONS

o cleared to 0

- Unaffected

P Set if Parity or result is Even
Set if the Count in B Or BC is non-zero

FIG.25 (Table 23) CONDITION CODES
Mnemonic Definition Flag settings valid in JR2

Z = 1

Z = O

M Minus S = 1
P Positive or zero S = 0
PE Parity Even PIV = 1 N
PO Parity Odd PIV = 0

P/W - 1

U.S. Patent Dec. 31, 2002 Sheet 17 of 42 US 6,502,181 B1

FIG.26

FIG. 26A (Table 24) INSTRUCTION CODING SYMBOLS
Symbol Definition

(aa) (mn), (IXd), (IYa), (BC), (DE), or (HL).
(BC), (DE), (HL). The 8-bit contents of memory, at the address pointed to by a register

pair. (HL) can also indicate a 16-bit value in memory.
The 8- or 16-bit content of memory at the address formed by adding
the contents of the index register and the signed displacement d in
the instruction.

(IXd), (IYd)

Since d is signed, it would be more correct to just Write + instead. But
we write to emphasize that d is signed.
A concatenated with F, with A as the more significant byte
A bit number 0-7

A condition code C, NC, Z, NZ, S, M, PE, PV, V, or NV
A condition Code C, NC, Z, or NZ
An 8-bit signed displacement -128 to +127
A 16-bit register BC, DE, HL, SP, DX, or IY
The processor's two Interrupt Enable Flags.
XH Or YH
YH Or YL

XH, IXLIYH, or IYL
An 8-bit variable A, B, C, D, E, H, L. (HL), (IXd), or (Ya)
A 16-bit immediate data value or direct address

A8-bit immediate value or port number, 0-255 or 0-FFH

irCA C C

EF12
h

U.S. Patent Dec. 31, 2002 Sheet 18 of 42 US 6,502,181 B1

FI G. -26B (Table 24 continued) INSTRUCTION CODING SYMBOLS
Definition

A range of opcode values, that includes some of the values between
the low and high values. See the Note.
Program Counter
A 16-bit register BC, DE, HL, SP. IX, IY, or AF
A, B, C, D, E, H, L, XH, IXL, IYH, IYL, (HL), (IXd), or (IYd)
A 16-bit register BC, DE, HL, IX, or IY
An 8-bit register A, B, C, D, E, H, or L.
An 8-bit register A, B, C, D, or E
A 16-bit register HL, IX, or IY.
A, B, C, D, E, H, L, XH, IXH, IYH, IYL, n, (HL), (IXd), or (IYd)
Stack Pointer

A 16-bit register BC, DE, HL, or SP.
The more- and less-significant eight bits of a register pair
A 16-bit register like ss, except that the value that designates HL in the
ss encoding, here means same as the destination register HL, IX, or IY.

Symbol
op1-op2

P

r, r

36

P

SSH, SSL

Note: The symbol - between op codes (op1-op2), in the op codes column of the
instruction Summary table, indicates all the binary values between the indicated
lower and upper limits inclusive, that can be formed by incrementing the set of bits
that differ between the lower and upper value.
Example: 00-CO represents 00, 40, 80, and C0, while 40-BF represents all the values
in that range.

U.S. Patent Dec. 31, 2002 Sheet 20 of 42 US 6,502,181 B1

FIG.27B (Table 25 continued)
Instruction Summary

Address Mode Opie) Flags Affected

SE" dst src sz HCPvNCF Operation
PC15-O" mn
IF ADL (PC23-16 "M}
CCF k act 3F --- or

r B8-BF
ir DD/FDBC-BD

V

DD/FD BE

1

N Z

repeat (A - (HL)
HL. "HL - 1
BC" BC - 1
} while (not Zand

ED B9

ED A1 N Z

F

N Z

CPR
repeat (A - (HL)
HL. "HL - 1
BC " BC - 1
} while (not Zand

A not A

A " decimal adjust (AF

ee "ee - 1

DEC q
d" q - 1

IEF 12" O
DUNZ d
B" B - 1
if B - O PC " PCd

ED B1

2 F

32 OB-3B
DD/FD 2B
O5-3D

DD/FD 25/2D

DD/FD 35

F 3

1 O

U.S. Patent Dec. 31, 2002 Sheet 21 of 42 US 6,502,181 B1

FIG. 27C (Table 25 continued)
Instruction Summary

Address Mode ope) Flags Affected
instruction and SE" dst src sz HCPvincf.
E

IEF12" 1 FB --|--|--
AF AF

EX (SP),rr ... SP) rr DD/FD E3

76 - - - - - -
IM n | | | ED 40-58 - I - I - I - - -

(HL) " (BC)
B " B - 1
HL. "HL - 1

(HL) " (BC)
B " B - 1
C" C - 1
HL. "HL - 1
IND2R
do (HL) " (BC)
B " B - 1
C" C - 1
H. "HL - 1
While B = 0
NDM
(HL) " (0,C)
B " B - 1
C" C - 1
HL" HL -

U.S. Patent Dec. 31, 2002 Sheet 22 of 42 US 6,502,181 B1

FIG. -2 7D (Table 25 continued)
Instruction Summary

Address Mode PE Flags Affected
SE" dst src sz HCPvNCF Operation

)
NDMR
do (HL) " (0,C)
B " B - 1
C" C - 1 ED 9A 1 1
HL." H- 1
While B = 0
NDR
do (HL) " (BC)
B " B - 1 ED BA
HL "H - 1

N
(HL) " (BC)
B " B - 1
HL H + 1
N2
(HL) " (BC)
B " B- 1
C" C+ 1
HL" HL - 1
N2R
do (HL) " (BC)
B " B - 1
C" C - 1
HL" H -- 1
While B = O
NIM
(HL) " (O,C)
B " B - 1
C" C+
HL "HL
NIMR
do (HL) " (O,O)
B " B - 1
C T C + 1
HL "HL + 1
While Blse O
NR
do (HL) " (BC)
B " B - 1
HL" HL + 1
while B = 0
JP (rr)
PC "rr
IF i16 (ADL" O}
ELIF i32 (ADL"1}

U.S. Patent Dec. 31, 2002 Sheet 25 of 42 US 6,502,181 B1

FIG. 2 7G (Table 25 continued)
instruction Summary

instruction and SE" dst src sz HCPvNCF
While BC = 0 | | | | | | | | |
LD
(DE) " (HL)
DE "DE - 1 EDAO not?
HL "HL - 1
BC " BC - 1

HL" HL - ED BO
BC" BC -
While BC = 0

LEA do, Xd BC,DEHL ED 02-22
qqX IX ED 32

IY | | ED 55
LEA CIO. Yo BC,DE,HL ED 03-23
3. IX ED 54

00 - I - I - I - - -
r Bo-B7

OR AS ir DD/FDB4-B5
AAORs n F6

(HL) B6
(X/Ya) DD/FDB6

ED BC

ED 8B

e

LDR
do (DE) " (HL)
DE "DE - 1

CC IY ED33
MLT SS E. ED4c-7c --|--|--
NEG SEA ED 44 v 1.
NOP

OTD2R
do (BC)" (HL)
B " B - 1
C " C - 1
HL" HL - 1
While B - O
OTDM
(0,C)" (HL)
B " B - 1
C" C - 1
H. "HL - 1
OTDMR
do (O,C) " (HL)
B " B - 1
C" C - 1
HL "HL - 1

U.S. Patent Dec. 31, 2002 Sheet 26 of 42 US 6,502,181 B1

FIG. -2 7H (Table 25 continued)
Instruction Summary

Address Mode Ops) Flags Affected
instruction and SE" dst src sz HCPvincf.
While Blac O | | | | | | | |

OT2R
do (BC)" (HL)
B " B - 1
C" C - 1 ED B4 X 1 X X

While B - O
OTIM
(O,C) " (HL)
B as B 1 ED 83 r k

C" C+ 1
HL "HL - 1
OTIMR
do (0,C) " (HL)
C" C+ 1 ED 93 1
HL" HL - 1
While B = 0
OTR
do (BC) " (HL)
B " B - 1 ED B3 X X X
HL "HL - 1
While B = O

OUT (n),A Ds ------ n) "A

ES" | | | ED01-39 --|--|-- O,n) "r
OUTD

(BC) (HL) EDAB X * X X | 1
H. "HL - 1
OUTD2
(BC)" (HL)
B " B - 1 EDAC X X X | 1
C" C - 1
HL" HL - 1

OTDR
do (BC)" (HL)
B " B - 1 ED BB X | 1 | X X 1
HL" HL- 1
While B - O

HL" HL - 1

B " B -

259 | | | Ed airs ---|--|-

B " B - 1

OUT Eel) | | EDAs |x|, |x|x||.

U.S. Patent Dec. 31, 2002 Sheet 28 of 42 US 6,502,181 B1

FIG. -2 7.J (Table 25 continued)
Instruction Summary

instruction and SE" dst src sz HCPvNCF
RET CC East core ------
RET
as RET above -
recognition by Z80 ED 4D
Oeripherals
RETN
as RET above - EF1 " ED 45
EF2

RL m CB 1O-17 o
CB 16

(CF,m) "rotL(CF,m) DD/FD CB d 16
RLA

dx x.
CFA)" rotL(CFA
RLC m r

xx
(CF,m) "rotL(m) X/YC
RLCA

17

CBOO-07
CB O6

DD/FD CB d O6

CFA) "rotL(A
RLD
tmp " A3:O
A3:O)" (HL)7:4)

O 7

1 F

ED 6F

CB 18-F
CB 1E

(CF,m) "rotR(CF,m) DD/FD CB d 1 E
RRA

CF,A) "rotR(CFA
RRC m

C

(CF,m) "rotR(m)
RRCA

CB O8-OF
CBOE

DD/FD CB d OE
LLL

o OF
CFA) "rotR(A
RRD
tmp" (HL)(3:O
(HL)(3:O" (HL)7:4) ED 67

| | | ED7E I - I - I - I - I - I -

U.S. Patent Dec. 31, 2002 Sheet 30 of 42 US 6,502,181 B1

FIG.27A
- - - - - - - -

FIG.27B
- - - - - - - - -

FIG.27F

; FIG-27G

: FIG-27J
D D A D D D -

FIG.-27K
- - - - - - - -

FIG.27 FIG271:

FIG. 27L (Table 25 continued)

Address Mode ope) Flags Affected
Instruction and SE" dst src sz Hc PivnicF

(HL) ED 34
TSTOn SER ED34 Polo

(HL) AE
(X/Y) DD/FDAE

Notes: Some of the values in this range are used by other instructions,
Which "Override" this rande.

r A8-AF
XOR AS ir DD/FDAC-AD
A " AXORS n EE

US 6,502,181 B1 Dec. 31, 2002 Sheet 34 of 42 Patent U.S

?pOO dO puz ?o e?qqIN IeMOT

US 6,502,181 B1

LE LE I GLIOT?TIVIT?T?, TOEZOETGOETGOETZTETT?TTTTTTT
(HCICIO HELHw HCOO do puz) dvW HClOO do (8z e?qel)|-W708-'9|-!

