
E

1003-48614-00

</)

g

- . 'I

f#*is ' i

f
r

it-™;

iSiSiEs
-■hi

-.n;-.

;

^J**~*®? •’•

■

:<Ei

gwjig

SsasEH
.:E;

I ! --8 Swj ;*.?}■ ■ i
g’&st?:

”7".r'

■ EE-' "'.

•fSilO

■ -•. itfg^

SO

E

E

<
S' . • >• :•

-£fq
S=<£

■ • ■ ■'

1'9 p

I ft i

II
.

jg
■L

•■■ • -.1.

SBii

IplS®

i I :::
IS’las Pi life
iifc^Sg :

:;O;

Ssfy

tf-i
S®

'?-;i

-Iff
•tl

•■' ' *4':

p':l ,.aiSi

■ i

>
i-1:

’. - .

>"! _•>-• j.'. ■'. r-

■':;l

•r ■|$NW .h>* v J ‘

“ii'i r<*e: - i

sip
j...I;- !

1733

Mf
.. :til;

■i®

1
i

iOS

gm?

^®§F®S=

•V^. lAitwi. ’ -

EE i'l'/i _
*■

■._ . . . i :•■. :

11 IIS SHE(T LH ! FR
MUSE Bf PI AC FDC)
TOP OF CONTENTS

GRAPHIC PRODUC TS
Chicago, IUkiois !,(«>(>'>

1003-48614-00
Sequent Computer Systems, Inc.

DYNIX/ptx®
Programming Tools Guide

DYNIX and DYNIX/ptx are registered trademarks of Sequent Computer Systems, Inc.

Symmetry is a trademark of Sequent Computer Systems, Inc.

UNIX is a registered trademark of AT&T.

Printed in the United States of America.

1

Copyright © 1989 by Sequent Computer Systems, Inc. All rights reserved. This docu­
ment may not be copied or reproduced in any form without permission from Sequent
Computer Systems, Inc. Information in this document is subject to change without no­
tice.

Contents

Hi

2.1
2.2
2.3
2.4

About This Guide
Overview.....................................
Assumptions About the Reader
Notational Conventions...........

..2-1

..2-2
2-11
2-18
2-32
2-37
2-42
2-44
2-49

..4-1

..4-2
4-17

.. 1-1

..1-4
1-13
1-14
1-32
1-34
1-47

. vii

. vii
viii

5-1
5-3

..3-1
3-16
3-25
3-31
3-36

Chapter 1. Shell Programming
1.1 Introduction..
1.2 Variables ...
1.3 Discarding Output: /dev/null..................................
1.4 Shell Programming Statements..............................
1.5 Debugging Programs...
1.6 Programming in the C Shell....................................
1.7 Programming in the Korn Shell..............................

Chapter 2. nawk
Introduction... .
Basic nawk...
Patterns...
Actions...

2.5 Output...
2.6 Input...
2.7 Using nawk with Other Commands and the Shell
2.8 Sample Applications..
2.9 nawk Summary..

Chapter 3. awk
3.1 Introduction..
3.2 Input and Output..
3.3 Patterns...
3.4 Actions...
3.5 Special Features...

Chapter 4. lex
4.1 Introduction..
4.2 Writing lex Programs..
4.3 Running lex ...

Chapter 5. yacc
5.1 Introduction...
5.2 Basic Specifications...

Figures

4-1 Creation and use of a lexical analyzer with lex 4-2

6-1 Summary of default transformation path 6-11

iu

7.4
7.5
7.6

2-1 nawk Program Structure and Example.
2-2 The Sample Input File countries

5-10
5-15
5-20
5-23
5-25
5-26
5-27
5-31
5-36

..6-1

..6-2

..6-6
6-10
6-14
6-18
6-21
6-21

2-2
2-5

7-7
7-8
7-9

..7-1

..7-1

..7-6

..7-9
7-11
7-35

7-1 Evolution of an SCCS file
7-2 Tree structure with branch deltas
7-3 Extended branching concept

5.3 Parser Operation
5.4 Ambiguity and Conflicts
5.5 Precedence
5.6 Error Handling ...
5.7 Running yacc
5.8 The yacc Environment
5.9 Hints for Preparing Specifications
5.10 Advanced Topics
5.11 Examples

Chapter 6. make
6.1 Introduction
6.2 Basic Features ..
6.3 Description Files and Substitutions
6.4 Recursive Makefiles
6.5 Source Code Control System Filenames: the Tilde
6.6 Running make
6.7 Suggestions and Warnings
6.8 Internal Rules ...

Chapter 7. SCCS
7.1 Introduction ..
7.2 SCCS For Beginners
7.3 Delta Numbering

SCCS Command Conventions
SCCS Commands
SCCS Files...

Tables

Determination of New SID 7-197-1

v

2-3
2-4

1-1 C-Shell Operators.....................
1-2 Korn-Shell Operators..............
1-3 Integer Comparison Operators
1-4 File Comparison Operators....

2-13
2-16
2-18
2-21
2-22
2-34
2-41

..3-6

..3-7

..3-7

..3-7

..3-8
3-10
3-11
3-15
3-17

1-44
1-50
1-51
1-51

2-1 nawk Relational Operators..............
2-2 nawk Regular Expressions................

nawk Built-In Variables....................
nawk Built-In Arithmetic Functions

2-5 nawk Built-In String Functions.......
2-6 nawk printf Conversion Characters .
2-7 getline Function

3-1 awk Assignment Operators..............................
3-2 awk Arithmetic Operators
3-3 awk Relational Operators
3-4 awk Logical Operators......................................
3-5 Operators for Matching Regular Expressions
3-6 Numeric Values for String Constants............
3-7 String Values for String Constants.................
3-8 Incremented Variables......................................
3-9 Sample Input File, countries............................

About This Guide

Overview

nawk

awk

lex

yacc

make

sees

vii

This document is written for programmers working in the DYNIX/ptx operat­
ing system environment. Its purpose is to familiarize programmers with a
set of tools that make programming tasks easier. Each chapter has its own
index. This document covers the following topics:

A new version of a file-processing programming lan­
guage.

A file-processing programming language.

A tool for implementing a lexical analyzer

A tool for imposing structure on the input to a pro­
gram.

A tool for using a command file to perform a task.

A tool, the Source Code Control System, to provide
for file revision control.

Assumptions About the Reader
You should be familiar with the following topics:

• The DYNIX/ptx operating system

• The operating system shell

• Operating system documentation conventions

Programming Tools Guide
1003-48614-00

Shell Programming Use of the shell to perform a series of tasks and com­
mands.

About This Guide

viii

Notational Conventions
The following notational conventions are used in this manual:

• File names and user-defined parameters in text are shown in italics.

• System output and system calls and signals are shown in even-width
font.

• Commands in text and examples of input to be entered literally are
'shown in bold.

• Environment variables are shown in bold upper or lowercase.

Programming Tools Guide
1003-48614-00

(f)

I
"U

<s s
2
3

O)

I
aS g)
CL

-C
00

1.1

1-13

1.5 Debugging Programs 1-32

Chapter 1
Shell Programming

. 1-4

.1-4
..1-6
.1-6

.. 1-7

.. 1-8

..1-8

.. 1-9

..1-9
1-11
1-12

1-14
1-14
1-15
1-16
1-17
1-17
1-20
1-21
1-22
1-22
1-23
1-25
1-28
1-30
1-31

Programming Tools Guide
1003-48614-00

1-1
1-1
1-2
1-4

Introduction
Creating a bin Directory for Executable Files
Naming Shell Programs
Creating a Shell Program
Running Programs

1.2 Variables ..
Positional Parameters
Special Parameters

Return Number of Arguments
Return All Parameters ..
Display Return Codes..

Named Variables
Assigning a Value on the Command Line..........
Using the read Command
Assigning Positional Parameters
Using Command Output

1.3 Discarding Output: /dev/null

1.4 Shell Programming Statements
Comments
The here Document

Using an Editor in a Shell Program
Looping

The for Loop ..
The while Loop
The until Loop

Conditional Statements
if...then
if...then...else
case..esac

Testing Commands: test
Terminating Programs: exit
Unconditional Statements: break and continue

Shell Programming

1-34
1-34
1-35
1-35
1-36
1-37
1-37
1-37
1-38
1-38
1-40
1-43
1-43
1-44
1-45
1-46
1-47

1-47
1-48
1-48
1-49
1-50
1-50
1-51
1-52
1-53
1-55
1-56
1-57
1-57
1-57
1-57
1-57

Programming Tools Guide
1003-48614-00

1.6 Programming in the C Shell
Positional Parameters
Looping

The foreach Loop ...
The while Loop
The repeat Loop

Conditional Statements .
if ..
if...then...endif ..
if...then...elseif...endif
switch.,.breaksw...endsw

Unconditional Statements: break, breaksw, and continue
Variable Modifiers ..
Expressions

Relational Expressions
Testing Files ...
Testing Commands: test

1.7 Programming in the Korn Shell
Looping

The select Loop
Functions ..
Built-in Integer Arithmetic

The let command
The test Command ..
The typeset Command ...

Manipulating Strings ..
The typeset Command

One-Dimensional Arrays
Miscellaneous Commands

The read Command
The print Command
The times Command
The trap Command

Shell Programming

1-1
1-2
1-3
1-4

1-44
1-50
1-51
1-51

Programming Tools Guide
1003-48614-00

Tables

C-Shell Operators.....................
Korn-Shell Operators...............
Integer Comparison Operators
File Comparison Operators....

1-1

Chapter 1
Shell Programming

1.1 Introduction
You can use the shell to create programs for new commands. Such programs
are also called shell scripts. Writing shell scripts is called shell
programming. This chapter tells you how to create and execute shell
programs using commands, variables, positional parameters, return codes,
and basic programming control structures. Information on programming in
the C shell and the Korn shell is found later in this chapter. Before you start
shell programming, you should be familiar with the information contained in
the following:

• “Using the Shell” and “Managing Processes” in the User’s Guide.

• sh(l), csh(l), and ksh(l) in the Reference Manual

1.1.2 Naming Shell Programs

You can name your shell programs whatever you want, as long as the names
meet the normal filename requirements. However, you should not give your
programs the same name as system commands. If you do, the system may
execute your command instead of the system command. If your PATH
environment variable contains the bin directory ahead of the directory
containing the system command, the shell finds your command and executes
it. For example, if you name a program mu and then try to move a file, the
operating system executes your program instead.

Programming Tools Guide
1003-48614-00

1.1.1 Creating a bin Directory for Executable Files

To make your shell programs accessible from all your directories, you can
create a bin directory in your home directory. Create your shell programs in
your bin directory, or move your completed programs to that directory. Be
sure to set your PATH environment variable to include your bin directory.
After you set the PATH environment variable, you can execute the programs
in your bin directory from any directory within your home directory. For
more information about the PATH environment variable, refer to “Using the
Shell” in the User’s Guide.

Shell Programming Bourne Shell

1.

2.

3.

NOTE

4.

1-2

If you name your command Is, then you can only execute the system Is
command by using its full pathname, /bin/Is.

If you didn’t create the program in your bin directory, move the file
containing the program to that directory.

The operating system does not allow setuid shell
programs.

Programming Tools Guide
1003-48614-00

You can also have a problem if you name a shell program file something like
Is. If your program contains an Is command, the shell reads it, but tries to
execute your Is command, forming an infinite loop.

The operating system sets a limit on how many times an infinite loop can
execute. After some time, the system displays the following error message:

Too many processes, cannot fork

One way to keep this from happening is to give the full pathname for the
system’s Is command, /bin/ls, when you write your own shell program.

The following Is shell program would work:

$ cat Is [Return)
pwd
/bin/ls
echo This is the end of the shell program

1.1.3 Creating a Shell Program

To create a shell program, follow these steps:

Use an editor to create a file containing the program.

Use the sh command to try out the program.

Use the chmod command to give execute permission to the file
containing the program. If you want your group or all other users to be
able to use the program, give them execute permission on the file.

For a basic example of shell programming, follow the steps in this section to
create a simple shell program that performs the following tasks:

Shell ProgrammingBourne Shell

This is the end of the

1. Create a file containing the program.

annie 48 Nov 15 10:50 dleng

4. Execute the dl command.

$ dl [Return)

1-3

The sh command executes a shell program. It provides a good way to
test your shell program. To execute the dl program, type this
command:

You can now execute the dl program by typing the following command
line:

$ chmod 700 dl [Return)

If you want to verify the permissions on the dl file, use the Is -1
command:

Programming Tools Guide
1003-48614-00

Using an editor, create a file called dl and enter the following lines:

pwd I Return)
Is [Return)
echo This is the end of the shell program. [Return)

? Is -1 dl I Return)
-rwx---------- 1

Now write and quit the file. You have just created a shell program.

2. Test the program.

sh dl [Return)

The dl command prints the pathname of the current directory, followed
by a list of files in the current directory and the comment This is
the end of the shell program.

3. Use the chmod command to make the file executable.

• Prints the current directory

• Lists the contents of that directory

• Displays this message on your terminal:
shell program.

Shell Programming Bourne Shell

1.2 Variables

1-4

1.1.4 Running Programs

Bourne shell is by convention the shell interpreter. You can specify the shell
to run your shell script by putting a line like the following is at the beginning
of your shell script:

#!/bin/sh

Regardless of what shell the script was invoked from, or whether the SHELL
environment variable is set, the shell script is run by that shell. If a shell is
not specified at the beginning of a shell script, the following rules apply:

• If you are running Bourne shell, the shell script is run by the Bourne
shell. (The SHELL environment variable is ignored by the Bourne
shell.)

• If you are running in C shell and the first character in the file is a
pound sign (#), the shell script is run by the C shell; otherwise; it it run
by the Bourne shell.

• If you are running Korn shell, and the SHELL environment variable is
set, the shell specified by SHELL is used, (The SHELL variable is
automatically set to Korn shell if your default login is the Korn shell.)

Variables are the basic data objects, other than files, that shell programs
manipulate. There are three main types of variables:

• Positional parameters

• Special parameters

• Named variables

1.2.1 Positional Parameters

A positional parameter is a variable within a shell program. It takes its
value from an argument specified on the command line. Positional
parameters are numbered and are referred to with a preceding dollar sign, $:
$1, $2, $3, and so on.

Programming Tools Guide
1003-48614-00

Shell ProgrammingBourne Shell

1-5

A shell program can reference up to nine positional parameters. For
example, the following command line invokes a shell program named
shell.prog:

$ shell.prog ppi pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9 [Hetumi

Positional parameter $1 within the program is assigned the value ppi,
positional parameter $2 within the program is assigned the value pp2, and
so on.

Programming Tools Guide
1003-48614-00

echo
echo
echo
echo
?

As another example, the who system command lists all users currently
logged in on a system. You can create a simple shell program called whoson
that will tell you if a particular user is currently working on the system.

To create this program, type the following command line in a file called
whoson:

who I grep $1

The who command lists all current system users, and grep searches the
output of the who command for a line containing the value in positional
parameter $1.

As another example, you could create a program called pp containing the
echo commands shown in the following display:

$ cat pp [Return)
The first positional parameter is: $1
The second positional parameter is: $2
The third positional parameter is: $3
The fourth positional parameter is: $4

If you execute this shell program with the arguments one, two, three, and
four, you obtain the following results:

$ pp one two three four [Return!
The first positional parameter is: one
The second positional parameter is: two
The third positional parameter is: three
The fourth positional parameter is: four
?

Shell Programming Bourne Shell

Return Number of Arguments

$#

7-6

If the owner of the specified login is not currently working on the system,
grep fails and whoson prints no output.

The shell allows a command line to contain 128 arguments. However, a shell
program can reference only nine positional parameters ($1 through $9) at a
given time. You can use the shift command to work around this restriction.
The special parameter $*, described in the next section, can also be used to
access the values of all command line arguments.

1.2.2 Special Parameters

Shell programs can contain special parameters that return the number of
arguments or actual parameters, or display return codes. These parameters
are described in the following paragraphs.

This parameter, when referenced within a shell program, contains
the number of arguments with which the shell program was invoked.
Its value can be used anywhere within the shell program.

Programming Tools Guide
1003-48614-00

For example, theget.num shell program following includes this parameter.

$ cat get.num |Return]
echo The number of arguments is: $#
$

After making the program executable, you can type a login name as an
argument on the command line. For example, if you issue the whoson
command with the argument anne, the shell substitutes anne for the
parameter $1 in the program. The shell then executes the program as if it
were the following command:

who I grep anne IReturnl

The output is as follows:

$ whoson anne IReturnl
anne tty26 Jan 24 13:35$

Bourne Shell Shell Programming

1-7

The $* parameter can be helpful if you use filename expansion to specify
arguments to a shell command. For example, you might have several files in
your directory named for chapters of a book: chapl through chap7. If you
give show.param the argument chap?, it prints a list of all of those files.

$ show.param chap? I Return]
The parameters are: chapl chap2 chap3
chap4 chap5 chap6 chap7
$

Programming Tools Guide
1003-48614-00

Return All Parameters

The $* special parameter, when referenced within a shell program, contains
all of the arguments with which the shell program was invoked, starting with
the first argument. You are not restricted to nine parameters, as with the
positional parameters $1 through $9.

The following shell program, show.param, will echo all of the arguments you
give to the command.

$ cat show.param | Return]
echo The parameters are: $*
$

The program simply displays the number of arguments with which it is
invoked. The following example shows that it was invoked with four
arguments.

$ get.num test out this program | Return]
The number of arguments is: 4
$

The following example gives show.param more than nine arguments, which
show.param echoes.

$ show.param 123456789 1011 I Return]
The parameters are: 123456789 10 11
?

In the following example, the command was given the arguments Hello. It’s
a wonderful day. The show.param program then echoes Hello. It's
a wonderful day.

$ show.param Hello. It’s a wonderful day. | Return]
The parameters are: Hello. It's a wonderful day.
$

Shell Programming Bourne Shell

1-8

1.2.3 Named Variables

Named variables are variables to which you can assign values. You can
create your own named variables. The first character of the name must be a
letter or an underscore. The rest of the name can contain letters,
underscores, and digits. Avoid using the name of a shell command as a
variable name. You should also avoid using the names of environment
variables.

Display Return Codes

Most shell commands issue return codes that indicate whether the command
executed properly. A return code is also called an exit status. By convention,
if a zero is returned, the command executed properly. Any other value
indicates that the command did not execute properly. The return code is not
printed automatically, but is available as the value of the shell special
parameter $?.

After you execute a command, you can type the following line to display the
return code.

echo $?

In the following example, the file hi exists in your directory and has read
permission for you. The cat command behaves as expected and outputs the
contents of the file. It exits with a return code of 0, which you can see using
the parameter $?.

$ cat hi I Return]
This is file hi.
$ echo $? [Return!

Programming Tools Guide
1003-48614-00

In the next example, the hello file either does not exist or does not have read
permission for you. The cat command prints a diagnostic message and exits
with a return code of 2.

$ cat hello IHeturnl
cat: cannot open hello
$ echo $? IHeturnl
2
$

Bourne Shell Shell Programming

• Assign a positional parameter to the variable.

The following sections discuss each of these methods.

named .variable = value

$ namel =myname [Return]

1-9

Assigning a Value on the Command Line

To assign a value on the command line, make an entry having this format:

Using the read Command

When you include the read command in a shell program, you can prompt the
user of the program to type the values of variables.

Type the name of the variable, followed by an equal sign (=) and the value.
There are no spaces on either side of the equal sign (=).

In the following example, the value myname is assigned to the namel
variable.

When you use a named variable in a shell program, precede the name of the
variable with a dollar sign ($), which refers to the value of the variable.
When the shell executes the program, it substitutes the value of the variable
for the variable name.

For example, the namel variable could have the value myname. If you
include $namel in a program, the shell substitutes the value myname for
each occurrence of the character string $namel

There are several ways to assign a value to a named variable:

• Assign a value on the command line.

• Use the read command to assign input to the variable.

• Use command substitution to redirect the output from a command to a
variable.

Programming Tools Guide
1003-48614-00

Shell Programming Bourne Shell

The read command has this format:

read variable

echo

read

grep

echo

read

echo

read

1-10

Prompts for a person’s name

Assigns the person’s name to the variable name

Asks for the person’s number

Assigns the telephone number to the variable num

Prompts you for a person’s last name

Assigns the input value to the variable name

Searches the list file for this variable

The following example shows how to write a simple shell program called
num.please to keep track of your telephone numbers. This program uses
the following commands:

The next example is a program called mknum, which creates a list, mknum
includes the following commands:

Programming Tools Guide
1003-48614-00

The value the read command assigns to variable is substituted for ^variable
wherever it is used in the program. If a program executes the echo
command just before the read command, the program can display directions
such as Type yes or no. The read command waits until you type a
character string followed by (Return), then makes that string the value of the
variable.

Your finished program should look like this:

$ cat num.please I Return)
echo Type the last name:
read name
grep Sname list
$

Shell ProgrammingBourne Shell

echo

Notice that the variable name accepts both Mr. and Niceguy as its value.

varl=$l

1-11

Assigning Positional Parameters

The following format allows you to assign a positional parameter as the value
of a named parameter:

In the following display, mknum is used to create a new listing for Mr.
Niceguy. num.please is then executed to obtain Mr. Niceguy’s phone
number.