Sheet 35 of 42 Dec. 31, 2002 U.S. Patent

US 6,502,181 B1 Sheet 37 Of 42 Dec. 31, 2002 U.S. Patent

CIT\/ET LE LE LO LO TELEVIT?T?TZTETETTETETT?FTIT?T
(HCIBO HELHV do puz) dVW HClOO do (6z alq?L)|-W/18 T'50||-||

- a o to to

US 6,502,181 B1 Dec. 31, 2002 Sheet 38 of 42 Patent U.S

puededO puo09SpuededO ?Su!-! Og“TH

~~~~ (tae, gle- og Ze|qqIN Jeddn 
epOO dO puz ?o e?qqIN J?MOT |BZGIO BOLO CHONTEGROTEGG| 8 || LITETITÕLGITOIGNIFIC?T?T??IñOTTILEO LIGTIVT 

| || ||No.|No.][TTTTT?, TE ||| T?GNIEWOLÒTWGNITTTTTT?INTIWLIOTWINTIFI-TET 
  

  







U.S. Patent Dec. 31, 2002 Sheet 41 of 42 US 6,502,181 B1 

FIG.33A 
(Table 31) OPCODE MAP (4th BYTE, AFTER ODDH, OCBH, ANDD) 
IOI 1 2 3 4 5 || 6 || 7 | 89ABCD E Fl 

XC Xd 

Xd IXd 

XC Xd 

Xd Xd 

XC XC 

XC XC 

Xd XC 

o 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 |AB|c DT E TF 

Lower Nibble of 4th Byte 
6 

Upper Nibble 
FIG. 33B of 4th Byte -->4 5. Mnemonic 

First Operand y Second Operand 

    

    

      

    

    

    

    

    

    

    

  



US 6,502,181 B1 Sheet 42 of 42 Dec. 31, 2002 U.S. Patent 

?L? T? T? T?IVIT?T? IZTE-G-GETET?TTTOT L|(PAI) ZIES|_|_|_LITTI@TIETESTTTTTTTET | ||No.È?LLLLLLTIRÈ?ST?TITLE LI(P?I)"EIESLIITTTTT?B?, IESTE-LIITT? LIB?D?TIES LITTITTLE(P?DOIESTETTITET LIB?, S?LI, LITTITREJE SEEI-I-T-T-T-T-T? | ||(PAI)'s S?HLITTTTTTTT?JITSHELE-I-IFTET 
L|(P?I)"ES?TTTTTT, KE?, SEHEEFTTIFTET | ||No.ËLLLLLLIT????LI ILIT? | ||No.?? LLLLLTIET????ILITÆLLE | || @$± LITETITIEŽ?F??TILLILI?I 

LLOEÏ??ILLIITTIEŽ?N?L? LIITILIT? 
L] (P?I) I IIG LLEOETIITETEJTOI?IIIIIII7 

L? (DADT?S ITILII,II,II,I,TETT T? LI (P?VES LITTFIT-TIEJIV?S-II-III, IT? _L (PN) OEHTOLDT TITTIERTETETTTTTTTT? 
(C1 QNW ‘H800 ‘HC1-10 HH LHV ‘BLAg ulv) dww =Goo do (ze eIqel) 

&#78 

= |_=_10|| O || 5 || VIÊ DE EZILE, TETZTETETTTOT] \/?/8T"50|-|| 

  

  

  



US 6,502,181 B1 
1 

METHOD AND APPARATUS FOR AN 
ENHANCED PROCESSOR 

FIELD OF THE INVENTION 

The present invention is in the field of methods and 
devices for digital processors and processor cores. More 
Specifically, the present invention is directed to an enhanced 
processor that maintains backwards compatibility with a 
number of earlier designs in the same family, including 
earlier processors with different address Space and data 
widths. 

BACKGROUND OF THE INVENTION 

A large literature exists regarding the history of processor 
development and evolution. A brief Summary of this history 
is presented below. The reader is referred to 
infopad.eecs.berkeley.edu/CIC /archive/cpu history.html 
and its cited documents for more information. 
While processors have evolved dramatically over the last 

Several decades, in many design applications and environ 
ments there remains an extensive interest in utilizing mature 
processor designs. Older designs have the advantage of a 
well-designed tool Set, a large base of engineering expertise 
and familiarity, and in Some cases a large investment in 
Software code. 

The Z-80 processor is one older processor design in which 
there remains a large interest. The Z-80 was originally 
developed to be a successor to the Intel 8080 and was 
regarded at the time as a vast improvement. Like the 8080, 
the Z-80 used 8 bit data and 16 bit addressing. The Z-80 
could execute all of the 8080 instructions and included 80 
additional instructions (1, 4, 8 and 16 bit operations and 
block move and block I/O). The register set was doubled 
from the 8080, with two banks of data registers (including 
A and F) that could be switched between. This allowed fast 
operating System or interrupt context Switches. The Z-80 
also added two index registers (IX and IY) and 2 types of 
relocatable vectored interrupts (direct or via the 8-bit I 
register). Aspects of the Z80 are described in U.S. patent 
application No. 4,332,008. 
One characteristic that made the Z-80 popular in designs 

was the memory interface-the CPU generated its own 
RAM refresh Signals, which meant easier design and lower 
System cost, the deciding factor in its Selection for the Radio 
Shack TRS-80 Model 1, introduced on Aug. 3, 1977. 

Like many processors, the Z-80 featured many undocu 
mented instructions. In Some cases, they were a by-product 
of early designs (which did not trap invalid op codes, but 
tried to interpret them as best they could), and in other cases 
chip area near the edge was used for added instructions, but 
fabrication made the failure rate high. Instructions that often 
failed were not documented, increasing chip yield. Later 
fabrication made these more reliable. 

After its introduced, many variants of the Z-80 were 
developed and produced by a variety of manufacturers. A 
number of these processors were Sold with peripheral com 
ponents included on-chip. More recently, Z80 family pro 
ceSSors are developed and distributed as Soft-core specifi 
cations in a register transfer language (RTL), which can then 
be combined with other components to produce ASICs. 

Hitachi produced the 64180 (1984) with added compo 
nents (two 16 bit timers, two DMA controllers, three serial 
ports, and a segmented MMU mapping a 20bit (1M) address 
Space to any three variable sized Segments in the 16 bit 
(64K) Z-80 memory map). 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
Zilog produced the Z-180, compatible with Z-80 periph 

eral chips, plus variants (Z-181, Z-182). The Z-280 was a 16 
bit version introduced about July, 1987, with a paged (like 
Z-180) 24 bit (16M) MMU (8 or 16 bit bus resizing), 
user/Supervisor modes and features for multitasking, a 256 
byte (4-way) cache, 4 channel DMA, and a large number of 
new op codes added (total of almost 3,500, including 
previously undocumented Z-80 instructions). 
A 16/32 bit Z-380 version also exists (1994) with an 

added 32-bit linear addressing mode that is not Z-80 com 
patible. 
Z38O 

Another addition to the Z80 family is the Z380. While the 
Z380 was intended as an advanced 32-bit version of the Z80, 
with 16 Mb linear addressing, the processor had mixed 
results. One problem was that Z80 binary code could not run 
on the 380 without recompiling, therefore Z380 systems 
were not “turn-key” compatible with software written for the 
Z80. A further difficulty is that the Z380 mechanisms for 
extending the capabilities of the Z80 and Z180, while 
maintaining binary program compatibility, were inconve 
nient for both assembly-language programmerS and C com 
piler writers, and expanded the code Space requirements for 
both kinds of programs. The Z380's multi-byte op-code 
prefixes meant that every time a 24- or 32-bit address or data 
value was used in an instruction, the instruction not only had 
to extend by the necessary 8 or 16 bits, but by another 16 bits 
of “DDIR prefix” as well. This has proved to be linear 
addressing and wider data at too high a price in code size. 

Despite all the further developments made in mP design 
since 1977, there remains continuing interest in Z80-based 
processing. For many computer control applications, Z80 
processing remains a Versatile, reliable and inexpensive 
Solution. As a result of this continued interest, a Substantial 
body of tools and Support components for the Z80, including 
emulators, compilers, etc. continues to be distributed. See, 
for example, the resources listed at www.geocities.com/ 
Silicon Valley/Peaks/3938/Z80 home.htm. 

Zilog, Inc., continues to produce a Sell a number proces 
sors in the Z80 family. A brief comparison of the features of 
these processors is presented in the table below. Further 
information is available at http://www.Zilog.com/resources/ 
Z80r.html. 

Z80/Z180/ZS80 Comparison 

Z80 Z18O Z38O 

External Data Bus Width 8-bit 8-bit 16/32-bit 
Address Space 64k 1 Mb 16 Mb Linear 
Number of register sets 2 2 8 16-bit 
Number of register planes 1. 1. 4 
Static core O yes yes 
CPU Speed 1O 33 33 
Clocks/Inst. Min 4 3 2 

Memory Management 
An important enhancement in processor design is the 

ability to address a large address Space. The address Space is 
determined by the number of bits the processor can manipu 
late and output as an address 
Most 8 bit processors are limited to addressing 64k of 

memory, using two 8-bit words to address each memory 
location. A 16 bit CPU generally can support 1 to 16 Mb of 
memory. To Support these larger address Spaces, the pro 
cesses generally utilize a memory management unit (MMU) 
to access an address Space larger than 64k, but still maintain 



US 6,502,181 B1 
3 

compatibility with earlier instruction sets. Under one MMU 
Scheme, all instructions, in all modes, issue 16 bit addresses. 
The MMU converts these 16 bit addresses to 20 bits. 

In Such a Scheme, physical memory generally refers to the 
entire universe of memory addressible by the processor. The 
memory that can be addressed with any one map, or 
configuration, of the MMU is called the logical address 
Space. In this Scheme, every address generated by a user's 
program is a logical address and the MMU's role is to 
translate these logical addresses into physical ones. On 
power up, the MMU may translate every logical address to 
exactly the same physical address (which simulates the 
Z80). 

In an MMU Scheme, address references made by a 
program is passed through the MMU before being presented 
to the physical memory Space. If the address matches a range 
previously programmed into the MMU, then the MMU will 
add an offset to that address, forming the physical address. 
EXC Z80 

A number of years ago, Zilog purchased the exclusive 
rights to the Exd Z80 Softcore. One advantage of the ExdZ80 
was its Single clock bus cycles. AS implemented and 
marketed, the core was “pure” Z80, even including hidden 
Z80 instructions from 1975. 

While the Z180 family has long advertised 20-bit address 
capability, its mechanism for achieving this, called the 
Memory Management Unit or MMU, is difficult to use and 
has impeded the use of this family into larger-Scale appli 
cations. One would like to add a 24-bit mode in which the 
processor automatically fetches longer addresses and data, 
So that no prefix is required for most instructions. 
What is needed is a processor “between the Z18X and 

Z38x families, that provides 24-bit linear addressing, is 
more natural and convenient to program than the MMU or 
380, and allows more compact programs than the 380. 

SUMMARY OF THE INVENTION 

The present invention is a controller for executing instruc 
tions. A controller according to the invention may exist in a 
wide variety of embodiments, including, but not limited to, 
an integrated circuit, a part of an integrated circuit, a 
“Soft-core RTL descriptor language module, etc. 

In one Specific embodiment, a controller according to the 
invention is designed to maximize compatibility with Z80 
and 18X applications at the binary level, while Simulta 
neously minimizing code Space and maximizing program 
ming convenience for upgrades and new applications that 
utilize 24-bit operation. 

According to a further embodiment, an instruction Set for 
a controller is basically that of the Z18x family, with some 
optional new facilities to enable 24-bit addresses and data 
and further provides a Z80 derivative with 24-bit linear 
addressing and 24-bit ALU, but an external 8-bit data path. 

In a further embodiment, the present invention provides a 
mP or mP core with multiple modes of memory addressing. 
These modes are designed to allow for backwards compat 
ibility with legacy processor code. According to the present 
invention, these modes can operationally coexist, with pro 
ceSSes written for different modes Sharing the processor 
under control of a Supervising or kernel process. 

In a specific embodiment, these modes consist of at least 
five key modes, which may may be referred to as: 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

Native Z80 
Virtual Z80 
Native 818O 

First 64K of memory; 
Any 64K of memory, 
First 1M of memory (Uses MMU 
only) 
Any 1 M of memory (Uses MMU 
plus MBASE register.); 
16 M “linear addressed memory 
space. 

Virtual 818O 

ADL (Address Data Long) Mode 

Note that while Specific memory address Space sizes are 
given above, the invention may in other embodiments have 
different memory Space Sizes. 

In one specific embodiment, the invention can include an 
autonomous Multiply/Accumulator Engine (MAC). This 
engine is optimized to perform Sum-of-products (SOP) 
operations with little CPU overhead, making the invention 
capable of more effectively handling a number of processing 
tasks, particularly tasks related to digitalsignal processing 
(DSP). 
A further understanding of the invention can be had from 

the detailed discussion of specific embodiments below. For 
purposes of clarity, this discussion refers to devices, 
methods, and concepts in terms of Specific examples. 
However, the method of the present invention may operate 
within a variety of types of logical devices. It is therefore 
intended that the invention not be limited except as provided 
in the attached claims. 

Furthermore, it is well knowVn in the art that logic 
Systems can include a wide variety of different components 
and different functions in a modular fashion. Different 
embodiments of a system can include different mixtures of 
elements and functions and may group various functions as 
parts of various elements. For purposes of clarity, the 
invention is described in terms of Systems that include many 
different innovative components and innovative combina 