Adds the values of the variables name and num to the list
file

Programming Tools Guide
1003-48614-00

$ mknum [Return)
Type the name
Mr. Niceguy [Return]
Type the number
668-0007 [Return]
$ num.please [Return]
Type last name
Niceguy [Return]
Mr. Niceguy 668-0007
$

The double output redirection symbol (») in the last echo command tells the
shell to append the output from the command to the end of the list file.

Following is the completed mknum program, followed by a chmod command
to make the program executable.

$ cat mknum [Return]
echo Type name
read name
echo Type number
read num
echo $name $num » list
$ chmod u+x mknum (Return) $

Shell Programming Bourne Shell

1-12

When simp.p is invoked with the argument skyscraper, the program prints
that value.

Using Command Output

You can use command substitution within a shell program to assign a value
to a variable. The shell assigns the command output as the value of the
variable. Command substitution has this format:

$ simp.p skyscraper IReturnl
skyscraper
$

$ chmod u+x t IReturnl
$ t IReturnl
The time is: 10:36
S

Programming Tools Guide
1003-48614-00

For example, you can create a program called simp.p that assigns a
positional parameter to a variable. The following display shows the
commands in simp.p:

$ cat simp.p I Return 1
varl=$l
echo Svarl$

variable= command'
On the following command line, the date command is piped into the cut
command to display the current time:

$ date I cut -C12-19 IReturnl

This command is included in a shell program called t.

? cat t IReturnl
time='date I cut -C12-19'
echo The time is: Stime
$

After making the t file executable, you can run the t program when you want
to see the time.

Shell ProgrammingBourne Shell

Apr 11 10:26

1-13

The command being substituted can also use use positional parameters, as
shown below.

person='who I grep $1'

In the following display, the program log.time keeps track of the whoson
program results. The output of whoson is assigned to the variable person
and added to the file login.fi.le with the echo command. The last echo
displays the value of $person, which is the same as the output from the
whoson command.

Programming Tools Guide
1003-48614-00

1.3 Discarding Output: /dev/null
The filesystem includes a file called /dev/null where the shell discards
unwanted output.

To try out this feature, type a command such as who that produces output,
then redirect the output to /dev/null.

$ who > /dev/null IReturn,
5

Notice that the system responded with a shell prompt (S). The output from
the who command was placed in /dev/null and effectively discarded. You
could use this method to test the exit status of a command when you do not
want to display the output.

The following display shows the system response to log.time.

$ log.time maryann [Return,
maryann tty61
5

5 cat log.time I Return,
person='who I grep $1'
echo {person » login.file
echo Sperson
$

Bourne ShellShell Programming

1-14

1.4 Shell Programming Statements
The shell programming language includes several statements that add
flexibility to your programs:

• Comments let you document the functions of a program.

• The here document allows you to include lines that are redirected to be
the input for a command in the program.

• The exit command allows you to use return codes and to terminate a
program at a point other than the end of the program.

• The looping statements, for, while, and until allow a program to
iterate through groups of commands in a loop.

• The conditional control commands, if and case, execute a group of
commands only if a particular set of conditions is met.

• The break command allows a program to exit unconditionally from a
loop.

• The continue command allows a program to skip to the next iteration
of a loop without executing the remaining commands in the loop.

1.4.1 Comments

To make it easy for other users to understand your programs, you can include
comments, or text, in each program you create. These comments should
describe the actions the program performs. To include a comment, type a
pound sign (#), then type the text. The pound sign tells the shell to ignore the
remaining text on that line. You can type the pound sign at the beginning of
a line, in which case the comment uses the entire line. You can also type a
comment after a command. In this case, the shell executes the command and
ignores the remainder of the line. A comment always ends at the end of the
line.

For example, the shell ignores the following comment lines when it executes a
program containing these lines:

This program sends a generic birthday greeting.
This program needs a login as
the positional parameter.

Remember not to use a pound sign at the beginning of a program unless you
want to force a specific shell to run the program. Refer to “Running
Programs” earlier in this chapter for more information on the comment (#)
character.

Programming Tools Guide
1003-48614-00

Shell ProgrammingBourne Shell

The following diagram shows the general format for a here document:

$

The here document contains this line:

1-15

Best wishes to you on your birthday

When you run the bday command, you must specify the recipient’s login as
the argument to the command. For example, to send this greeting to user
mary, you would type this command:

$ bday mary I Return]

1.4.2 The here Document

A here document allows you to place into a shell program lines that are
redirected to be the input of a command in that program. It is a way to
provide input to a command in a shell program without using a separate file.
The notation consists of the input redirection symbol («) and a delimiter
that specifies the beginning and end of the lines of input. The delimiter can
be one character or a string of characters; an exclamation point (!) is often
used.

In the following example, the program bday uses a here document to send a
birthday greeting by redirecting lines of input into the mail command. An
exclamation mark is used as the delimiter.

command «delimiter
. . .input lines. . .
delimiter

$ cat bday I Return)
mail $1 «!
Best wishes to you on your birthday.

Programming Tools Guide
1003-48614-00

Bourne ShellShell Programming

S

new_text

1-16

The name of the file to be edited

The text to change

The new text

file

old_text

Notice that the editor is invoked as ed This option prevents the character
count from being displayed on the screen.

The program uses three variables: filel, old_text, and new_text.

Programming Tools Guide
1003-48814-00

mary receives your greeting the next time she reads her mail messages.

$ mail I Return]
From mylogin Wed May 14 14:31 CDT 1986
Best wishes to you on your birthday
$

When the program is run, it uses the read command to obtain the values of
these variables. Once the variables are entered in the program, the here
document redirects the global substitution, the write command, and the quit
command into the ed command.

Using an Editor in a Shell Program

The ed line editor or the vi screen editor can be useful when creating a here
document. For example, you could design a shell program that enters the ed
editor, makes a global substitution to a file, writes the file, and then quits ed.
The following display shows the contents of a program called ch.text that
performs these tasks.

$ cat ch.text I Return]
echo Type the filename.
read filel
echo Type the text to change.
read old_text
echo Type the replacement text.
read new_text
ed - $filel «!
g/$old_text/s//$new_text/g
w
q

Bourne Shell Shell Programming

The stream editor, sed(l), can also be used in shell programming.

1-17

The for Loop

The for loop executes a sequence of commands once for each member of a
list. It has this format:

1.4.3 Looping

In the previous examples in this chapter, the commands in shell programs
have been executed in sequence. The for, while, and until looping
statements allow a program to execute a command or sequence of commands
several times.

Programming Tools Guide
1003-48614-00

The following display shows sample responses to the program prompts:

$ ch.text I Return]
Type the filename.
memo I Return!
Type the text to change.
Dear John: (Return)
Type the replacement text.
To whom it may concern: l Return!
$

You can run the cat command on the changed file to examine the results of
the global substitution.

S cat memo I Return)
To whom it may concern:
$

Bourne ShellShell Programming

echo

1-18

For each iteration of the loop, the next member of the list is assigned to the
variable given in the for clause. References to that variable may be made
anywhere in the commands within the do clause.

It is easier to read a shell program if the looping statements are visually
obvious. Since the shell ignores spaces at the beginning of lines, each section
of commands can be indented as it was in the above format. Also, if you
indent each command section, you can easily check to make sure each do has
a corresponding done at the end of the loop.

The variable can be any name you choose. For example, if you call it var,
then the values given in the list after the keyword in are assigned in turn to
var; references to $var within the command list make the value available. If
the in clause is omitted, the values for var are the complete set of arguments
given to the command and available in the special parameter $*. The
command list between the keywords do and done are executed once for each
value.

When the commands have been executed for the last value in the list, the
program executes the next line below done. If there is no line, the program
ends.

As an example, create a program to move files to another directory. It
includes the following commands:

last command
done

Prompts the user for a pathname to the new
directory.

Programming Tools Guide
1003-48614-00

for variable
in a_list_of_values

do
command 1
command 2

Shell ProgrammingBourne Shell

read

for variable

in list_of_values

do command_sequence

The statement for this program is as follows:

Sfile Spath/Sfile

Sfile Spath/Sfile

1-19

Assigns the pathname to the variable path.

Calls the variable file; it can be referenced as
$file in the command sequence.

Supplies a list of values. If the in clause is
omitted, the list of values is assumed to be $* (all
the arguments entered on the command line).

Provides a command sequence.

Programming Tools Guide
1003-48614-00

The following example shows the text for the shell program mv.file:

$ cat mv.file I Return)
echo Please type the directory path
read path
for file

in memol memo2 memo3

In this program, the values for the variable file are already in the program.
To change the files each time the program is invoked, assign the values using
positional parameters or the read command. When positional parameters
are used, the in keyword is not needed, as the next display shows:

$ cat mvdile I Return!
echo type in the directory path
read path
for file
do

mv
done
5

do
mv

done
$

do
mv Sfile Snath/Sfile [Return]

done

Shell Programming Bourne Shell

The while Loop

The while loop has this format:

1-20

The while loop statement uses two groups of commands. It continues
executing the sequence of commands in the second group, the do...done list,
as long as the final command in the first group, the while list, returns an exit
status of 0.

You can move several files at once with this command by specifying a list of
filenames as arguments to the command.

while
commandl
commands

last command
done

Programming Tools Guide
1003-48614-00

For example, a program called enter .name uses a while loop to enter a list
of names into a file. The program consists of the following command lines:

last command
do

commandl
commands

$ cat enter.name I Return)
while

read x
do

echo $x»xfile
done
?

Bourne Shell Shell Programming

1-21

The until Loop

The until loop is similar to the while loop. A while loop continues
execution as long as the last command in the first group of commands after
the while returns a zero exit status. The until loop executes as long as the
command after the until returns a nonzero exit status. As soon as a zero is
returned, the loop terminates. Like the while loop, the commands between
do and done may never execute. The format of the until loop is as follows:

After the loop completes, the program executes the commands below done.

Because special characters are used in the echo command lines in the
previous example, use double quotes to turn off the special meaning.

The next display shows the results of enter.name.

$ enter.name l Return)
Please type each person's name and press Return.
Please end the list of names with Ctrl-D.
Mary Lou (Return)
Janice (Return)

After the loop completes, the program prints all of the names contained in
xfile.

Programming Tools Guide
1003-48614-00

xfile contains the following names:
Mary Lou
Janice
$

With some added refinements, the program looks like this:

$ cat enter.name I Return)
echo "Please type each person's name and press Return."
echo "Please end the list of names with Ctrl-D."
while read x
do

echo $x»xfile
done
echo xfile contains the following names:
cat xfile
S

Bourne ShellShell Programming

1.4.4 Conditional Statements

if...then

The if statement has this format:

if

last command
fi

1-22

The if statement tells the shell program to execute the then sequence of
commands only if the final command in the if command list is successful.
The if statement ends with the keyword fi.

Conditional statements allow shell programs to execute commands depending
on whether or not certain conditions are met. The following paragraphs
describe these conditional statements.

The until statement is useful for writing programs that wait for a particular
event to occur.

last command
done

last command
then

command!
command2

commandl
command2

Programming Tools Guide
1003-48614-00

until command
do

commandl
command2

Bourne Shell Shell Programming

1-23

The following shell program called search demonstrates the use of the
if...then statement, search uses the grep command to search for a word in a
file. If grep is successful, an echo command prints a message indicating
that the word is in the file.

Programming Tools Guide
1003-48614-00

if...then...else

The if...then statement can issue an alternate set of commands with else
when the if command sequence is false, elif is the equivalent of else.

$ cat search IHeturnl
echo Type the word and the filename.
read word file
if grep Sword Sfile

then echo Sword is in $file
fi
$

The read command assigns values to two variables. The characters you type,
up to the first space, are assigned to word. The rest of the characters,
including embedded spaces, are assigned to file.

A problem with this program is the unwanted display of output from the
grep command. If you want to dispose of the system response to the grep
command in your program, use the file /dev/null, changing the if command
line to the following:

if grep Sword Sfile > /dev/null

Now the search program responds only with the message specified after the
echo command.

Shell Programming Bourne Shell

It has this format:

if

last command
fi

1-24

last command
else (elif)

command!
command2

last command
then

command!
command2

command!
command2

Programming Tools Guide
1003-48614-00

Shell ProgrammingBourne Shell

1-25

You could improve the search command so that it tells you when it cannot
find a word, as well as when it can. The following display shows how the
improved program looks:

Programming Tools Guide
1003-48614-00

fi
$

case...esac

The case...esac statement has a multiple choice format that allows you to
choose one of several patterns and then execute a list of commands for that
pattern. The pattern statements must begin with the keyword in, and a
closing parenthesis ()) must be placed after the last character of each
pattern. The command sequence for each pattern ends with two semicolons
(;;). The case statement must end with esac (the letters of the word case
reversed).

The case statement has the following format:

$ cat search |Hetum|
echo Type the word and the filename,
read word file
if

grep Sword Sfile >/dev/null
then

echo Sword is in Sfile
else

echo Sword is NOT in Sfile

Bourne ShellShell Programming

1-26

The case statement tries to match the word following case with the pattern
in the first pattern section. If there is a match, the program executes the
command lines after the first pattern and up to the corresponding ;;.

Programming Tools Guide
1003-48614-00

last command

esac

last command

*)
command 1
command 2

case word
in

patternl)
command!
command?

last command

patterns)
commandl
command?

last command

pattern?)
commandl
command?

Bourne Shell Shell Programming

1-27Programming Tools Guide
1003-48614-00

If the word does not match the first pattern, the program proceeds to the
second pattern. Once a pattern is matched, the program does not try to
match any more of the patterns, but goes to the command following esac.

The asterisk (*) used as a pattern matches any word, allowing you to give a
set of commands to be executed if no other pattern matches. To do this, it
must be the last possible pattern in the case statement, so that the other
patterns are checked first. This provides a useful way to detect erroneous or
unexpected input.

A pattern can use the metacharacters *, ?, and [] for filename expansion.

The following set.term program contains an example of the case...esac
statement. This program sets the TERM environment variable according to
the type of terminal you are using.

In this example, the terminal is either a Teletype 4420, Teletype 5410, or
Teletype 5420. set.term first checks to see whether the value of term is 4420.
If it is, the program makes T4 the value of TERM and then goes to the
command following esac. If the value of term is not 4420, the program
checks for other values: 5410 and 5420. It executes the commands under the
first pattern that it finds and then goes to the first command after the esac
command.

The pattern *, meaning “everything else”, is included at the end of the
terminal patterns. It warns that you do not have a pattern for the terminal
specified and allows you to exit the case statement. If you placed the *
pattern first, the set.term program would never assign a value to TERM, as it
would always match the first pattern *.

Shell Programming Bourne Shell

Following is the set.term program:

True if the file exists and is readable

True if the file exists and has at least one character

1-28

*)
echo not a correct terminal type

True if the file exists and has write permission

True if the file exists and is executable

1.4.5 Testing Commands: test

The test command, which checks to see if certain conditions are true, is a
useful command for conditional statements. If the condition is true, the loop
continues. If the condition is false, the loop ends and the next command is
executed. Following are some of the options for the test command:

5420)
TERM=T7

4420)
TERM=T4

5410)
TERM=T5

Programming Tools Guide
1003-48614-00

test -r file

test -w file

test -x file

test -s file

test varl -eq var2 True if varl equals var2

esac
export TERM
echo end of program

echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case $term

in

Shell ProgrammingBourne Shell

test varl -ne var2 True if varl does not equal var

$file $path/$file

1-29Programming Tools Guide
1003-48614-00

You might want to create a shell program to move your executable files in the
current directory to your bin directory. You can use the test -x command to
select the executable files. The following display shows the for statement
that occurs in the mv.file program.

$ cat mv-file (Return)
echo type the directory path
read path
for file
do
mv

done
?

fi
done$

The directory path is the path from the current directory to the bin directory.
However, if you use the value for the HOME environment variable, you will
not need to type in the path each time. SHOME gives the path to the login
directory. $HOME!bin gives the path to your bin directory.

The following program, called mv.ex, includes an if test -x statement in the
do...done loop to move executable files only.

$ cat mv.ex IReturn!
echo type the directory path
read path
for file

do
if test -x Sfile

then
mv 5file Spath/Sfile

Shell Programming Bourne Shell

exit n

1-30

The exit command causes the shell program to terminate immediately. It is
frequently used as part of an if...then loop. It tells the shell to exit the
program if a certain condition is met (or not met).

The n represents the return code you want the shell to issue. If you don’t
specify a return code, the exit status is that of the last command executed
before the exit command.

1.4.6 Terminating Programs: exit

A shell program normally terminates when the last command in the file is
executed. However, you can use the exit command to terminate a program
at another point. You can also use the exit command to issue return codes for
a shell program.

The exit command has this format:

Programming Tools Guide
1003-48614-00

Test the command, using all files in the current directory (indicated by the
asterisk in the following example). The command lines shown in the
following example execute the command from the current directory, then
change to the bin directory and list the files in that directory. All executable
files should be there.

In the following example, mo.ex does not prompt you to type in the directory
name, and, therefore does not read the PATH variable:

$ cat mv.ex IHeturnl
for file

do
if test -x Sfile

then
mv $file $HOME/bin/?file

$ mv.ex * IHeturnl
$ cd; cd bin; Is IHeturnl
list_of_executable_fi,les
$

fi
done

$

Bourne Shell Shell Programming

1.4.7 Unconditional Statements: break and continue

1-31

The break command unconditionally stops the execution of any loop in which
it is encountered and goes to the next command after the done, fl, or esac
statement. If there are no commands after that statement, the program
ends.

esac
export TERM
echo end of program

5410)
TERM=T5

5420)
TERM=T7

Programming Tools Guide
1003-48614-00

The continue command causes the program to go immediately to the next
iteration of a do or for loop without executing the remaining commands in
the loop.

In the set.term program, you could use the break command instead of echo
to leave the program, as shown in the following example.

)
break

echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case Stem

in
4420)
TERM=T4

Bourne ShellShell Programming

Apr 10 11:36 1984Thu CST

Apr 10

1-32

sh -v program

sh -x program

Prints the shell input lines as they are read by the system

Prints commands and their arguments as they are
executed

The following shell program, called bug, contains an error.

$ cat bug I Return!
today='date'
echo enter person
read person
mail $1
Sperson
When you log off come into my office please.
Stoday.
MLH
$

Programming Tools Guide
1003-48614-00

1.5 Debugging Programs
At times you might need to debug a program to find and correct errors.
There are two options to the sh command that can help you debug a
program:

The output from the date command is the value of the today variable.

The mail message sent to Tom ($1) at login tommy ($2) should read as
follows:

If you try to execute bug, you will have to presslBreakl orlDeletel to end the
program.

$ mail I Return I
From mlh
Tom
When you log off come into my office please.
Thu Apr 10 11:36:32 CST 1986
MLH

Shell ProgrammingBourne Shell

1986CST

S

7-33

The corrected bug program is as follows:

$ cat bug [Return)
today='date'
echo enter person
read person
mail $1 «!
{person
When you log off come into my office please.
$today
MLH

Once again, the program stops at the mail command. Notice that the shell
has made substitutions for the variables.

To debug this program, use sh -v to execute the program. This command
prints the lines of the file as they are read by the system.

5 sh -V bug tom [Return!
today=' date'
echo enter person
enter person
read person
tom
mail $1

Programming Tools Guide
1003-48614-00

Notice that the output stops on the mail command, as there is a problem
with mail. You must use the here document to redirect input into mail.

When you use sh -x to execute the program, the commands and their
arguments print as they are read by the system.

S sh -x bug tom [Return!
+date
today=Thu Apr 10 11:07:23
+ echo enter person
enter person
+ read person
tom
+ mail tom$

Shell Programming C Shell

1-34 Programming Tools Guide
1003-48614-00

1.6.1 Positional Parameters

Command-line arguments are assigned to the C-shell variable argv. Like the
Bourne-shell positional parameters, brackets are used to indicate which
argument is to be accessed. A range of arguments can be indicated with a
hyphen. The following example illustrates the use of argv.

command-line substitution
accessing command-line arguments
echo There are $#argv arguments on the command line
echo The first argument is $argv[l]
echo The second through fifth arguments are $argv[2-5]
echo The last argument is $argv[$#argv]

The C-shell accepts the notation of the Bourne shell ($1, $2, and so forth),
therefore, $1 is the same as $argv[l] and $* is the same as $argv[*].

Other parameters that may be used for command-line substitution are as
follows:

1.6 Programming in the C Shell
Shell scripts run from the C shell are passed to the Bourne shell for execution
unless explicitly told not to. When running the C shell, a pound sign (#) at
the beginning of a shell script causes the script to be run by the C shell
instead of the Bourne shell (unless the # is the start of a line specifying an
alternative shell such as #!bin/sh). The following shell script invoked from
the C shell would be run by the C-shell:

a simple shell script
pwd
Is
echo This is a C-shell program.

The C-shell provides command-line substitution and programming
statements like the Bourne shell. The following paragraphs describe some of
the C-shell features that differ from the Bourne shell. For more information
about the C shell, refer to “Using the Shell” in the User’s Guide and to csA(l)
in the Reference Manual. For information about job control in the C shell,
refer to “Managing Processes” in the User’s Guide.