tions of components. No inference should be taken to limit 
the invention to combinations containing all of the innova 
tive components listed in any illustrative embodiment in this 
Specification. 

All publications, patents, and patent applications cited or 
listed herein are hereby incorporated by reference in their 
entirety for all purposes. The invention will be better under 
stood with reference to the following drawings and detailed 
description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a processor according to an 
embodiment of the invention. 

FIG. 2 is a block diagram showing pinout of an example 
processor according to an embodiment of the invention. 
FIG.3 (Table 1) indicates operation of CALL Instruction 

according to an embodiment of the invention. 
FIGS. 4, 4A, 4B (Table 2) indicate operation of RST etal 

according to an embodiment of the invention. 
FIG. 5 (Table 3) indicates which prefix selection affects 

each (class of) instruction according to an embodiment of 
the invention. 

FIG. 6 (Table 4) indicates register loading to enable a 
MAC status according to an embodiment of the invention. 

FIG. 7 (Table 5) indicates bits indicating MAC status 
according to an embodiment of the invention. 

FIG. 8 (Table 6) indicates State of IEF1 and IEF2 accord 
ing to an embodiment of the invention. 



US 6,502,181 B1 
S 

FIGS. 9, 9A, 9B (Table 7) indicate Processor and Device 
Pin Descriptions according to an embodiment of the inven 
tion. 

FIG. 10 (Table 8) indicates Common Base Register 
(0038H) CBR according to an embodiment of the invention. 

FIG. 11 (Table 9) indicates Bank Base Register (0039H) 
BBR according to an embodiment of the invention. 

FIG. 12 (Table 10) indicates Common/Bank Area Regis 
ter (003AH) CBAR according to an embodiment of the 
invention. 

FIG. 13 (Table 11) indicates Load Instructions according 
to an embodiment of the invention. 

FIG. 14 (Table 12) indicates Arithmetic Instructions 
according to an embodiment of the invention. 

FIG. 15 (Table 13) indicates Logical Instructions accord 
ing to an embodiment of the invention. 

FIG. 16 (Table 14) indicates Exchange Instructions 
according to an embodiment of the invention. 
FIG.17 (Table 15) indicates Program Control Instructions 

according to an embodiment of the invention. 
FIG. 18 (Table 16) indicates Bit Manipulation Instruc 

tions according to an embodiment of the invention. 
FIG. 19 (Table 17) indicates Block Transfer Instructions 

according to an embodiment of the invention. 
FIG.20 (Table 18) indicates Rotate and Shift Instructions 

according to an embodiment of the invention. 
FIG. 21 (Table 19) indicates Input/Output Instructions 

according to an embodiment of the invention. 
FIG. 22 (Table 20) indicates Processor Control Instruc 

tions according to an embodiment of the invention. 
FIG.23 (Table 21) indicates Flag Register according to an 

embodiment of the invention. 

FIG. 24 (Table 22) indicates Flag Settings Definitions 
according to an embodiment of the invention. 

FIG. 25 (Table 23) indicates Condition Codes according 
to an embodiment of the invention. 

FIGS. 26A, 26B (Table 24) indicate Instruction Summary 
according to an embodiment of the of the invention. 

FIGS. 27, 27A-27L (Table 25) indicates Op Code Map 
(1st Op Code) according to an embodiment of the invention. 

FIGS. 28A, 28A-1, 29A-2 (Table 26) indicates Op Code 
Map (1st Op Code) according to an embodiment of the 
invention. 

FIG.28B shows the organization of the table of FIG. 28A. 
FIGS. 29A, 29 A-1, 29A-2 (Table 27) indicate Op Code 

Map (2nd Op Code after OCBH) according to an embodi 
ment of the invention. 

FIG.29B shows the organization of the table of FIG.29A. 
FIGS. 30A, 30A-1, 30A-2 (Table 28) indicate Op Code 

Map (2nd Op Code. After ODDH) according to an embodi 
ment of the invention. 
FIG.30B shows the organization of the table of FIG.30A. 
FIGS. 31A, 31A-1, 31A-2 (Table 29) indicate Op Code 

Map (2nd Op Code After OBDH) according to an embodi 
ment of the invention. 
FIG.31B shows the organization of the table of FIG.31A. 
FIGS. 32A, 32A-1, 32A-2 (Table 30) indicate Op Code 

Map (2nd Op Code. After OFDH) according to an embodi 
ment of the invention. 
FIG.32B shows the organization of the table of FIG.32A. 
FIG. 33A (Table 31) indicates Op Code Map (4th Byte, 

after ODDH, 0CBH, and d) according to an embodiment of 
the invention. 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
FIG.33B shows the organization of the table of FIG.33A. 
FIG. 34A (Table 32) indicates Op Code Map (4th Byte, 

after OFDH, 0CBH, and d) according to an embodiment of 
the invention. 

FIG.34B shows the organization of the table of FIG. 34A 

DESCRIPTION OF SPECIFIC EMBODIMENTS 

AS is known in the art, a controller according to the 
invention can be selected with various configurations and 
capabilities. A large number of Specific operations will now 
be described. It should be understood that a controller 
according to the invention can include or not include various 
of these components and modes of operation and the 
description of Specific embodiments here shouild inot be 
taken as limiting of the claimed invention. 

According to a further embodiment, the invention can 
provide a processor with a a 24-bit mode having an Interrupt 
Service routine that operates consistently, regardless of the 
mode and context of the code that was interrupted and is able 
to restore a mode and context upon completion of interrupt 
processing. 

According to a further embodiment, the invention is able 
to be used with a master process, i.e. an operating System, 
RealTime Executive Programs, or kernel, that itself operates 
in 24-bit mode, while Supervising the operation of multiple 
processes (e.g. programs/routines/tasks) where Some of the 
Supervised processes were originally written for the legacy 
Z80 or Z18x processor and run in one of the other four 
modes. 
Addressing 
One major mode bit, called ADL (or Address Data Long), 

determines the operation of the EZ80 with respect to 16 vs. 
24 bit addresses and data. When ADL is 0, address bits 
A23-16 are normally taken from the output of the Z18x 
MMU with 4 high order Zeroes, plus the contents of a new 
8-bit register called MBASE. Both ADL and MBASE are 
cleared to Zero by Reset. In one embodiment, MBASE can 
only be written when ADL is 1, thus avoiding problems with 
changing MBASE “on the fly” i.e. while MBASE is being 
used. 
When a program or task operates with ADL=0 and 

doesn't use the MMU (e.g., a Z80 program or task), MBASE 
directly selects a 64K byte block of memory in which the 
program or task operates. 

Registers PC, SPL, BC, DE, HL, IX, IY, BC, DE', and 
HL' are extended from 16 to 24 bits for 24 bit operation as 
are the associated data paths and ALU. When ADL is 1, 
address pins A23-16 are normally taken from these register 
extensions, as described in the next Section. 

There are two SP (stack pointer) registers, called SPS 
(short) and SPL (long). SPS includes only 16 bits, and is 
used as SP (with the MMU and MBASE) when ADL is 0 or 
when a 16-bit prefix precedes an instruction (when the 
assembler opcode is suffixed with “0.16”). Values pushed 
and popped via SPS are always 16 bits. 
SPL includes 24 bits, and is used as SP when ADL is 1 or 

when a 0.24 prefix precedes an instruction. Most values 
pushed and popped via SPL are 24 bits. 

For most instructions that are affected by ADL as 
described in the next Section, instruction prefixes can be 
used to override ADL without affecting its long-term State. 
Instructions and Sequences affected by ADL 

If ADL is 1, A23-16 for instruction fetches come from bits 
23-16 of the Program Counter, while if ADL is 0, these bits 
come from the MMU and/or the MBASE register. There is 
no override facility for this choice. 



US 6,502,181 B1 
7 

Indirect Resister Addressing 
LD r(HL/IX+d/IY+d) 
LD (HL/IX+d/IY+d).r 
LD (HL/IX+d/IY+d).n 
LD A, (BC/DE) 
LD (BC/DE). A 
ADD/ADC/SUB/SBC/AND/OR/XOR/CPA, (HL/IX+d/ 

INC/DEC (HL/IX+d/IY+d) 
RLC/RL/RRC/RR/SLA/SRA/SRL (HL/IX+d/IY+d) 
BITSET/RES b.(HL/IX+d/IY+d) 
In these instructions, when ADL is 1, A23-16 of the 

memory address for the execution cycle(s) are taken from 
the high-order 8 bits of the 24-bit register, while when ADL 
is 0 these address lines are taken from the MMU and/or the 
MBASE register. These conventions can be overridden for 
one of these instructions by preceding it with a prefix 
(Suffixing its assembler opcode with “0.16” or “0.24”). 
Stack Pointer 

EX (SP).HL/IX/IY, PUSH, POP, LD SP(nnnn), LD 
(nnnn),SP, LDSP.nnnn 

These instructions use SPL if ADL is 1, while if ADL is 
0 they use SPS, mapped by the MMU and MBASE. This 
convention can be overridden for one instruction by preced 
ing it with a prefix (assembler opcode suffix "0.16” or 
“0.24”). 
Direct Addresses 

LDr.(nnnn), LD (nnnn),r, LD rr.(nnnn), and LD (nnnn),rr, 
When fetching these instructions, after fetching the first 

two bytes of address the processor fetches a third (MS) byte 
to use as A23-16 if ADL is 1, while if ADL is 0 the processor 
fetches only two bytes of address, and uses the MMU and 
MBASE for A23-16. This convention can be overridden for 
one instruction by preceding it with a prefix (assembler 
opcode suffix .16 or i24). 
Multi-byte Immediate Data 
LD rr.nnnn 
When fetching the instruction, after fetching the first two 

bytes of address or data the processor fetches a third (MS) 
byte if ADL is 1, while if ADL is 0 the processor fetches only 
two bytes of address or data, and takes bits 23-16 of the 
value as Zero. This convention can be overridden for one 
instruction by preceding it with a prefix (assembler opcode 
suffix i16 or i24). 
16 vs. 24-bit Memory Data 
EX (SP).HL/IX/IY, LD BC/DE/HL/SP/IX/IY,(nnnn), LD 

(nnnn).BC/DE/HL/SP/IX/IY, PUSH, and POP* 
In execution/stack cycles for these instructions, the pro 

cessor stores and/or fetches a third (MS) byte in memory 
after the first two if ADL is one, but not if ADL is zero. For 
memory-fetch cycles (including POP) when ADL is zero, 
the processor Zeroes bits 23-16 of the affected register. This 
convention can be overridden for one instruction by preced 
ing it with a prefix (assembler opcode suffix 0.16 or 0.24). 
Note that PUSH AF and POPAF with ADL=1 are special 
cases. For these, SP is incremented or decremented by 3 as 
for other Stack operations, but there is no reason to actually 
read or write a third data byte. 
Internal 16- vs. 24-bit Operations 
LD SPHL/IX/IY, 
EX DE,HL, 
LDI, LDIR, LDD, LDDR, CPI, CPIR, CPD, CPDR, 
ADD/SUB/SBC HLrr, 
ADD IX/IYrr, 

5 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

INC/DEC rr, 
JR e, JR cc.e, DJNZ e, 
INI, INIR, IND, INDR, OUTI, OTIR, OUTD, and OTDR, 
For these instructions, if ADL is 1 the operation affects all 

24 bits of registers that are loaded or modified, otherwise 
bits 23-16 of affected registers are Zeroed. This convention 
can be overridden for one instruction by preceding it with a 
prefix (assembler opcode suffix 0.16 or 0.24). 
Condition Codes 
ADD/ADC/SBC rrrr and BC decrementing in LDI, 

LDIR, LDD, LDDR, CPI, CPIR, CPD, CPDR, 
For these instructions, the result condition code reflects 

the 24-bit result if ADL is 1, else it reflects the 16-bit result 
as on the 18X. This convention can be overridden for one 
instruction by preceding it with a prefix (assembler opcode 
suffix 0.16 or 0.24). 
CALL. RST, and RETurn 

There are no special instructions to change ADL, because 
after Such an instruction PC would undergo an unmanage 
able shift in interpretation. ADL can be changed only by 
prefixing a CALL, or JP nnnn instruction with a li16 or i24 
prefix, or a RST, RET or JP (rr) instruction with a 0.16 or 
0.32 prefix. Table 1 describes the operation of CALL. Table 
2 describes the operation of RST, JP nnnn., RET, RETI, or 
RETN, JP (rr) 

In “mixed ADL applications: 
1. All routines must be CALLed in the mode for which they 
were compiled or assembled; 

2. Routines that may be CALLed from the opposite mode, 
must be called with a prefix, even from the same mode, 

3. Routines that may be CALLed from the opposite mode, 
must return using a RET or JP (rr) instruction prefixed 
with 0.16 or 0.24; 
For RET, execution is the same for either prefix. A byte is 

popped off SPL and its units bit is loaded into a holding bit 
well call new ADL. If ADL is 0 and new ADL is 1, another 
byte is popped using SPL, into PC23-16. If ADL is 0, two 
bytes are popped into PC15-0, from SPS mapped by the 
MMU and MBASE. If ADL is I and new ADL is 0, two bytes 
are popped from SPL into PC. If ADL and new ADL are both 
1, 3 bytes are popped into PC from SPL. 

Finally, new ADL is loaded into ADL. For JP (rr) the 
routine must know the mode of the caller; ADL is set for a 
0.24 prefix and cleared for a 0.16 prefix. 
4. If calling code operating in one mode must pass Stack 

based operands/arguments to a routine compiled or 
assembled for a different mode, it must use prefixed 
instructions to set up the operands/arguments. For PUSH, 
0.16 and 0.24 prefixes control both whether SPS or SPL 
is used, and whether the operands/arguments are Stored as 
2-byte or 3-byte values. 
A multitasking routine or debug monitor would typically 

operate with ADL Set. Such a multitasking routine can Save 
and restore SP 16 for a 16-bit task by means of LD. 16i24 
(memloc),SP and LD. 16i24 SP(memloc) instructions 
respectively. 

If a 24-bit debug monitor or multitasking executive needs 