C Shell Shell Programming

Sstatus

1-35

The foreach Loop

The foreach loop structure is as follows:

2. Taking values from the shell script command line: foreach word or
foreach word ($argv) or foreach word (argv[2-]). These first two
forms loop through the entire command-line argument list. The third
form skips the first command line argument and loops through the
argument list from the second through final arguments.

foreach name (.wordlist)
commandl
command2

last command
end

The name of the shell script
The process ID of the parent shell
Equals 1 if the variable name is set;
otherwise equals 0
The status returned by the last command

Programming Tools Guide
1003-48614-00

$0
$$
$?name

1.6.2 Looping

The C-shell includes three loop structures; the foreach loop, the while loop,
and the repeat loop.

The variable name takes each value one at a time from wordlist and executes
the commands until the end of the wordlist is reached.

In addition to providing an explicit wordlist, you can also provide values to
name by doing any of the following:

1. Taking values from the output of a command by using the backquote
command-substitution mechanism, for example:

foreach color ('cat hues')
echo I love a subtle shade of Scolor

end

C ShellShell Programming

colorlikes

1-36

The while Loop

The C-shell while loop tests an expression at the beginning of each loop and
continues executing the sequence of commands as long as the expression is
true. The C-shell while loop has this form:

Output from the foreach loop cannot be redirected. (Output from a for loop
in Bourne shell may be redirected.) However, you can redirect output within
a foreach loop, as follows:

In the following example, looping continues until color is green. The $<
notation indicates input coming from the command line.

3. Taking filenames from a directory as values, for example: foreach file
(*) or foreach file (*.f). The first form processes all files in the current
directory; the second processes all files ending in .fin the current
directory.

4. Taking values from a shell variable; foreach name (SPATH). This form
sets the name variable to each directory name in the PATH shell
variable.

grass
Usage: grass
echo What color is grass\?
set color=S<

while expression
command!
commands

last command
end

Programming Tools Guide
1003-48614-00

foreach color ('cat hues')
echo I love a subtle shade of Scolor

end

Shell ProgrammingC Shell

repeat count command

1.6.3 Conditional Statements

if

A simple if statement has this format:

if (expression) command

1-37

The repeat Loop

In the repeat loop, command is executed count times. The command must
be simple: it can have arguments and I/O redirection, but cannot contain
pipes or lists of commands. The C-shell repeat loop has this form:

The entire statement is one line; if expression is true, the command is
executed; otherwise, it is not. Unlike the Bourne shell if statement,
expression is enclosed in parentheses, and then is placed differently.

C-shell programming allows conditional statements from a simple if
statement to the complex if...then...else if...endif statement. These
statements test for conditions to be met, and then execute commands
depending on whether conditions are met or not met.

Programming Tools Guide
1003-48614-00

while ("$color" != "green")
echo NopeX! Guess again,
set color=$<

end

A simple example of a repeat loop follows:

% repeat 5 echo Happy Birthday
Happy Birthday
Happy Birthday
Happy Birthday
Happy Birthday
Happy Birthday

Shell Programming C Shell

if ($a + Sb == Sc) echo You are correct!

if...then...endif

if...then...elseif...endif

1-38

This statement is used to test multiple conditions and then to execute
multiple commands, depending on which condition is met. This is similar to
the Bourne shell case statement.

This statement is used to execute multiple commands when a condition is
met. The if...then...endif statement has this format:

In the following example, when time is less than or equal to 10, two messages
are displayed:

Redirection is allowed in command, but pipes and multiple commands are not
allowed. The following is an example of a simple if command:

last command
endif

if (expression) then
command!
command2

k
endif

@ time = 5
echo Stime minutes
if (Stime <= 10) then

echo The hamburger is done.
echo Let\'s eat

Programming Tools Guide
1003-48614-00

C Shell Shell Programming

The format is as follows:

The following example tests of doneness in hamburgers:

else if

1-39

last command
endif

if (expression) then
commandl
commands

last command
else if (expression) then

commandl
commands

Programming Tools Guide
1003-48614-00

last command
else

commandl
commands

hamburger
Usage: hamburger number
echo How long has it cooked\?
@ time=$<
echo It's cooked $time minutes.
if ($time < 5) then

echo This hamburger is rare.
echo LetVs eat

else if (?time == 5) then
echo This hamburger is medium.

echo LetVs eat
($time > 5 $time <10) then

echo This hamburger is well done.
echo LetVs eat

C ShellShell Programming

switch-breaks w...endsw

1-40

The switch structure is similar to the Bourne shell case structure and is
similar in form to the C language switch. Values are compared with a list of
choices (cases). When a match is found, all commands until the break switch
(breaksw) keyword are executed. If no match is founds, the commands after
the default label are executed.

else
echo This hamburger is burnt.
echo LetVs go get pizza

endif

Programming Tools Guide
1003-48614-00

Shell ProgrammingC Shell

The switch structure has the following form:

1-41

switch (string')
case stringl:

commandl
command2

last command
breaksw

case string2:
commandl
command2

last command
breaksw

case string3:
commandl
command2

last command
breaksw

endsw

last command
breaksw

default:
commandl
command2

Programming Tools Guide
1003-48614-00

Shell Programming C Shell

Compare the following example which is similar to the previous example:

rare.

rare.

rare.

rare.

1-42 Programming Tools Guide
1003-48614-00

case 6:
echo This hamburger is well done,

echo LetVs eat;
breaksw

case 7:
echo This hamburger is well done,

echo LetVs eat;
breaksw

case 8:
echo This hamburger is well done,

echo LetVs eat;
breaksw

case 9:
echo This hamburger is well done,

echo LetVs eat;
breaksw

hamburger
Usage: hamburger number
echo How long has it cooked\?
@ time=$<
echo It Vs cooked Stime minutes.
switch ($time)
case 1:

echo This hamburger is
echo LetVs eat;

breaksw
case 2:

echo This hamburger is
echo LetVs eat;

breaksw
case 3:

echo This hamburger is
echo LetVs eat;

breaksw
case 4:

echo This hamburger is
echo LetVs eat;

breaksw
case 5:

echo This hamburger is medium.
echo LetVs eat; breaksw

C Shell Shell Programming

1.6.5 Variable Modifiers

1-43

1.6.4 Unconditional Statements: break, breaksw, and continue

break and continue statements can be used in foreach and while loops.
As in the Bourne shell, break exits a loop; continue skips to the next cycle
of a loop, breaksw must be used with the switch statement.

case 10:
echo This hamburger is burnt.
echo Let\'s go get pizza;
breaksw

default
breaksw

endsw

Remove a trailing pathname component, leaving the head
Remove all leading pathname components, leaving the tail
Remove a trailing .xxx extensions, leaving the root
Remove all but the trailing extension .xxx

Programming Tools Guide
1003-48614-00

h
t
r
e

These suffixes are used by appending a colon (:) and the suffix to a variable
name, as shown in the following examples:

% set file = /usr/rainbow/colors/violet.c
% echo $file
/usr/rainbow/colors/violet.c
% echo $file:h
/usr/rainbow/colors/
% echo $file:t
violet.c
% echo $file:r
/usr/rainbow/colors/violet
% echo $file:e
c

The C shell recognizes several suffixes that can be used to modify the
interpretation of a regular shell variable. The following suffixes can be used
for working with variables that have been set to filenames:

Shell Programming C Shell

1-44

% e total =1+2+3
% echo Stotal
6

You can use the C language increment and decrement operators with shell

Table 1-1
C-Shell Operators

Logical OR and logical AND
Bitwise OR, EXCLUSIVE OR, and AND
EQUALS and DOESN’T EQUAL
EQUALS and DOESN’T EQUAL a string pattern
LESS THAN and LESS THAN OR EQUAL TO
GREATER THAN and GREATER THAN OR EQUAL TO
Bitwise LEFT SHIFT and RIGHT SHIFT
PLUS and MINUS
MULTIPLY, MODULUS, and DIVIDE
Bitwise ONE’S COMPLEMENT
Grouping

Programming Tools Guide
1003-48614-00

1.6.6 Expressions

C-shell expressions use operands and operators. The operators are the same
as in the C.language with the addition of = ~ (EQUALS) and !" (DOESN’T
EQUAL). The operators are listed in order of increasing precedence in Table

The operators are usually applied to character strings, to strings
representing numbers, or to other expressions. The value of an expression
can be assigned to a shell variable with the @ command. The @ command
works much like the Bourne shell set command, except that it assigns the
value of an expression, rather than a word, to a variable. In both cases, the
variable is stored as a string; however, the @ command allows expressions
with operators on the side of the assignment. In the following example, the
set and @ commands are equivalent:

% set month =11
% S year = 1989
% echo Smonth Syear
11 1989

In this example using the @ command, the value of an expression is assigned
to the variable total'.

I I &&
I '&
== !=
=- F
< <=

+ -
* %/

0

C Shell Shell Programming

countdown number

1-45

variables, and the @ command to increase or decrease the value of a variable
by 1, for example:

Relational Expressions
Relational expressions have the value 1 if true and the value 0 if false, as in
C. The expression part of while and if statements is often a relational
expression. Most comparisons are numeric, however equality and inequality
comparisons are string comparisons. Therefore, you can use if statements
that start like these:

Remember that numbers are stored as strings. The @ command instructs the
shell to find the numerical value corresponding to the string, do the indicated
operations, and convert the result back to a string variable.

% 0 total = 100
% echo Stotal
100
% S total++
% echo 5total
101
% 0 total—
% echo Stotal
100

Programming Tools Guide
1003-48614-00

if ($argv[l] == stop) ...
if ($argv[lj != sam) ...

The following script uses the GREATER THAN operator along with
numerical expressions:

number is the first argument
While start is greater than 0,

.. # print start! ...
Decrement start by 1
When start is 0,

print Blast Off!
Strings can be numbers; however, note that strings with the same numeric
value, for example 123 and 00123, are unequal because they stored as
characters.

countdown
Usage:#
0 start = Sargvfl]
while ($start > 0)

echo $start\! .
0 start—

end
echo Blast Off\!

C ShellShell Programming

end

-I name

Letter

1-46

-I is a letter from Table 1-X; name is the name of a file or directory. The
following file attributes can be tested for in C-shell scripts:

For example, the following shell script, filecheck, checks for owner read, write
and execute permission on the file named on the command line. It also
checks file ownership.

Testing Files

C shell allows you to inquire about files in C-shell scripts with a query of the
form

FORTRAN source file backup
foreach file (*)

if (Sfile ='

Tests for
Read access
Write access
Execute access
Existence
Ownership
Zero size
Plain file
Directory

The C-shell EQUALS (=") and DOESN’T EQUAL (!") operators allow the
right side of a relational expressions to be a pattern using the ♦, ?, and []
shell metacharacters. The following example checks for C programs in a the
current directory, and copies them to the directory, backup adding the file
extension .back. The r modifier is specified to remove the .c file extension.