to access memory in the same way a 16-bit task running 
under it would, it can use instructions like LD.16 r/rr,(rr) and 
LD.16 (rr).r/rr. These will apply the MMU and/or MBASE 
to the address in the register, as the 16-bit task would. 
Instruction Prefixes 
EZ80 instruction prefixes occupy one byte, not two as on 

the Z380. The lower-left quadrant of the main op-code map 
of the Intel 8080 and Zilog Z80, op codes 40 to 7F, is 
composed of 8-bit register-to-register Load instructions. The 
original Z80 architects noted that one of the opcodes on S the 



US 6,502,181 B1 
9 

diagonal of this quadrant, 76, would be LD (HL).(HL) which 
is a NOP, so they used this opcode for the HALT instruction. 
What neither they nor subsequent architects have taken 
advantage of, is the fact that the same diagonal includes 
several other opcodes that are equivalent to NOP and that 
can be used for other purposes. The following table shows 
these opcodes and their operation on the EZ80: 

Op On 7x8x On EZ80 

40 LD B.B .16i16 prefix 
49 LD CC .24i16 prefix 
52 LDDD .16i.24 prefix 
5B LD EE .24i24 prefix 
ED7E SETMX 
ED7F CLRMX 

As for the traditional Z80 prefix bytes, the EZ80 does not 
allow an interrupt to occur between fetching one of these 
prefix bytes and fetching the following instruction. These 
prefix bytes must precede traditional Z80 prefix bytes. 

Table 3 shows which prefix selection affects each (class 
of) instruction. If an instruction is not shown in the table, its 
operation is not affected by these prefixes. 
Interrupts, Instruction Traps, and Multitasking 
The I register is not extended from 8 to 16 bits. Appli 

cations in which all routines that have interrupts enabled 
operate in the same ADL mode, should leave a global State 
called “mixed ADL 0, as it is after reset. But applications 
that include routines that have interrupts enabled and use 
both ADL modes, should set the “mixed ADL state by 
executing the new SETMLX instruction. At the time of an 
interrupt or instruction trap: 
1. if ADL and mixed ADL are both 0, a 2-byte logical return 

address is stacked using SPS as mapped by the MMUJ 
and MBASE. 

2. If ADL is 0 and mixed ADL is 1, a 2-byte logical return 
address is Stacked using SPL. 

3. If ADL is 1, a 3 byte return address is stacked using SPL. 
Next, if “mixed ADL is 1, a byte containing the ADL 

state of the interrupted process is pushed onto SPL, and ADL 
is then set to 1. If ADL is now 0: 
1.for NMI, INTO mode 0 (assuming RST from the 

peripheral), or INTO mode 1, the logical interrupt address 
OOXX is loaded into PC. 

2. For INTO mode 2 or any of the 80180-type autovectors, 
the address formed by concatenating the I register and the 
vector, as mapped by the MMU and MBASE, is used to 
fetch a two-byte ISR address which is loaded into PC. 
In either of these ADL=0 cases, the new PC value is 

mapped by the MMU and MBASE. All ISRS must operate 
using the same initial MMU configuration. 

If ADL is now 1: 
1. For NMI or INTO mode 0 (assuming RST from the 

peripheral), or INTO mode 1, the interrupt address 
0000XX is loaded into PC. 

2. For INTO mode 2 or any of the 80180-type autovector, the 
address formed by concatenating the I register and the 
vector, with A23-16 all zero, is used to fetch a two-byte 
ISR address which is loaded into PC with 8 high-order 
Zeroes. The interrupt vector table must be located in the 
first 65K of memory. 
In either ADL=1 case, all interrupt Service routines must 

start in the first 65K bytes of memory. 
If “mixed ADL is 1, the interrupt service routine must 

end with a RET, RETI, or RETN instruction prefixed with 
0.16 or 0.24. Operation is the same for either prefix: a byte 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
is popped off SPL and its units bit is loaded into ADL. If 
ADL is (now) 0, the return instruction fetches a 2-byte 
logical return address from SPL, and loads it into PC, in 
which it is then mapped by the MMU and MBASE. If ADL 
is still 1, the return instruction fetches a 3-byte return 
address from SPL and loads it into PC. 

If “mixed ADL is 0, interrupt service routines should end 
with an unprefixed RET, RETI, or RETN instruction. 
Optional Add-on Multiply-accumulate Module (MAC) 

Processors are often called on to perform functions of 
Digital Signal Processing. The most Significant process in 
digital Signal processing is the multiply-accumulate 
function, which forms a Sum of products 

y X, XY 
i=1 

where X and Y are vectors (tables of values, one 
dimensional arrays) in memory. According to this embodi 
ment of the present invention, a processor can optionally be 
configured to include an engine that can perform this kind of 
calculation at competitive performance levels. 
MAC General Architecture 
The MAC feature includes the following elements: 

1. A 16x16 bit multiplier, the 32-bit product output of which 
goes to one input of an adder, the other input of which is 
the currently selected one of two 40 bit accumulator 
registers, the output of the adder also being the write Side 
of that accumulator. 

2. Two dual-port RAMs called X and Y. One port of each 
RAM is 16-bit read-only and feeds one side of the 
multiplier, and the Second port is 8-bit read-write and is 
connected to the microprocessor bus, Such that the RAMs 
are part of the microprocessor's memory Space. 

3. A Set of registers in the microprocessor's I/O Space, via 
which Software can provide calculation parameters, Start 
MAC operation, determine when the MAC has completed 
a calculation, and retrieve the result accumulation. 

Key Design Points 
1. A major point affecting the MAC design is whether the 

size of the X and Y RAMs is less than or equal to 512 
bytes (256 values) each. If 256 values are sufficient for the 
class of applications to be addressed, then the Base, Start, 
Top, and Length values described below fit in a single 
byte. If more RAM is needed, these values require two 
bytes each. This is important mainly in terms of the 
number of bytes the MPU must transfer in order to set up 
and Specify a new calculation. 

2. The hardware may be made simpler if one or both of the 
in-shift and out-shift values described below is/are not 
needed. 

3. DSPs often offer a choice of incrementing or decrement 
ing through a vector (table, array). If this capability is 
desired in this module, the option can be specified in the 
Control register described below, in place of the Noise bit. 

Register Blocks 
The MAC register block is in the I/O space and can be 

block loaded using an OT12R instruction. Actually there are 
two register blocks in the MAC, one of which is accessible 
to the processor and the other of which can be used by the 
MAC, in a ping-pong fashion. Each register block includes 
the values as listed in Table 4. 
The MAC also provides one Status register in I/O space 

that indicates the State of both register bankS. Common 
(non-transient) States of this register are shown in Table 5. 
The MAC is designed so that software can write its 

register block using OT12R instructions and read it using 



US 6,502,181 B1 
11 

IN12R instructions. (IN12R is like INIR except that it 
increments the I/O address in the C register as part of each 
cycle.) These instructions drive the value in the B register, 
which is the number of bytes remaining to transfer, onto the 
A 15-8 lines. The MAC decodes its I/O addresses only from 
the A7-0 lines, but does detect the last transfer of a block by 
decoding A 15-8 for 01. 

If the Control byte or any of the ACO-3 registers is written 
with A15-8 equal to 01, indicating the last byte to be 
written, or if AC4 is written regardless of A 15-8: 

If other bank is “in progress”, the MAC changes the state 
of the current bank from “empty” to “ready”. 

If the other bank is “empty” or “done”, the MAC changes 
the State of the current bank to “in progress' and then Swaps 
the banks. 

If any of the ACO-3 registers is read with A15-8 equal to 
01, indicating the last byte to be read, or if AC4 is read 
regardless of A15-8, the MAC changes the state of the 
current bank from “done” to “empty”. Then if the state of the 
other bank is “done”, the MAC Swaps the banks. 
Whenever the MAC completes a calculation, it changes 

the state of the other bank from “in progress” to “done”. If 
the current bank is “ready”, the MAC then Swaps the banks, 
changes the “new other' bank's State to “in progress', and 
Starts doing the new calculation. 

If software reads the state “other done, current empty” 
from the Status register, and it has no “next calculation' to 
program, it can write a heX 80 to the Status register. This 
Simply Swaps the banks, to “other empty, current done'. 
Software can then access the result in the accumulator. 

MAC Software View 

To Set up a new calculation, Software proceeds as follows: 
1. Read the Status register. If the current Status is “ready', the 
MAC hasn’t yet started the previous calculation, and 
Software will have to wait until it does. (At which time the 
current status changes to "done”.) 

2. If the current status is "done”, Software should read the 
result accumulation from as many of the ACO-3 registers 
as are needed, as described in the following procedure. 
(This will change the current status to “empty”.) 

3. If the current status is “empty”, Software should set up the 
HL register pair to point to the block describing the new 
calculation, C to the corresponding Starting I/o address, 
and B to the number of bytes in the block. Then it should 
perform an OTI2R instruction. 
To retrieve the result of a calculation, Software should: 

1. Read the Status register. If the current Status is “ready', the 
MAC hasn't yet started the last calculation that software 
provided, and software will have to wait until it does. (At 
which time the current status will change to “done”.) 

2. If the current status is “empty” and the other status is 
“done”, write 8016 to the status register. This Swaps the 
register banks So that the current Status is now "done'. 

3. If both status fields say “empty”, there is no result to 
retrieve. 

4. If the current status is “done”, Software should read as 
many of ACO-3 as are needed. Since the MAC decodes 
the A15-8 lines to tell when such a transfer is complete, 
this can be done with an IN12R instruction. Alternatively, 
Software can use NO instructions to read all 5 bytes into 
registers (AC4 last), or can use INO to read the first 0-3 
bytes into registers, and one of the following two 
Sequences to read the last byte needed: 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

12 

LD 
IN 

BC, base--n--10Oh 
r, (C) 

LD 
IN 

O A.1 
A, (base+n) 

5. Reading the last byte of the result changes the current 
Status to “empty unless there's another result to retrieve, 
in which case the “other” status will be “empty” and the 
current status will be "done'. 

Interrupts 
The EZ80 has multiple sources of interrupts. In addition 

to Trap, there is the NMI, INTO and a possible of 64 
vectored interrupts. Trap is a vectored interrupt which 
occurs when an undefined instruction is fetched. NMI is a 
non-maskable vectored interrupt. All other interrupts can be 
masked by resetting the IEF1 bit. Interrupt vectors consist of 
24 bits. 
Trap 
A trap occurs when an undefined Second or third opcode 

is fetched. When a trap occurs it pushes the Program Counter 
on the stack and then begins execution at address 000000h. 
During the Trap the TRAP<1:0>bus puts out a value depend 
ing upon which opcode and which type of fetch was being 
executed. These signals are valid on every clock rising edge. 

TRAP TRAPType 

OO Normal Execution 
O1 TRAP First Instruction 
1O TRAP Second Instruction 
11 Reserved 

INT Interrupts 
The INT interrupt can be set to operate in three different 

modes. INT Mode 0, Mode 1 and Mode 2. 
Mode 0 Interrupt 
Mode 0 interrupts require the peripheral to provide a RST 

or Call instruction when an interrupt is generated. The only 
valid commands that will be supported in this mode is the 
RST and Call instructions. Other commands will be pro 
cessed as a NOP 
Mode 1 Intermpt 
When a mode 1 interrupt is generated the EZ80 will push 

the Program Counter on the stack and then vector to the 
address 000038heX. 
Mode 2 Interrupt 
Mode 2 interrupt behave the same as the Z80. 

Vectored Interrupts 
The EZ80 has the ability to generate 128 vectored inter 

rupts. The generation of the vectored interrupt is done by 
asserting INTV low and providing the vector on the IVS bus. 
Interrupt Priority Table 

Priority ISR starts at Interrupt Source 

Highest OOOO TRAP 
OO66H fNMI 
IMO:nfa IM1:OO38H FINTO 
IM2:(I: value from device) 

Lowest (I: <7:12: IVS : 0) ?INTV 

Interrupt Enable Flag 1,2 (IEF1, IEF2) 
IEF1 controls the overall enabling and disabling of all 

interrupts except for NMI and TRAP 
If IEF1=0, all maskable interrupts are disabled. IEF1 can 

be reset to 0 by the DI(Disable Interrupts) instruction and set 
to 1 by the EI(Enable Interrupts) instruction. 



US 6,502,181 B1 
13 

The purpose of IEF2 is to correctly manage the occur 
rence of NMI. During NMI, the prior interrupt reception 
State is Saved and all maskable interrupts are automatically 
disabled (IEF1 is copied to IEF2 and then IEF1 is cleared to 
0). At the end of the NMI interrupt service routine, execution 
of the RETN (Return from Non-maskable Interrupt) will 
automatically restore the State the interrupt receiving State 