Programming Tools Guide
1003-48614-00

-v/
-X

-0

-z
-f
-d

*.f) cp Sfile backup/S{file:r).back

check files for owner permissions and ownership
Usage: filecheck filename
if <-r $argv[l]) echo Sargv[l] is readable.
if (—w Sargv[l]) echo Sargvfl] is writable.

Korn Shell Shell Programming

else
echo $argv[l] is owned by someone else

endif

1-47

1.7 Programming in the Korn Shell
The Korn shell supports all of the Bourne shell statements and provides some
additional programming features. Like the C shell, the Korn shell has tilde
substitution, built-in command testing and expressions, and command
history. In addition, the Korn shell provides a mechanism for using
functions. The following paragraphs describe some of the Korn shell features
that differ from the Bourne and C shells. For more information about the
Korn shell, refer to “Using the Shell” in the User’s Guide and ksh(l) in the
Reference Manual. For information about job control in the Korn shell, refer
to “Managing Processes” in the User’s Guide.

Testing Commands: test

The C-shell for and while statements test for truth or falsity of an
expression. (Bourne shell tests for success or failure of a command with the
test command.) You can test a C-shell command by enclosing it in braces
({)). You must put space between the braces and their contents. The
following example checks to see if the grep command can find the string
abcdef in any file whose name begins with alpha:

Programming Tools Guide
1003-48614-00

if (-x $argv[l]) echo $argv[l] is executable,
if (—o $argv[l]) then

echo ?argv[l] is owned by me

test grep command
Usage: commandtest
if ({ grep -s abcdef alpha*)) then

echo "Yep, I found abcdef"
else

echo "Nope, can't find abcdef"
endif

Korn ShellShell Programming

PS3="Please select one of the above: "

"Schoice"

1-48

The select Loop

The format for the select loop is as follows:

1.7.1 Looping

Besides the looping structures provided in the Bourne shell, the Korn shell
includes the select loop.

select prints each word preceded by its relative number in the list (1 through
n) to standard error. If in is omitted, the positional parameters are used as
words. The Korn shell prompt (PS3) is printed and a line is read from
standard input and assigned to the Korn-shell environment variable REPLY.
If the line begins with one of the numbers 1 through n, variable is set to the
corresponding word from the list. If the line begins with anything else,
variable is set to null. In either case, the commands are executed and
looping continues until an end-of-file is encountered, or a break, exit, or
return is executed from inside the loop. The following example, containing a
case statement, shows the use of select for a user menu:

last command
done

Programming Tools Guide
1003-48614-00

select variable in wordl word2 ...
do

commandl
command2

select choice in Create Add Delete Read Write Exit
do

case
in
Create) . . .;;
Add)
Delete) . . .;;
Read) ...;;
Write) ...; ;
Exit) exit 0;;

*) echo "Bad Choice";;

Shell ProgrammingKorn Shell

S’

1-49

Functions can be called from a shell program, or from functions within a shell
program—Korn shell functions can be recursive. Variables in functions may
be global or local. A variable declared in the main shell script can be used
and changed within a function. Conversely, variables within a function can
be used by the main shell script, or enclosing function. Variables declared
inside a function with typeset are not accessible outside the function, and
are local or private to that function. If a global shell variable with the same
name as a local function variable exists, the value of the shell variable is
saved and restored when the function exits. Variables declared inside a
function with typeset-x can be exported outside the function. Variables not
declared with typeset are automatically exported.

References can be made inside a function to the arguments of the function
call. The arguments are positional parameters and are referred to the same
way as the main shell script parameters are referred to—$1, $2, and so forth.
The positional parameters of a function are all local variables.

When a return is executed in a function, any exit trap set inside the function
is executed before the return to the calling program. In the Bourne shell, an
exit trap is not executed until the main program exits.

Once a function is defined, it can be used like any valid command and called
in any Korn-shell script by including function declarations in the .profile or
.kshrc file. The advantage of this mechanism over the C and Bourne shells is
that the function runs in the same shell as the main shell script (or enclosing
function), thus reducing the overhead of starting up another shell.

1.7.2 Functions

One of the most important additions to shell programming is the Korn shell’s
function capability. Functions are declared with the following format:

esac
done

function name (list;)
name 0 (list ;)

Programming Tools Guide
1003-48614-00

Shell Programming Korn Shell

The let command

The let command has the form:

let expressions

%/

1-50

*

1.7.3 Built-in Integer Arithmetic

The Korn shell allows some data typing. The following paragraphs describe
built-in commands for doing integer arithmetic.

expressions are arithmetic expressions using shell variables that contain
numeric values and the following operators listed in order of increasing
precedence:

Table 1-2
Korn-Shell Operators

Programming Tools Guide
1003-48614-00

Assignment
EQUALS and DOESN’T EQUAL
GREATER THAN and GREATER THAN OR EQUAL TO
LESS THAN and LESS THAN OR EQUAL TO
PLUS and MINUS
MULTIPLY, MODULUS, and DIVIDE
Logical Negation
Unary MINUS

The following simple function prints the working directory:

function printdir (
echo $PWD
1

This shell script calls the printdir function:

cd $1
printdir

== 1=
> >=
< <=

The let command works much like the Bourne shell set command, except
that it assigns the value of an expression, rather than a word, to a variable.
The let command, unlike the set command, allows expressions with

Korn Shell Shell Programming

The test Command

The test command also recognizes the following file operators:

File testing can also be done in Korn shell using double brackets as follows:

[[expression [attribute_operator expression]]]

1-51

The test command, which checks to see if certain conditions are true,
recognizes any of the integer comparison operators in expressions:

-Lfile
filel -nt file2
filel -ot file2
filel -ef file2

equals
greater than or equal to
greater than
less than or equal to
less than
not equal to

True if file is a symbolic link
True if filel is newer than file.2
True if filel is older than file2
True if filel and file2 are linked

Programming Tools Guide
1003-48614-00

Table 1-3
Integer Comparison Operators

-eq
-ge
-gt
-le
-It
-ne

Table 1-4
File Comparison Operators

operators on the right side of the assignment. Expressions containing spaces
must be enclosed in quotes; white space separates expressions. The following
example shows the let command followed by an expression:

read index
while let "index = index +1"
do

echo "index : Sindex"
done

Korn ShellShell Programming

Letter

-S

1-52

The double brackets in bold indicate that the expression or expressions
within are to be tested. The following file attributes can be tested for in
Korn-shell scripts. A value of true is returned if the file exists and if the
attribute is true:

The following example compares the two strings to see if dog is greater than
cat, and if the working directory has read and write permission. If the test is
true, the value of the test expression is returned.

$ [[dog > cat && (-r $PWD && -w $PWD)]] && print succeed
succeed

The typeset Command

The typeset command is used to change the attributes of shell variables. A
complete list of the typeset command options are on the ksh(l) manual
page.

In the Bourne shell and by default in the Korn shell, variables are strings.
The typeset command can be used to declare shell variables to be integers,
as follows:

Tests for
Read access
Write access
Execute access
Plain file
Directory
Character special file
Block special file
File is named pipe
Set-user-id bit is set
Set-group-ed bit is set
Sticky bit is set
Size is greater than zero
Symbolic link
Owner is the effective user id
Group is the effective group id
Special file of type socket

—w

-d

-b

Programming Tools Guide
1003-48614-00

"g
-k
—S
-L
-0

Korn Shell Shell Programming

typeset -i variables

let "integerl = integerl + 1"

1-53

integer integerl
integerl="integerl + 1"

The typeset command options can be specified as separate arguments, such
as typeset -u -x.

1.7.4 Manipulating Strings

In addition to the positional and special parameters used in the Bourne shell,
the Korn shell provides the following parameter substitution operations:

Programming Tools Guide
1003-48614-00

If a variable is first declared to be an integer as in the following example, it
can then be used without requiring the let command. Because Korn shell
automatically aliases integer to typeset -i, the three examples following are
equivalent:

typeset -i integerl
integerl="integerl + 1"

${ parameter) The value of parameter is substituted. Braces are required
when parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name; when a
named parameter has a subscript; or for positional
parameters. If parameter is an asterisk (*) or an at sign (@),
all positional parameters, starting with $1 are substituted. If
an array is used for parameter and the subscript * or @ is
used, the value for each of the elements is substituted. The
pattern specified may contain the special file substitution
characters *, ?, and [...].

$(#parameter)
If parameter is an * or @, the number of positional
parameters is substituted; otherwise, the length of parameter
is substituted. This form is equivalent to $#.

Korn ShellShell Programming

1-54

These are examples of parameter substitution using the forms above:

5 param=bigword

Programming Tools Guide
1003-48614-00

$(#arr<ry[*]) The number of elements in array is substituted.

$(parameter‘.-word}
If parameter is set and non-null, or user-specified as null,
substitute the expanded value of word, otherwise expand to
the value of parameter.

$(parameter-.=word}
If parameter is not set or is null, set parameter to word.
Positional parameters cannot be assigned in this manner.

$(parameter-.? word)
If parameter is set and non-null, substitute its value,
otherwise print word and exit from the shell. If word is
omitted, a standard message prints.

$(parameter :+word}
If parameter is set and non-null, substitute word, otherwise
substitute nothing.

${parameter#pattern) or ${param.eter##pattern}
Substitute the value of parameter with pattern deleted from
the left side. In the first form, the smallest part of the
contents of parameter matching pattern is deleted; in the
second form, the largest matching pattern is deleted.

${parameter%pattern) or ${parameter%°/opattern
)" Substitute the value of parameter with pattern deleted
from the right side. In the first form, the smallest part of the
contents of parameter matching pattern is deleted; in the
second form, the largest matching pattern is deleted. The
following example tests to see if object files (ending with .o)
files exist for each C source file (ending with .c):

for file in *.c
do

file=?(file%.c)
if [! -f "file.o"]
then

echo "Sfile.o doesn't exist"
fi

done

Shell ProgrammingKorn Shell

${param%d}

${param%w*d}

${param%%w*d}

${param# ?i}

${param##*o}

${param#bio}

1-55

The typeset Command

The typeset command can be used to create shell variables of fixed length
with the following forms:

$ echo J
bigwor
$ echo 2
big
$ echo J
big
$ echo 2
gword
$ echo :
rd
$ echo 2
bigword

typeset -Ln variables
typeset -Rn variables

Programming Tools Guide
1003-48614-00

The -L and -R options define variables to be left- or right-justified,
respectively, and n specifies the length in characters. If n is not specified, the
length is taken from the length of the values assigned to the variables. In the
following example, long lines are truncated to force columns to line up:

typeset -L25 first
IFS='
while read line
do

set $line
first=$l

eval echo "
done

If you enter ’’Bob", it is echoed back:

Bob
Bob

Shell Programming Korn Shell

In this example, no subscript is specified, so the first element is assumed:

1-56

1.7.5 One-Dimensional Arrays

The Korn shell allows one-dimensional arrays up to 512 elements. Array
indexing starts at zero. Arrays are not declared, and array elements are
accessed by subscripts. Subscripts are enclosed in brackets. As asterisk
enclosed in brackets refers to all elements of an array. The following
example assigns values to the first to elements of array animal:

If you enter "What a nice day it is outside", the line is truncated at the 25th
character and echoed back as follows:

first array element has a value of dog
second array element has a value of cat

In the following example, the second element is echoed. When an array
element is substituted, it must be enclosed in braces.