(by copying IEF2 to IEF1) prior to the occurrence of NMI. 

IEF2 state can be reflected in the PN bit of the CPU Status 
Register by executing LD A, I or LD A, R instructions as 
shown in Table 6 
Architectural Overview For Specific EZ80 Release 
What follows is a description in more detail of an EZ80 

product the incorporates many aspects of the current inven 
tion and is anticipated to be announced in the last half of 
1999. This processor will include many of the features thus 
discussed, including the following: 

Upward-code-compatible from Z80 & Z180 
Several address-generation modes including 24-bit linear 

addressing 
24-bit registers and ALU 
One-clock-minimum bus cycles 
Optional autonomous Multiply-Accumulate engine for 
DSP applications 

FIG. 1 is a block diagram of this EZ80. FIG. 2 shows the 
logic diagram of the EZ80. Processor and Device Pin 
Descriptions describes the processor and device pins. 

OPERATIONAL DESCRIPTION 

This Section describes, using text and the attached tables, 
and figures, how the various parts of the EZ80 operate. This 
description is presented from the processor outward to the 
peripherals. In the latter parts of this Section, refer to the 
corresponding Section of I/O Registers. The Appendix 
includes additional information about a specific EZ80 con 
figuration with additional components. 
Processor Description 
The EZ80 is an 8-bit microprocessor that performs certain 

16- or 24-bit operations. In both data Sizes, the processor 
includes an accumulator. Register A is the accumulator for 
8-bit operations, and the HL register pair is the accumulator 
for 16- and 24-bit operations. 
Processor Procram Reeisters 

In addition to register A, there are six more 8-bit registers 
named B, C, D, E, H, and L, which can also be operated on 
as register pairs BC, DE, and HL. Flag register F completes 
the basic register bank. 
Two of these basic register banks are included in all Z80 

and Z180 processors. High-Speed exchange between these 
banks can be used by a program internally, or one bank can 
be allocated to the mainline program and the other to 
interrupt Service routines. 

Finally, two Index registers IX and IY allow base and 
displacement addressing in memory. IX and IY are not 
included in the register banks on the Z80 and Z 180; there 
is only one copy of each. 
The EZ80 expands the width of the BC, DE, HL, IX, and 

IY registers from 16 to 24 bits. The Arithmetic/Logic Unit 
and internal data paths are similarly expanded to 24bits. 
Processor Control Reeisters 

In addition to the data-oriented registers described above, 
the EZ80 processor includes Several other control registers. 
Unlike the registers in I/O space that are described in Section 
4, these control registers have no addresses, but are used 
implicitly in certain processor operations. 
Program Counter (PC) 

15 

25 

35 

40 

45 

50 

55 

60 

65 

14 
This 16- or 24-bit register tracks program execution by 

the processor, which automatically increments PC while 
fetching instructions. The processor Stores PC on the Stack 
when it executes a CALL or RST instruction, or an interrupt 
or Trap occurs. It loads PC with a new value when it 
executes a JUMP, CALL, RST, or RET instruction, and 
when an interrupt, Trap, or Reset occurs. PC resets to 0000. 
Stack Pointer (SPS or SPL) 
SPS is a 16-bit register that is used when the ADL bit is 

cleared, while SPL is a 24-bit register that is used when ADL 
is set. The processor decrements the current SP register by 
2 or 3, and stores a 16- or 24-bit value in memory at this 
updated address, when it executes a PUSH, CALL, or RST 
instruction, and when an interrupt or Trap occurs. The 
processor fetches a 16- or 24-bit value from memory at the 
address in SP, and then increments SP by 2 or 3, when it 
executes a POP, RET, RETI, or RETN instruction. Software 
can store the value in SP in memory, load SP from memory 
or another register, or load it with a constant/immediate 
value. Further, Software can add or Subtract the value in SP 
to or from another register, and can increment or decrement 
SP. Finally, Software can exchange the 16- or 24-bit value in 
memory, to which SP currently points, with the contents of 
a 16- or 24-bit register. SP resets to 0000. 
Flags (F) 
The processor includes two Flag registers each containing 

six bits, named Zero (Z), Carry (CF), Sign (S), Parity or 
Overflow (P/I), Half-Carry (HC) and Add/Subtract (N). 
Certain flags are automatically updated as part of executing 
certain instructions. Subsequent instructions can then use the 
flags, either as an operand (A DC, SBC, DAA), or to 
determine whether to perform a JUMP, CALL, or RET 
operation. The flags can be saved on the stack with a PUSH 
instruction, or restored from the stack with a POP instruc 
tion. The two Sets of flag registers are paired with the two A 
accumulators, the current pair is toggled by the EXAF,AF 
instruction. 
Operating Modes 
The multiple operating modes of the processor allows Z80 

and Z180 code to be run without change in “virtual Z80” or 
“virtual Z180' partitions, in the same application with new 
code that takes advantage of the EZ80's 16M byte linear 
addressing Space and enhanced instruction Set. 

These operating modes are governed by four factors: 
a state bit called ADL, which stands for Address and Data 

Long, 
another state bit called “mixed ADL, 
an 8-bit register called MBASE, and 
the state of the EZ80's 80180-compatible Memory Man 

agement Unit (MMU). 
Native Z80 Mode 
ADL, mixed ADL, and MBASE reset to zero, and the 

MMU resets to an inactive state. In this Native Z80 State, the 
programming model includes 16-bit registers and addresses, 
and a 64K byte memory space at the start of the EZ80's 
potential 16M byte memory Space. 
Virtual Z80 Mode 

If ADL is cleared, the MMU is not enabled, but MBASE 
contains a non-Zero value, the programming model Still 
includes 16-bit registers and a 64K byte memory Space, but 
this space is relocated by MBASE. In this mode, several 
tasks can each have their own Z80 partition. 
Native Z180 Mode 

If ADL is cleared, MBASE contains Zero, and the MMU 
is active, the programming model is fully Z80186 compat 
ible. The model includes 16-bit registers and a 64K byte 
logical memory addressing Space, but the MMU translates 



US 6,502,181 B1 
15 

these logical addresses to 20-bit physical addresses. The 
64K byte logical address Space can be divided into one to 
three areas, two of which can be relocated anywhere within 
the first 1 M bytes of the EZ80's potential 16M byte memory 
Space. 
Virtual Z80 Mode 
If ADL is cleared, the MMU is active, and MBASE 

contains a non-Zero value, the MMU handles mapping 
within a 1M byte virtual physical address space that is 
relocated by MBASE. In this mode, several tasks can each 
have their own Z180 partition. 
ADL Mode 

If ADL is set, neither the MMU nor MBASE has any 
effect on memory addressing. In this mode, the PC, BC, DE, 
HL, IX and IY registers are expanded from 16 to 24bits, and 
a 24-bit Stack Pointer Long (SPL) register replaces the 
16-bit Stack Pointer Short (SPS) register that is used in the 
other modes. When the processor fetches an instruction that 
includes a 16-bit address or immediate datum in the other 
modes, it automatically fetches a 24-bit address or datum. 
Thus, code that operates in ADL mode must be generated by 
an EZ80-compatible compiler or assembler that generates 
Such instructions. 
Mode Switching 

The EZ80 Switches between ADL mode and any of the 
other modes only as part of a specially-prefixed CALL, JP, 
RET, or RST instruction, or an interrupt or trap operation. 
The MBASE register can be changed only in ADL mode. 
The MMU can be programmed in any mode, but in a 
non-ADL mode Software must take care not to affect its 
Program Counter when programming the MMU. 
Interrupt and Traps 

Applications that operate only in Native Z80 mode, ADL 
mode, or Native Z180 mode with Common Bank 0 always 
enabled, are relatively simple with respect to interrupts and 
traps. In these modes, memory always Starts at the Start of 
the EZ80's potential 16M byte memory space, and the 
interrupt and trap locations are never mapped. 

However, applications that Switch between modes, or 
operate in Virtual Z80, Virtual Z, 180, or Native Z180 mode 
with Common Bank 0 disabled, can simplify interrupt and 
trap handling by executing a STMIX instruction to set the 
mixed ADL bit. 

If the mixed ADL bit is 1, interrupts and instruction traps 
stack the ADL state as well as the PC, and enter ADL mode 
in the first 64K bytes of the EZ80's potential 16M byte 
memory Space. 
I/O Space 
A separate I/O Space includes on-chip and off-chip periph 

eral devices. On the Z80, 1/O space included 8-bit addresses 
and 256 bytes. All Z180 processors, and the EZ80, feature 
an expanded I/O space with 16-bit addresses and 65K bytes. 
The EZ80 includes a few on-chip peripherals in I/O space, 
which can be augmented by external peripherals. 
Other Processor Control Registers 
Interrupt High Address (I) 

The contents of this register are used as the eight high 
order address bits, when the processor fetches the address of 
an interrupt Service routine from memory, for an interrupt 
from the INT1 or INT2 pin, or from an on-chip peripheral. 
The I register points at a table of interrupt Service routine 
addresses, that starts at a 256-byte boundary in the 65K-byte 
logical address Space. The I register resets to Zero, and can 
be read or written by the dedicated instructions LD A.I and 
LD I.A. 
R Counter (R) 
On the Z80 18x family processors this register contains a 

count of executed fetch cycles. R resets to Zero, and can be 
read or written by the dedicated instructions LD A.R and LD 
R.A. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

16 
Illegal Instruction Traps 

Like most processors, the defined instruction Set for the 
Z8018x family does not fully cover all possible sequences of 
binary values. The op code maps shown in the Tables 
include numerous blank cells. These represent op code 
Sequences for which no operation is defined, and are com 
monly called illegal instructions. 
When a EZ80 or other Z8018x processor fetches one of 

these Sequences, it performs a Trap Sequence as follows: 
1. It sets the TRAP bit in the Interrupt/Trap Control 

register. 
2. If the processor detected the condition while fetching 

the second byte of the instruction, it clears the UFO bit 
in the Interrupt/Trap Control register. If it detected the 
condition while fetching the third byte, it sets UFO. 

3. The processor decrements the Stack Pointer (SP) by 2 
and stores the 16-bit logical address from PC, in 
memory at the new SP address. This address points to 
the last byte of the illegal op code Sequence. 

4. The processor then clearS PC and resumes execution at 
logical address 0000. 

Trap Handling 
The code at logical address 0000 can optionally store the 

value of SP in memory, and then set SP to an area of memory 
dedicated to its private Stack. 

In all cases, the trap-handling routine must Store as many 
registers among AF, BC, DE, HL, IX, and IY as it may use 
(worst case), by pushing them onto the Stack. A general 
purpose routine will Store all of these registers, those in the 
alternate set, the value of I and the state of the Interrupt 
Enable flag. 

Next, the Trap-handling code must distinguish among the 
four events that can bring execution to address 0000: a 
Reset, a Trap, a RSTO instruction, and a program error Such 
as a JUMP to a null pointer. 
The code can detect a Trap by reading the Interrupt/Trap 

Control register (ITC) and checking bit 7 (TRAP). If this bit 
is 1, a Trap has occurred, and the code should handle it as 
follows: 

1. Clear the TRAP bit by writing a 0 to bit 7 of the ITC, 
2. Fetch the PC value stored on the stack. 

3. Examine bit 6 of the ITC (UFO). 
4. If the UFO bit is 0, decrement the PC value by 1, else 

decrement it by 2, so that it points to the start of the 
illegal instruction. 

The next action of the trap handling routine depends on 
the application and its stage of development. 
Extending the Instruction Set 

Core Software can use illegal instructions as extensions to 
the Z8018X instruction set. To do this, the trap handler must 
fetch and examine each illegal instruction. If an illegal 
instruction is an extension, the trap handler performs the 
extended operation that the instruction indicates. It then 
advances the Stacked PC value over the instruction, restores 
the Saved register values, and returns to the next instruction. 
Error Message vs. Restart 

Except for Such extended instructions, the trap handling 
Software can either: 

output an error message and wait for Someone to examine 
the situation and restart the application, or 

attempt to restart the application immediately. 
The former course is more common in the debugging/ 

development Stages of an application, while the latter may 
be more appropriate in the production/deployment Stage. In 
the latter case, Software may log the event for future readout, 
using an external Storage medium or just in memory. 



US 6,502,181 B1 
17 

Interrupts 
ZiLOG Z80 and Z80180 processors have a rich legacy of 

Sophisticated interrupt capabilities. The EZ80 includes 
aspects of both families interrupt characteristics. 
Interrupt Resources in the EZ80 
IEF1 and IEF2 

These bits are internal to the processor and can only be 
affected and manipulated by certain specific events: 

Reset clears IEF1 and IEF2 
EI instructions set IEF1 and IEF2 
DI instructions clear IEF1 and IEF2 

An NMI sequence copies IEF1 to IEF2, then clears IEF1 
A maskable interrupt clears IEF1 and IEF2 
An LD A.I or LD A.R instruction copies IEF2 to the P/V 

flag 
An RETN instruction copies IEF2 to IEF1 
When IEF1 is 1, RESET and BUSREQ are both high, and 

no falling edge has occurred on NMI, the EZ80 checks for 
maskable interrupt requests from external pins and on-chip 
peripherals, as it completes each instruction, or each instruc 
tion iteration for HALT, the block I/O instructions, block 
move instructions, and block Scan instructions. 
The I Register 

The EZ80 uses the contents of this register as A15-8 of the 
logical address for fetching interrupt Service routine 
addresses from memory, and in response to interrupt 
requests from internal peripherals. 
Nonmaskable Interrupt (NMI) 

The EZ80 latches falling edges on the NMI pin. Only a 
low on RESET or on BUSREQ takes precedence over NMI. 
Unless RESET or BUSREO is low, the EZ80 checks for a 
falling edge on NMI as it completes each instruction (each 
instruction iteration of HALT, the block I/O instructions, 
block move instructions, and block scan instructions), and 
performs an NMI Sequence if a falling edge has occurred. 
An NMI sequence includes 4 steps: 
1. The processor copies the state of the IEF1 bit to IEF2. 
2. It clears IEF1 to prevent maskable interrupts. 
3. It decrements SP by 2, and stores the logical address in 

the PC in memory at the new address in SP. For most 
interrupts, this is the address of the instruction the 
processor would have eXecuted next, if no interrupt had 
occurred. If the processor was stopped by HALT or 
SLP, it is the address of the next instruction. In the 
event of an incomplete block transfer, block Scan, or 
block I/O instruction, it is the address of the instruction. 

4. The processor loads 0.066H into PC, and resumes 
execution from that logical address. 

NMI Handlin, 
NMI routines fall into two categories, based on whether 

the external hardware that drives NMI is capable of produc 
ing another falling edge on the pin, before the NMI service 
routine has completed its execution and returned to the 
interrupted process. We’ll call the case when this isn’t 
possible "Single Edge Guaranteed' and the case when it is 
possible “Repeated Edge Possible”. Debug monitors, which 
may display the State of the interrupt proceSS, fall into the 
Repeated Edge category. 
Single Edge Guaranteed 
An NMI routine in this category is similar to other 

interrupt Service routines. This routine has the option of 
storing the contents of SP in memory and loading SP with 

15 

25 

35 

40 

45 

50 

55 

60 

65 

18 
the address of a memory area that is dedicated for its Stack. 
In any case it must Store as many of the registers as it may 
use during its execution (worst case). 
Repeated Edee Possible 
An NMI routine in this category should start with a PUSH 

AF instruction, then load A from a dedicated location in 
memory that indicates whether the interrupted process is the 
NMI routine. If this location indicates that it is, the routine 
should immediately POP AF and then do a RETN 
instruction, to return to its former execution. 

If the in NMI location is cleared, Software should set it. 
Then, if the NMI routine does either of the following: 

a DI instruction in a “Save The Registers' routine that it 
shares with other means of entry, or 

displays the I register or the interrupt-enable State of the 
interrupted process, and allows a user/programmer to 
change these (in essence, a debug monitor) then it 
should perform. LD AI and PUSH AF instructions. 
This stores the I register at the address in SP plus one, 
and the interrupt enabled state (IEF2) in the P/V flag 
and in bit 2 of the memory location pointed to by SP. 

If the NMI routine uses a common “Save The Registers' 
Subroutine that it shares with other entry points, the Save 
Subroutine can perform a DI instruction to prevent interrup 
tion by maskable interrupts. 
The NMI routine has the option to store the SP value in 

a dedicated location in memory, and load SP with the 
address of a dedicated NMI stack area. 

In any case, the NMI routine must PUSH as many other 
registers as it will use (worst case). A debug monitor will 
typically PUSH all registers in both banks, so that it can 
display them. 
Exiting The NMI Routine 
On completion of its processing, an NMI routine should 

restore the Saved registers. If the routine used its own Stack 
area, it should then restore the SP value of the interrupted 
process. If the routine set an in NMI memrory location on 
the way in, it should clear this location. 
NMI routines that did not save the I register and IEF2 

state at the start, can conclude with POPAF and REIN 
instructions. RETN copies the state of IEF2 back into IEF1, 
to restore the interrupt enable State of the interrupted pro 
CCSS. 

NMI routines which saved I and IEF2 at the start, should 
conclude with a POPAF for the saved I register and IEF2 bit, 
then an LD IA, followed by a JP V to a POPAF, EI, RET 
sequence. The JP should be followed by LD I.A, POPAF, 
and RET instructions. 

*INTO (or INTO) 
*INTO Modes 
The EZ80 can handle interrupts requested by a device on 

the INTO pin, in any of three ways called modes 0, 1, or 
2. The special instructions IM 0, IM 1, and IM 2 select 
among these three modes. Reset Selects mode 0. 
*INTO Processor Response 
The EZ80 performs an INTO interrupt sequence at the 

end of an instruction (each instruction iteration for HALT, 
the block I/O instructions, block move instructions, and 
block Scan instructions), if all of the following are true: 
*INTO is low, 
bit 0 of the Interrupt/Trap Control register is 1 to enable 

*INTO, 



US 6,502,181 B1 
19 

IEF1 is 1 to enable interrupts in general, 
RESET and BUSREQ are both high, and 
a negative edge on NMI has not been detected. 
When all of these conditions occur simultaneously, the 

EZ80 responds as follows: 
1. it clears IEF1 and IEF2 to prevent further interrupts, 
2. It drives INSTRD low. 
3. It waits Several clock cycles. 
4. It drives IORO low. Simultaneous lows on INSTRD 

and IORQ indicate an INTO interrupt acknowledge 
cycle. In response to this condition, the highest-priority 
peripheral that's requesting an interrupt places an 8-bit 
value on the D7-0 data bus. 

5. It samples WAIT, and waits until it is high. 
6. It terminates the cycle by driving INSTRD high, then 
IORQ high. 

While all *INTO acknowledge cycles follow this general 
pattern, they differ as to what (if anything) the processor 
does with the data on D7-0, and what it does after the 
acknowledge cycle. These actions depend on the most 
recently executed IM instruction (if any), as described in the 
next three Sections. 
*INTO Mode O 

If no IM instruction was executed since Reset, or if the 
most recently executed IM instruction was IM 0, the EZ80 
completes an INTO sequence as follows: 

7. It samples D7-0 and interprets the value as an instruc 
tion op code. In this mode, the vector registers of all 
ZiLOG daisy-chainable peripherals must be pro 
grammed to provide one of the RST opcodes C7, CF, 
D7, DF, E7, EF, F7, or FF16. 

Note: Read RST as “Restart. 
Note: The EZ80 does not automatically stack the contents 

of the program counter during an INTO Mode 0 interrupt 
Sequence. This means that the only other opcode that a 
peripheral can return (assuming the interrupted process is to 
be restarted) is a CALL instruction DC16. Intel 808x-family 
interrupt controllers can return a three-byte CALL 
instruction, but ZiLOG peripherals can’t. 

8. If the opcode is CALL, the processor fetches two more 
bytes to complete the instruction. 

9. Given that the opcode was CALL or RST, the processor 
decrements SP by 2, and stores the contents of PC in 
memory at the new address in SP. Typically, this is the 
address of the instruction the processor would have 
executed next, if no interrupt had occurred. If the 
processor was stopped by HALT or SLP, it's the 
address of the next instruction. For an incomplete block 
transfer, block Scan, or block I/O instruction, its the 
address of the instruction. 

10. If the opcode was RST, the processor resumes execu 
tion at logical address 0000, 0008, , or 003816. If the 
opcode was CALL, it resumes at the logical address 
fetched in step 8. 

In mode 0, each peripheral connected to INTO needs to 
have a register, the contents of which it returns on D7-0 
when it sees FNSTRD and IORQ low, and it is requesting an 
interrupt, and its IEI pin is high. Software should program 
each such register with one of the RST opcodes C7, CF, D7, 
, FF16. 
If a peripheral has a feature whereby it can replace the 

low-order bits of this value with a code reflecting its Status, 
this feature must be turned off for mode 0 operation. 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

20 
If the number of devices that can interrupt on *RNTO is 

reasonable, each device can have its own RST instruction, 
which improves interrupt response time by eliminating the 
need for the interrupt Service routine to poll multiple 
devices. 

If multiple devices have to share a RST instruction, that 
interrupt Service routine should poll these devices in the 
same priority order that they are arranged on the IEI-IEO 
daisy chain. This is because a ZiLOG peripheral sets its IUS 
bit when it sees INSTRD and IORQ low, and it is requesting 
an interrupt, and its IEI pin is high. To insure proper 
operation of the daisy chain in the future, the polling process 
must lead to Servicing the device that did this, and then 
clearing its IUS bit either explicitly, or for a Z80 peripheral 
by concluding the ISR with a RETI instruction. 
*INTO Mode 1 

If the most recently executed IM instruction was IM1, the 
EZ80 completes an INTO sequence as follows: 

1. It ignores the data on D7-0. (Actually it proceeds as in 
mode 0, but considers itself to have captured FF16 
which is RST 38.) 

2. It decrements SP by 2, and stores the contents of PC in 
memory at the new logical address in SP. Typically, this 
is the address of the instruction the processor would 
have eXecuted next, if no interrupt had occurred. If the 
processor was stopped by HALT or SLP, it's the 
address of the next instruction. For an incomplete block 
transfer, block Scan, or block I/O instruction, it's the 
address of the instruction: 

3. It loads 003816 into PC, and resumes instruction 
execution from that logical address. 

In mode 1, the interrupt Service routine has to poll all of 
the devices connected to INTO, to see which one generated 
the interrupt. If any ZiLOG peripherals can request an 
interrupt, this polling needs to be done in the Same priority 
order that the devices are arranged on the IEI-IEO daisy 
chain. This is because a ZiLOG peripheral sets its IUS bit 
when it sees INSTRD and IORQ low, and it is requesting an 
interrupt, and its IEI pin is high, regardless of the processor's 
IM status. 
To insure proper operation of the daisy chain in the future, 

the polling process must lead to Servicing the device that did 
this, and clearing its IUS bit either explicitly, or for a Z80 
peripheral by concluding the ISR with a RETI instruction. 
Probably the best way to insure this is by actually polling the 
IUS bits, for devices that allow them to be read. 
*INTO Mode 2 

If the most recently executed IM instruction was IM2, the 
EZ80 completes an INTO sequence as follows: 

1. It captures the data from D7-0. This byte must have DO 
low/0 for proper operation. 

2. It decrements SP by 2, and stores the contents of PC in 
memory at the new logical address in SP. Typically, this 
is the address of the instruction the processor would 
have eXecuted next, if no interrupt had occurred. If the 
processor was stopped by HALT or SLP, it's the 
address of the next instruction. For an incomplete block 
transfer, block Scan, or block I/O instruction, it's the 
address of the instruction. 

3. It puts the contents of the I register on A 15-8, and the 
value captured in step 7 on A7-0, and fetches the LS 
byte of an interrupt Service routine address from 
memory at that address. 



US 6,502,181 B1 
21 

4. It makes AO High/1, and fetches the MS byte of the 
interrupt Service routine address from memory at that 
address. 

5. It resumes execution at the logical address fetched in 
steps 9-10. 

In mode 2, each peripheral connected to INTO must 
have an Interrupt Vector Register, the contents of which it 
returns when it sees INSTRD and IORQ low, and it is 
requesting an interrupt, and its IEI pin is high. Software can 
program each Such register with any even binary value. 

If a peripheral has a feature whereby it can replace the 
low-order bits of this value with a code reflecting its Status, 
this feature can be enabled in mode 2, in which case the 
peripheral “occupies more than one slot in the interrupt 
vector table. Such "status affects vector” or “vector includes 
Status' features can improve interrupt response time, by 
reducing the amount of Status-polling that the interrupt 
Service routine has to do, to identify the exact cause of the 
interrupt. 
Interrupt Handling 
Any Interrupt Service Routine (ISR) has the initial option 

of Saving the contents of SP in memory, and loading SP with 
the address of a memory area that is dedicated to its Stack. 