$ echo $animal
dog

You can print all the elements in an array with the following parameter
substitution statement:

What a nice day it is outside
What a nice day it is out

? echo ${animal[1])
cat

$ animal[0]='dog'
$ animal[1]='cat'

Programming Tools Guide
1003-48614-00

$ animal[0]='dog'
$ animal[1]='cat'
$ echo ${#animal[*])
2
5

You can also print or substitute the number of elements in the array animal
by using the parameter substitution statement %(#animal[*]), as follows:

? animal[0]='dog'
$ animal[1]='cat'
$ echo ${animal[*]}
dog cat$

Korn Shell Shell Programming

1.7.6 Miscellaneous Commands
The read Command

trap [arg] [signal]

1-57

The read command is like the Bourne shell read command, except that some
options have been added that provide for greater flexibility. The read
command options are described on the ksh(l) manual page.

The print Command

The print command is similar to the Bourne shell echo command, with more
options including what terminal mode to use and what file descriptor to write
to. The print command options are described on the ksh(l) manual page.

The times Command

The times command prints the accumulated system times used by the shell
and processes run from the shell. The Bourne shell prints only the system
time used by the shell.

The trap Command

The Korn shell trap command allows the use of signal names as well as
signal numbers. The format of the trap command is as follows:

The trap command with no arguments prints a list of commands associated
with each signal number.

Korn shell provides a signal called ERR that is used whenever a command
has a nonzero exit status and, if arg is present, arg is executed. This trap is
not inherited by functions.

The EXIT trap is local to functions; the specified commands are executed
when the function exits, not when the shell program exits.

Programming Tools Guide
1003-48614-00

Index

A

B

C

Index-1

@ command
HOME environment variable
PATH environment variable

Bourne shell
loops
programming
running shell programs in

break command
breaksw command

Arguments
parameters to display return codes
parameters to return actual arguments
parameters to return number of arguments

Arrays, in Korn shell
Assigning a value on a command line
Assigning command output to a variable

C shell
loops ...
operators ..
programming
running shell programs in

case...esac statement
Command line, assigning a value
Command substitution, Bourne shell
Command-line substitution

Bourne shell
C shell

 1-5
1-34,35

. 1-44

. 1-29
1-1,29

1-8
1-7
1-6

1-56
1-9

1-12

Programming Tools Guide
1003-48614-00

... 1-35

... 1-44
1-34,47

1-4,34
1-25,28
 1-9

... 1-12

... 1-17
1-2,33
 1-4

1-31,43
... 1-43

D

E

Index-2

ed editor
Editing in a shell program
Environment variables

Data typing, Korn shell
Debugging a shell program .
Directory for shell programs

1-16
1-16

1-8

... 1-50
1-32,33
 1-1

Programming Tools Guide
1003-48614-00

Commands
@ ...
break ...
breaksw ...
continue
discarding output
exit ..
let ..
print ..
read
set ..
test
testing command conditions
testing in C shell
times ...
trap ...
typeset •...
using output

Comment character (#)
Comments, in a shell program
Conditional statements

Bourne shell case...esac
Bourne shell if...then
Bourne shell if...then...else
C shell if ...
C shell if...then...elseif...endif
C shell if...then...endif
C shell switch...breaksw...endsw

continue command
Creating a shell program

1-25,28
1-22,23
1-23,25
... 1-37
... 1-38
... 1-38
... 1-40
1-31,43
.. 1-2,4

 1-44
... 1-31,43

 1-43
... 1-31,43

 1-13
 1-30
 1-50
 1-57

.... 1-9,16
 1-44

1-28,30,51
... 1-28,30
....... 1-47

 1-57
........ 1-57
1-49,52,55
........ 1-12
... 1-14,34

 1-14

F

G-H-I

J-K

Index-3

Korn shell
functions
loops
operators
programming
running shell programs in

Files
/dev I null
comparison in Korn shell ...
testing attributes in C shell

for loop
foreach loop
Forking
Functions

Korn shell
recursive in Korn shell

 1-29
 1-1,29
 1-30
 1-30

1-44,45,46

1-49
1-49

Global variables, in Korn shell functions
Here documents ..
if statement ...
if...then statement
if...then...else statement
if...then...elseif...endif statement
if...then...endif statement
Input to a shell program
Integer arithmetic, Korn shell
Integer comparison, Korn shell

Programming Tools Guide
1003-48614-00

HOME
PATH

exit command
Exiting a shell program
Expressions, C shell

1-49,50
... 1-15
... 1-37
1-22,23
1-23,25
... 1-38
... 1-38
... 1-15
... 1-50
... 1-51

... 1-13

... 1-51

... 1-46
1-17,20
1-35,36
 1-2

... 1-49

... 1-48

... 1-50
1-47,57
 1-4

L

M-N

1-4,8

O

Index-4

let command ..
Local variables, in Korn shell functions
Loops

Bourne shell ..
Bourne shell for
Bourne shell until
Bourne shell while
C shell ..
C shell foreach
C shell repeat
C shell while
continuing ...
for multiple choices
indenting ...
Korn shell ...
Korn shell select
limits on execution
terminating ..

Named variables
Names

shell programs
variables

... 1-50
1-49,50

. 1-1
1-4,8

1-44
1-51
1-51
1-50

1-12
1-13
1-11

1-1

Programming Tools Guide
1003-48614-00

Operators
C shell
file comparison in Korn shell
integer comparison in Korn shell
Korn Shell

Output
from commands
redirecting to I dev/null
redirecting to a file

Overview

... 1-17
1-17,20
1-21,22
1-20,21
... 1-35
1-35,36
... 1-37
1-36,37
... 1-31
... 1-48
... 1-18
... 1-48
... 1-48
 1-2

... 1-31

p

Q-R

S

Index-5

Parameters
Korn shell
positional in Bourne shell
positional in C shell
positional in Korn shell
special ...
to display return codes
to return actual arguments
to return number of arguments

Patterns, in strings .
Piping command output
Positional parameters

Bourne shell
C shell ..

print command

Quotes, in shell programs
read command
Recursive functions in Korn shell ...
Redirecting command output
Redirecting input to a shell program
Redirecting output to a file
Relational expressions, C shell
repeat loop ..
Running shell programs

in Bourne shell
in C shell ...
in Korn shell

sed in shell programming
select loop in Korn shell
set command
sh command
Shell scripts, overview

 1-53
1-4,6,11,12
.... 1-34,35

 1-53
 1-4
 1-8
 1-7
 1-6

......... 1-53
 1-12

1-4,6,11,12
.... 1-34,35

 1-57

1-17
1-48
1-44

1-2,3
. 1-1

Programming Tools Guide
1003-48614-00

 1-21
1-9,16,57
...... 1-49
...... 1-13

 1-15
 1-11

. 1-45,46
 1-37

..... 1-1,2
. 1-? to 4

 1-4
 1-4

T-U

V-W-X-Y-Z

Index-6

Terminating a shell program
Terminating loop execution .
test command
times command
trap command
typeset command
until loop

Statements
Bourne shell
C shell

Stream editor use in shell programming
Strings

Bourne shell ..
C shell ..
Korn shell

switch...breaksw...endsw statement .

Variables
assigning values to
fixed-length
global in Korn shell functions
local in Korn shell functions
modifiers in C shell
named
substitution .

while loop
Bourne shell
C shell

1-20,21
1-36,37

 1-4
... 1-12
... 1-55
1-49,50
1-49,50
... 1-43
.. 1-4,8
.... 1-9

1-14
1-37
1-17

Programming Tools Guide
1003-48614-00

... 1-45

... 1-46
1-53,55
... 1-40

 1-30
............. 1-31
1-28,30,47,51

 1-57
 1-57

... 1-49,52,55

........ 1-21,22

no

s
5

I
CM

Introduction2.1 2-1

2.2

2.3

2.4

2-34Output2.5

Chapter 2
nawk

2-18
2-19
2-19
2-22
2-26
2-27
2-28
2-30
2-33
2-33

..2-2

..2-2

..2-3

..2-4

..2-4

..2-5

..2-6

..2-7

..2-8

..2-9

..2-9

..2-9
2-10
2-10
2-11

2-11
2-12
2-13
2-14
2-17
2-18

Programming Tools Guide
10nR-4RfS14-00

Basic nawk...
Program Structure...
Running nawk...

Running a Program from a Command Line
Running a Program in a File........................

Fields...
Printing.......................................
Formatted Printing..
Simple Patterns ..
Simple Actions ..

Built-in Variables...
User-Defined Variables.................................
Functions..

Some Useful One-Liners...................................
Error Messages...

Patterns..
BEGIN and END...
Relational Expressions.......................................
Regular Expressions...
Combinations of Patterns..................................
Pattern Ranges..

Actions...
Built-in Variables..
Arithmetic Expressions......................................
Strings and String Functions.........
Field Variables..
Number or String..
Control Flow Statements..................................
Arrays..
User-Defined Functions.....................................
Some Lexical Conventions

nawk

2-34
2-34
2-35
2-36
2-37

2-38
2-38
2-39
2-39
2-40
2-42

2-50
2-50
2-50
2-50
2-51
2-51
2-51
2-52
2-52
2-53
2-53
2-54
2-54

2-43
2-43
2-43

2-45
2-45
2-47
2-47
2-47
2-48
2-48
2-49

Programming Tools Guide
1003-48614-00

The print Statement
Output Separators
The printf Statement
Output into Files
Output into Pipes

2.6 Input
Files and Pipes
Input Separators
Multiline Records ..
The getline Function
Command-Line Arguments

2.7 Using nawk with Other Commands and the Shell
The system Function
Cooperation with the Shell

2.8 Sample Applications
Generating Reports .
Additional Examples...

Word Frequencies
Accumulation..
Random Choice
Shell Facility ..
Form-Letter Generation

2.9 nawk Summary .
Command Line...
Patterns
Control Flow Statements
Input-Output .
Functions...
String Functions
Arithmetic Functions
Operators (Increasing Precedence)
Regular Expressions (Increasing Precedence) .
Built-in Variables
Limits
Initialization, Comparison, and Type Coercion

nawk

Tables

2-2
2-5

Figures

2-1 nawk Program Structure and Example.
2-2 The Sample Input File countries............