Most interrupt service routines do not do this. 
An INTO ISR must save the contents of the registers it 

uses (worst case), using PUSH and/or EXAFAF" and EXX 
instructions. 

If the application includes a mechanism for allowing 
nested interrupts, the ISR can begin as Specified by that 
mechanism, leading to an JE instruction that allows the ISR 
to be interrupted by other interrupts. Most applications do 
not do this. 
The ISR must next read status registers from each device 

that can request an interrupt on INTO, to identify the cause 
of the interrupt. The ISR must handle each interrupting 
device according to this Status, and the device and applica 
tion requirements. 
Many ISRS read data from interrupting device(s), or write 

data to interrupting device(s). In addition, the ISRS can write 
registers in Such a device, to modify its mode, Status, or 
operation. 
When interrupt processing is complete, if nested inter 

rupts were allowed, the ISR should end as specified by the 
nesting mechanism. If nested interrupts were not allowed, 
the ISR should restore the saved registers and conclude with 
EI and RET instructions. 

the Z80 and Z80180 instruction sets include an RETI 
instruction, that is used for Servicing Z80 peripherals. 
Since the EZ80 includes no such peripherals, nor does 
it allow them to be connected externally, there is no 
reason to ever conclude a EZ80 ISR with an RETI. 
RET is both shorter and faster than RETI, and has the 
Same function. 

Memory (ROM and RAM) 
The EZ80 can operate in any of several address 

generation modes: 
0 Native Z80 mode: the total memory address space is the 

first 64K bytes of the overall EZ80 memory space. 
Neither the Z80180-compatible Memory Management 
Unit (MMU) nor the Memory Base (MBASE) register 
has any effect on addressing. 

Virtual Z80 mode: the memory address space can be any 
64K bytes in the overall 16M byte EZ80 memory 

15 

25 

35 

40 

45 

50 

55 

60 

65 

22 
space, under control of the MBASE register. The MMU 
has no effect on memory addressing. 

Native Z180 mode: the memory address space is the first 
1M bytes of the overall EZ80 memory space, under 
control of the Z180-compatible MMU. MBASE has no 
effect on memory addressing. 

Virtual Z180 mode: the memory address space can be any 
1 M bytes of the overall 16M byte EZ80 memory space, 
under control of the MBASE register. The MMU 
operates within the Selected 1 M Space. 

Address and Data Long (ADL) mode allows programs 
compiled or assembled for the EZ80 to operate in a 
16M byte linear address space. In this mode, the 16-bit 
registers PC, BC, DE, HL, IX, and IY expand to 24bits, 
as does the width of the ALU. The processor automati 
cally fetches an extra byte of address or immediate data 
in those instructions that contain a 16-bit address or 
datum in other modes. 

Prefix-override bytes allow any instruction to operate as 
in ADL mode in one of the first 4 modes, or to use 16 bits 
and/or MMU or MBASE addressing in ADL mode. 
Addressing Modes 

Instructions can specify a memory address in Several 
ways. EZ80 addressing modes include: 
Relative Addressing 
JR and DJNZ instructions include a signed 8-bit displace 

ment that specifies a range of addresses -126 to +129 from 
the op code, to which program control can be transferred. 
Direct Addressing 

In this mode, instructions include a 16-bit or 24-bit logical 
address, depending on the ADL mode bit. 
Register Indirect Addressing 

In this mode, the address is taken from one of the register 
pairs BC, DE or HL. 
Indexed Addressing 

In this mode, instructions include an 8-bit signed dis 
placement from the address in an indeX register IX or JY. 

Other contexts in which memory is accessed include 
instruction fetching, interrupts, DMA operations, and cycles 
generated by external masters while BUSACK is low. 
Memory Management Unit (MMU) 
The EZ80 includes an 80180-compatible Memory Man 

agement Unit in order to run programs written for an 8018X 
family processor without change. For new code, the 24-bit 
linear address mode is far more Straightforward and easy to 
Sc. 

When the MMU is enabled, it translates the 16-bit 
addresses used by Software, called logical addresses, into 
20-bit physical addresses, as part of all memory accesses 
performed by the processor. 
The MMU has no effect on accesses performed by the 

DMA channels, which include 20-bit address registers. It 
also has no effect on addresses in I/O Space, which always 
have A19-16 Zero. 
The MMU resets to a state in which it has no effect on 

addresses in processor cycles, passing A15-0 through with 
out change and keeping A19-16 Zero. If an application needs 
65K bytes of memory or less, it need not concern itself with 
the MMU. 
Even when the MMU has been programmed to perform 

active address transactions, it passes A11-0 from the logical 
to the physical address. We say that the MMU manages 
memory in 4K-byte blocks. Section MMU Registers below 
shows the registers associated with the MMU. 



US 6,502,181 B1 
23 

MMU Operation 
The MMU compares bits 15-12 of each logical address to 

two 4-bit fields in its Common/Base Address Register 
(CBAR), in an unsigned manner. 

If bits 15-12 of a logical address are less than the value in 
bits 3-0 of the CBAR, the MMU considers the address to be 
in Common Area 0. For such addresses, it passes bits 15-12 
to the A15-12 pins unchanged, and Sets pins A19-16 to 0. 

If bits 15-12 of a logical address are greater than or equal 
to the value in bits 3-0 of the CBAR, but are less than the 
value in bits 7-4 of the CBAR, the MMU considers the 
address to be in the Bank Area. For Such addresses, it adds 
the value in its 8-bit Bank Base Register (BBR) to bits 15-12 
of the logical address, and outputs the 8-bit Sum on pins 
A19-12. 

If bits 15-12 of a logical address are greater than or equal 
to the value in bits 74 of the CBAR, the MMU considers the 
address to be in Common Area 1. For Such addresses, it adds 
the value in its 8-bit Common Base Register (CBR) to bits 
15-12 of the logical address, and outputs the 8-bit Sum on 
A49-12. 

The value in bits 7-4 of the CBAR must never be less than 
the value in bits 3-0 of the CBAR. 
MMU Configurations 

In the general case, the MMIU divides the 65K-byte 
logical memory Space into three parts, with Common Area 
0 located at the start of the 1 Megabyte physical address 
Space, and the Bank Area and Common Area 1 relocatable 
to other parts of the physical address Space, under control of 
the Bank Base Register and Common Base Register, respec 
tively. 

Certain combinations of values in the CBAR result in the 
logical address Space being divided into fewer active areas: 

If the CBAR contains zero, all logical addresses fall into 
Common Area 1, and are relocated to a contiguous 
65K-byte area starting at the address in the CBR times 
4096. 

If CBAR3-0 are Zero but CBAR7-4 are non-zero, the 
Bank Area and Common Area 1 are active. Logical 
addresses less than (CBAR7-4)* 4096 are relocated by 
the Bank Base Register, while other addresses are 
related by the Common Base Register. 

If CBAR7-4 and CBAR3-0 are equal and not zero, 
Common Area 0 and Common Area 1 are active. 
Logical addresses less than (CBAR3-0)* 4096 are not 
relocated, and map to the Start of physical memory. 
Other addresses are relocated by the Common Base 
Register. 

The MMU After Reset 
Because the CBAR resets to 11110000, logical addresses 

OOOO-EFFFH are in the Bank Area and FOOO-FFFFH are in 
Common Area 1 after Reset. But since the BBR and CBR 
both reset to 0, the MMU passes all logical addresses 
through without change, with A 19-16 all Zero. 
Input/Output 
The EZ80 includes an I/O space that is distinct from 

memory Space. I/O Space is accessed by means of IN and 
OUT instructions rather than LD, PUSH, POP, and other 
instructions that acceSS memory space. The MMU passes 
addresses in I/O Space through without change; Such 
addresses always have A19-16 all zero. 
I/O Instructions 
The original Z80 featured a 256-byte I/O space. The 

following instructions are specific to the Z80's 256-byte I/O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

24 
Space, and should not be used on the EZ80 except to access 
external 1/O devices that do not decode A 15-8: 
OUT (port), A 
IND 
FNDR 
INI 
INIR 
OTDR 
OTIR 
OUTD 
OUTI 
The following instructions ensure that A15-8 are all 0, and 

can be used to access the EZ80's on-chip I/O registers, as 
well as external devices that decode A 15-8 as all Zero: 

INO r, (port) 
OUTO (port), r 
OTDM 
OTDMR 
OTIM 
OTIMR 
The following instructions drive A15-0 from the BC 

register pair, and can be used to access the fill 65K-byte I/O 
Space: 

IN r(C) 
OUT (C), r 
The following instruction can access the entire 65K-byte 

I/O space, by pre-loading the MS 8 bits of the address into 
A. (This step is not necessary for external devices that don’t 
decode A15-8.) 
INA, (port) 

Clock Circuits 
The EZ80 requires a logic-level clock on its CLK pin. 

This signal must be free of overshoot or ringing, must make 
continuous, monotonic, and rapid transitions in both 
directions, and must meet the minimum high and low times 
Specified in AC Characteristics. 
Reset Conditions 
The effects of Reset on each of the registers in I/O space 

is described in Tables Listed Under Common Base Register 
(0.038H) CBR.-ASCI Time Constant High (001 BH) 
AS.TCH. in Section 4. Among processor registers, the 
following registers and State bits are cleared to Zero: ADL, 
Mixed ADL, MBASE, PC, SP, 1, IEF1, IEF2, R, and F. The 
following are not changed by Reset: A, B, C, D, E, H, L, IX, 
and IY. 
I/O Registers 

Section Processor Description. describes the processor 
registers and the EZ80's programming model. This Section 
describes the registers in I/O Space, that control the opera 
tion of the Overall device and its on-chip peripherals. Reg 
ister addresses that don’t appear in this table are not used. 
Basic Device Reeisters 

In one embodiment of the invention, one of the design 
goals was to keep basic device registers from beins Specifi 
cally defined in the controller core. This allows flexibility 
and adaptability of the controller core to applications that 
may use different periperhal devices. 

Typically, in controller designs, there is a core processor 
with an accompanying collection of peripherals that are 
accessed accessed by the controller via I/O operations. In the 



US 6,502,181 B1 
25 

present invention, however, the core is made generic So that 
these device registers are not defined in the core. 
MMU Registers 

See the Memory Management Unit section for more about 
these registers. 
Instruction Set 
The EZ80 is descended from the ZiLOG Z80. Its 8-bit 

data bus and 24-bit address space fit well into a wide variety 
of mid-range embedded processing applications. This pro 
ceSSor provides significantly more computing power than a 
microcontroller, at a fraction of the System cost of a larger 
microprocessor. 

Table 11 through Table 20 document a number of instruc 
tions and features of an EZ80 according to one embodiment 
of the invention. Some of these are instructions that existed 
in the Z80 but are undocumented, do not exist in the Z8018X 
family, and are implemented and acknowledged in the EZ80. 
Others are new to the EZ80. 
Classes of Instructions 
Processor Flags 

Table 21 shows the Flag register. Bits in this register are 
Set and cleared by certain instructions as described in the 
EZ80 User Manual. Some of the Flags are tested by condi 
tional JR, JP, CALL, and RET instructions, and some are 
used by Subsequent instructions such as ADC, SBC, and 
DAA. The Flags can also be pushed and popped with 
accumulator A. 
Condition Codes 

Flag Settings Definitions (Table 22) shows the codes used 
in the Flags Affected columns of the Instruction Summary 
Table to indicate how each flag is affected by each type of 
instruction. 

Table 23 (Condition Codes) shows the condition codes 
that can be used in conditional JP, CALL, and RET instruc 
tions in assembly language. A Subset of these codes can also 
be used in JR instructions, which are shorter and faster than 
JPs. Table 24 (Symbols) describes other notation used in the 
Instruction Summary table. 
ASSembly Language Syntax 

For two-operand instructions, Z80 assembly language 
Syntax puts the destination operand before the Source oper 
and. 

Example: LD A.(1234) is a Load instruction, while LD 
(1234).A is a Store instruction. 

Past Z80 assemblers allowed the destination operand to be 
omitted (implicit) if the op code mnemonic only allowed one 
destination operand, for example, AND L instead of AND 
A.L. Use of these short forms is discouraged because they 
are a Source of possible error (the programmer thinks that the 
“implicit” destination is other than it really is). But for the 
Sake of legacy code, all known Z80 assemblers Still accept 
the short form. 

Caution: the assembly language uses C ambiguously, to 
designate one of the 8-bit registers as well as a condition 
code to test the Carry flag. This Product Specification uses 
CF to designate the Carry flag, and HC to designate the 
Half-Carry flag (as opposed to the 8-bit register H) 
Instruction Summary 

Table 25 describes each type or class of instruction, using 
the notation described in the preceding Sections. The table is 
Sorted by the assembly language mnemonics. 

CONCLUSION 

The invention has now been explained with regard to 
Specific embodiments. Variations on these embodiments and 

15 

25 

35 

40 

45 

50 

55 

60 

65 

26 
other embodiments will be apparent to those of skill in the 
art. The invention therefore should not be limited except as 
provided in the attached claims. 

It is understood that the examples and embodiments 
described herein are for illustrative purposes only and that 
various modifications or changes in light thereof will be 
Suggested to perSons Skilled in the art and are to be included 
within the Spirit and purview of this application and Scope of 
the appended claims. All publications, patents, and patent 
applications cited herein are hereby incorporated by refer 
ence in their entirety for all purposes. 
What is claimed is: 
1. A processor with multiple addressing modes compris 

ing: 
a first addressing mode allowing native addressing of a 
memory block of a first size; 

a Second addressing mode allowing virtual addressing of 
any memory block of approximately said first size; 

a third addressing mode allowing native addressing of a 
memory block of a Second size, Said Second Size at least 
two times greater than Said first size; 

a fourth addressing mode allowing virtual addressing of 
any memory block of approximately said Second size; 

a fifth addressing mode allowing linear addressing of a 
memory block of a third size, 

wherein Said third size is at least two times greater than 
Said Second size; and 

wherein Said processor is capable of Switching among 
Said five modes. 

2. A processor with multiple addressing modes compris 
ing: 

a first addressing mode allowing native addressing of a 
memory block of a first size; 

a Second addressing mode allowing virtual addressing of 
any memory block of approximately said first size; 

a third addressing mode allowing native addressing of a 
memory block of a Second size, Said Second Size at least 
two times greater than Said first size; 

a fourth addressing mode allowing virtual addressing of 
any memory block of approximately said Second size; 

a fifth addressing mode allowing linear addressing of a 
memory block of a third size, 

wherein Said third size is at least two times greater than 
Said Second size; and 

wherein Said processor is capable of Switching among 
multiple running processes and wherein these pro 
ceSSes using different addressing modes can run con 
currently. 

3. A processor with multiple addressing modes compris 
ing: 

a first addressing mode allowing native addressing of a 
memory block of a first size; 

a Second addressing mode allowing virtual addressing of 
any memory block of approximately said first size; 

a third addressing mode allowing native addressing of a 
memory block of a Second size, Said Second Size at least 
two times greater than Said first size; 

a fourth addressing mode allowing virtual addressing of 
any memory block of approximately said Second size; 

a fifth addressing mode allowing linear addressing of a 
memory block of a third size, wherein said third size is 
at least two times greater than Said Second size; and 



US 6,502,181 B1 
27 

interupt Service processing that operates consistently 
regardless of the addressing mode and context of a code 
that was interrupted and that is able to restore Said 
mode and context upon completion of interrupt pro 
cessing. 

4. A processor with multiple addressing modes compris 
ing: 

a first addressing mode allowing native addressing of a 
memory block of a first size; 

a Second addressing mode allowing virtual addressing of 
any memory block of approximately said first size; 

a third addressing mode allowing native addressing of a 
memory block of a Second size, Said Second Size at least 
two times greater than Said first size; 

a fourth addressing mode allowing virtual addressing of 
any memory block of approximately said Second size; 

a fifth addressing mode allowing linear addressing of a 
memory block of a third size, wherein said third size is 
at least two times greater than Said Second size; and 

a kernel proceSS operating in Said fifth mode and Super 
Vising operation of multiple processes operating in any 
of the five modes. 

5. A processor with multiple addressing modes compris 
Ing: 

a first addressing mode allowing native addressing of a 
memory block of a first size; 

a Second addressing mode allowing virtual addressing of 
any memory block of approximately said first size; 

a third addressing mode allowing native addressing of a 
memory block of a Second size, Said Second Size at least 
two times greater than said first size; 

a fourth addressing mode allowing virtual addressing of 
any memory block of approximately said Second size; 

a fifth addressing mode allowing linear addressing of a 
memory block of a third size, wherein said third size is 
at least two times greater than Said Second size; and 

a short and a long Stack pointer register wherein Said short 
Stack pointer register is used as the Stack pointer during 
Some addressing modes and Said long Stack pointer 
register is used as a Stack pointer during other address 
ing modes. 

6. A processor with multiple addressing modes compris 
ing: 

a first addressing mode allowing native addressing of a 
memory block of a first size; 

a Second addressing mode allowing virtual addressing of 
any memory block of approximately said first size; 

a third addressing mode allowing native addressing of a 
memory block of a Second size, Said Second Size at least 
two times greater than Said first size; 

a fourth addressing mode allowing virtual addressing of 
any memory block of approximately said Second size; 

a fifth addressing mode allowing linear addressing of a 
memory block of a third size, wherein said third size is 
at least two times greater than Said Second size; and an 
autonomous MAC able to calculate a Sum-of-products 
from a Set of values Stored in a shared memory while 
the processor is executing other operations. 

7. The processor according to claim 6 wherein said MAC 
is initialized by providing a start address and an indication 
of the length of values to be calculated. 

5 

15 

25 

35 

40 

45 

50 

55 

60 

65 

28 
8. The processor according to claim 6 wherein said MAC 

is initialized by Said processor providing base, Start, top, and 
length values. 

9. A Z80 compatible processor with multiple addressing 
modes comprising: 

a first native addressing mode allowing native addressing 
of the first 64K memory block within a memory space 
of at least 16M; 

a Second addressing mode allowing virtual addressing of 
any 64K memory block within Said memory Space; 

a third addressing mode allowing native addressing of a 
first 1M memory block within said memory space; 

a fourth addressing mode allowing virtual addressing of 
any 1M memory block within Said memory Space; 

a fifth addressing mode allowing linear addressing within 
Said memory Space. 

10. The processor according to claim 9 further compris 
Ing: 

a kernel proceSS operating in Said fifth mode and Super 
vising the operation of multiple processes operating in 
other modes, Some of which may be originally written 
for the Z80 and without modification under said pro 
CCSSO. 

11. The processor according to claim 9 wherein at least 
one of Said addressing modes utilizes a memory manage 
ment unit. 

12. The processor according to claim 9 further compris 
ing: 

a major mode bit that detennines operation with respect to 
16 vs. 24 bit addressing. 

13. The processor according to claim 12 further compris 
Ing: 

wherein when said major mode bit is 0, address bits 
A23-16 are normally taken from the output of a Z18x 
memory management unit with 4 high order Zeroes, 
plus the contents of an 8-bit MBASE register; 

wherein both said major mode bit and MBASE are 
cleared to Zero by a reset Signal; and 

wherein MBASE can only be written when ADL is 1. 
14. The processor according to claim 12 further compris 

Ing: 

when a program or task operates with Said major mode 
bit=0 and does not use a memory management unit, 
MBASE directly selects a 64K byte block of memory 
in which the program or task operates. 

15. The processor according to claim 9 further comprising 
when 24-bit operation is indicated: 

extending a plurality of processor registers from 16 to 24 
bits; 

extending an ALU from 16 to 24 bits; and 
extending data paths from 16 to 24bits. 
16. The processor according to claim 15 further wherein 

when 24-bit operation is indicated, address pins A23-16 are 
normally taken from Said register extensions. 

17. The processor according to claim 16 capable of 
executing an instruction having a prefix indicating that for 
this instruction, addressing should use the MMU and 
MBASE as in other modes. 

18. The processor according to claim 9 further compris 
ing: 

a short and a long Stack pointer register wherein Said short 
Stack pointer register includes only 16 bits and is used 



US 6,502,181 B1 
29 

as a stack pointer (with the MMU and MBASE pro 
viding additional addressing information) when 16 bit 
operation is indicated. 

19. The system according to claim 9 wherein instruction 
prefixes occupy one byte. 

20. The system according to claim 9 wherein a plurality 
of opcodes that were equivalent to NOP codes in predeces 
Sor Z80 processors are used for other purposes. 

21. The system according to claim 20 wherein said 
plurality of opcodes have the following operation: 

Op On 7x8x On EZ80 

40 LD B.B .16i16 prefix 
49 LD CC .24i16 prefix 
52 LDDD .16i.24 prefix 
5B LD EE .24i24 prefix 
ED7E SETMX 
ED7F CLRMX. 

22. The processor according to claim 9 further compris 
ing: 

an autonomous MAC able to calculate a Sum-of-products 
from a set of values Stored in the processor address 
Space while the processor is executing other operations. 

Register 

X, Y 
Start 
X, Y 
End 
X, Y 
Reload 

Length 
Control 

ACO-4 

23. The processor according to claim 22 wherein Said 
MAC comprises: a 16x16 bit multiplier, the 32-bit product 
output of which goes to one input of an adder, the other input 
of which is the currently selected one of two 40 bit accu 
mulator registers, the output of the adder also being the write 
Side of that accumulator, 

two dual-port RAMs, one port of each RAM being a 
16-bit read-only port that feeds one side of the 

15 

25 

30 
multiplier, and the Second port being an 8-bit read-write 
port connected to the microprocessor bus, Such that the 
RAMs are part of the processor's memory Space; and 

a set of registers in the processor's I/O Space, via which 
the processor is capable of providing calculation 
parameters, Start MAC operation, determine when the 
MAC has completed a calculation, and retrieve a result 
ing accumulation. 

24. The processor according to claim 22 wherein 256 
values are Sufficient for a class of applications to be 
addressed, Such that Base, Start, Top, and Length values 
described below each fit in a single byte. 

25. The system according to claim 22 wherein a MAC 
register block is in the processor's I/O Space and capable of 
being block loaded using an OT12R instruction. 

26. The System according to claim 22 wherein there are 
two register blocks in the MAC, one of which is accessible 
to the processor and the other of which can be used by the 
MAC, in a ping-pong fashion. 

27. The system according to claim 22 wherein a MAC 
register block includes the following Values: 

Function 

The addresses in the X and Y RAMs, respectively, of first values to be 
multiplied. 
Addresses in the X and Y RAMs, of the end of a circular buffer in each 
RAM. 

Addresses in the X and Y RAMs, of the beginning of the circular buffer 
in each RAM. 
(As the MAC performs the calculation, it typically increments its 
working addresses to get to the next pair of values. If a working address 
matches the corresponding End register, instead of incrementing, the 
MAC loads the contents of the corresponding Reload register into the 
working address.) 
The number of pairs of values to be multiplied and accumulated. 
The accumulator is cleared when this register is written. It contains the 
following parameters: 
In Shift: a 3-bit value that specifies the number of low-order bits that 
should be appended below a value written to AC0-4. If this field is non 
Zero and AC4 is written, this number of high-order bits are ignored. 
Out Shift: a 3-bit value that specifies the number of low-order bits of the 
accumulation that should be discarded by shifting, when AC0-4 are read. 
If this field is non-zero, reading AC4 will include this number of high 
order Zeroes. 
Noise: if In Shift is non-zero, the bit(s) that should be appended below 
the value written to AC0-4 or replaced by an increment/decrement bit. 
Interrupt Enable: if this bit is 1, the MAC will request an interrupt when 
it completes the calculation specified in this bank. 
A starting value for the accumulator capable of being written to these 
locations. The accumulated value can be read from these locations, using 
an INI2R instruction. 

60 

65 

and wherein MAC also provides one status register in I/O 
Space that indicates the State of both register banks. 

28. The system according to claim 22 wherein said MAC 
is designed So that Software can write its register block using 
OTI2R instructions and read it using INI2R instructions and 
wherein OTI2R and INI2R are like OTIR and FNIR except 
that they increment the I/O address in the C register as part 
of each cycle. 