2-3
2-4

2-13
2-17
2-19
2-22
2-23
2-35
2-42

Programming Tools Guide
1003-48614-00

2-1 nawk Relational Operators
2-2 nawk Regular Expressions...............

nawk Built-in Variables....................
nawk Built-in Arithmetic Functions

2-5 nawk Built-in String Functions
2-6 nawk printf Conversion Characters
2-7 getline Function

2.1 Introduction

NOTE

2-1

Chapter 2
naivk

Programming Tools Guide
1003-48614-00

Suppose you want to tabulate some survey results stored in a file, print
various reports summarizing these results, generate form letters, reformat a
data file for one application package to use with another package, or count
the occurrences of a string in a file, nawk is a programming language that
makes it easy to handle these and many other tasks of information retrieval
and data processing. The name nawk is an acronym constructed from the
initials of its developers; it denotes the language and also the operating
system command you use to run an nawk program.

nawk is an easy language to learn. It automatically does quite a few things
that you have to program for yourself in other languages. As a result, many
useful nawk programs are only one or two lines long. Because nawk
programs are usually smaller than equivalent programs in other languages,
and because they are interpreted, not compiled, nawk is also a good
language for prototyping.

The first part of this chapter introduces you to the basics of nawk and is
intended to make it easy for you to start writing and running your own nawk
programs. The rest of the chapter describes the complete language and is
somewhat less tutorial. For the experienced nawk user, there’s a summary
of the language at the end of the chapter.

This chapter describes a new version of awk (hawk) The
previous version of awk is described in Chapter 3, awk.

nawk

2.2 Basic nawk

Structure:

2-2

You should be familiar with the operating system and shell programming to
use this chapter. Some knowledge of the C programming language is
beneficial, because many constructs found in nawk are also found in C.

This section provides enough information to allow you to write and run some
of your own programs. Each topic presented is discussed in more detail in
later sections.

2.2.1 Program Structure

The basic operation of nawk(l) is to scan a set of input lines one after
another, searching for lines that match any of a set of patterns or conditions
you specify. For each pattern, you can specify an action; this action is
performed on each line that matches the pattern. Accordingly, an nawk
program is a sequence of pattern-action statements, as Figure 2-1 shows.

pattern
pattern.

(action}
{action)

Programming Tools Guide
1003-48614-00

The example in the figure is a typical nawk program, consisting of one
pattern-action statement. The program prints the second and third fields of
each input line whose first field is address. In general, nawk programs work
by matching each line of input against each of the patterns in turn. For each
pattern that matches, the associated action (which may involve multiple
steps) is executed. Then the next line is read and the matching starts over.
This process typically continues until all the input has been read.

Either the pattern or the action in a pattern-action statement may be
omitted. If there is no action with a pattern, as in

$1 == "name"

the matching line is printed. If there is no pattern with an action, as in

Example:

$1 == "address" (print $2, $3 }
Figure 2-1. nawk Program Structure and Example..

nawk

r

program

2-3

nawk-program-file

file

(print $1, S2 }

the action is performed for every input line. Since patterns and actions are
both optional, actions are enclosed in braces to distinguish them from
patterns.

2.2.2 Running nawk

There are two ways to run an nawk program, shown in the following syntax
block:

Any character or regular expression to be used as a
field separator. Blanks and tabs are the default field
separators.

The nawk program itself entered on the command line
and enclosed in single quotes.

A file containing an nawk program.

An input file containing field-separated records for
processing by nawk.

Standard input. If no input files are specified on the
command line, or if a hyphen is specified, nawk looks
to stdin for input. If input file’s and a hyphen are
specified on the command line, nawk uses both the files
and stdin for input in the order they appear on the
command line.

Programming Tools Guide
1003-48614-00

nawk-Fr !

nawk

2-4

This nawk program could be put in a file name nawkprog:

BEGIN (print "hello, world" exit)

The following command, given to the shell, would have the same effect as the
previous procedure:

nawk -f nawkprog

Running a Program from a Command Line

If the program is short, it is often easiest to make the program the first
argument on the command line. The program must be enclosed in single
quotes in order for the shell to accept the entire string as the first argument
to nawk. In the following example, the nawk program (between the single
quotes) matches the pattern x in filel and prints the lines that contain a
match:

nawk ' /x/ (print) ' filel

If no input file is specified, nawk expects input from standard input. You
can also specify that input comes from stdin by using a hyphen (-) as one of
the input files. In this example, the nawk program (between the single
quotes) looks for input from filel and from stdin. Input from filel is
processed first, and then input from stdin'.

nawk ' /x/ (print) ' filel -

Running a Program in a File

If your nawk program is long or you want to save it for future use, you can
store the program in a separate file {nawkprog, for example). Specifying the
-f option on the command line tells nawk to fetch it, as follows:

nawk -f nawkprog filel
where filel is the input file that may include stdin as is shown previously.

These alternative ways of presenting your nawk program for processing are
illustrated by the following examples. The following nawk command
example prints hello, world to standard output when given to the shell:

nawk ' BEGIN (print "hello, world" exit) '

Programming Tools Guide
1003-48614-00

nawk

2.2.3 Fields

Figure 2-2. The Sample Input File countries.

2-5

nawk normally reads its input one line, or record, at a time and splits each
record into fields. By default, a record is a sequence of characters ending
with a newline and a field is a string of nonblank, nontab characters.

The file countries, shown below, contains information about the ten largest
countries in the world. This file is used as input for many of the nawk
examples in this chapter. Each record contains the name of a country, its
area in thousands of square miles, its population in millions, and the
continent on which it is found. Data are from 1978; the U.S.S.R. has been
arbitrarily placed in Asia. The white space between fields is a tab in the
original input; a single blank separates North and South from America.

8650
3852
3692
3615
3286
2968
1269
1072
968
920

262
24

866
219
116
14

637
26
19
18

This file is typical of the kind of data nawk is good at processing—a mixture
of words and numbers separated into fields by blanks and tabs.

The number of fields in a record is determined by the field separator. By
default, fields are separated by one or more blanks or tabs; therefore, the first
record of countries has four fields. You can set the field separator to the tab
character only, so that each line has four fields, matching the meaning of the
data. For the time being, use the default field separators: fields separated by
one or more blanks or tabs. The first field within a line is $1, the second is
$2, and so forth. The entire record is referred to as $0.

USSR
Canada
China
USA
Brazil
Australia
India
Argentina
Sudan
Algeria

Asia
North America
Asia
North America
South America
Australia
Asia
South America
Africa
Africa

Programming Tools Guide
1003-48614-00

nawk

2-6

{ print $1, $3)

Thus, the following command line produces as output a sequence of lines:

nawk '(print $1, $3)' countries

The output is as follows:

2.2.4 Printing
If the pattern in a pattern-action statement is omitted, the action is executed
for all input lines. The simplest action is to print each line; you can
accomplish this with an nawk program consisting of a single print
statement:

nawk '{ print }' countries

The print statement can also be used to print parts of a record; for example,
the following program prints the first and third fields of each record:

{ print)

So the following command line prints each line of countries, copying the file to
the standard output.

When printed, items separated by a comma in the print statement are
separated by the output field separator, which by default is a single blank.
Each line printed is terminated by the output record separator, which by
default is a newline.

USSR 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

Programming Tools Guide
1003-48614-00

nawk

NOTE

printf format, exprl, expr2, . . ., exprn

2-7

2.2.5 Formatted Printing

For more carefully formatted output, nawk provides a C-like printf
statement of the form:

which prints exprl, expr2, and so forth, according to the specification in the
string format. For example, the nawk program

(printf "%10s %6d\n", $1, $3 }

In the remainder of this chapter, nawk programs only are
shown, not the command line that invokes them. Each complete
program can be run either by enclosing it in quotes as the first
argument of the nawk command, or by putting it in a file and
invoking nawk with the -f flag, as discussed in “Running nawk”
earlier in this chapter. In examples, if no input is mentioned,
the input is assumed to be the file countries.

262
24

866
219
116
14

637
26
19
18

Programming Tools Guide
1003-48614-00

With printf, no output separators or newlines are produced automatically;
you must create them yourself by using \n in the format specification. Refer
to the “The printf Statement”, later in this chapter, for a full description of
printf.

prints the first field ($1) as a string of 10 characters (right justified), then a
space, then the third field ($3) as a decimal number in a six-character field,
then a newline (\n). With input from the file countries, this program prints
the following aligned table:

USSR
Canada
China

USA
Brazil

Australia
India

Argentina
Sudan

Algeria

nawk

The complete set of comparisons is >, >=, <, <=,

2-8

2.2.6 Simple Patterns

You can select specific records for printing or other processing by using
simple patterns, nawk has three kinds of patterns:

• Relational expressions

• Regular expressions

• Special Patterns

8650
3692
1269

262
866
637

262
219

Programming Tools Guide
1003-48614-00

USSR
China
India

== (equal to), and '.= (not
equal to). These comparisons can be used to test both numbers and strings.
For example, suppose you want to print only countries with a population
greater than 100 million. The following program is all that is needed:

$3 > 100

Remember that the third field in the file countries is the population in
millions. It prints all lines in which the third field exceeds 100.

Regular expressions are patterns that search for specified characters to select
records. The simplest form of a regular expression is a string of characters
enclosed in slashes:

Relational expressions are patterns that make comparisons. For example,
the operator == tests for equality. To print the lines for which the fourth
field equals the string Asia, you can use a program consisting of the following
single pattern:

$4 == "Asia"

With the file countries as input, this program produces the following output:

Asia
Asia
Asia

/US/

This program prints each line that contains the (adjacent) letters US
anywhere; with the file countries as input, it prints this:

USSR 8650 262 Asia
USA 3615 219 North America

nawk

2-9

(print NR, NF }

This program, however, prints each record preceded by its record number.

{ print NR, $0)

User-Defined Variables
Besides providing built-in variables like NF and NR, nawk lets you define
your own variables, which you can use for storing data, doing arithmetic, and
performing other tasks. The following example computes the total population
and the average population represented by the data in the file countries:

2.2.7 Simple Actions
We have already seen the simplest action of an nawk program: printing
each input line. Now let’s consider how you can use built-in and user-defined
variables and functions for other simple actions in a program.

Built-in Variables

Besides reading the input and splitting it into fields, nawk counts the
number of records read and the number of fields within the current record;
you can use these counts in your nawk programs. The variable NR is the
number of the current record, and NF is the number of fields in the record.
So the following program prints the number of each line and how many fields
it has:

Programming Tools Guide
1003-48614-00

BEGIN
/Asia/

The output is:
Countries of Asia:

USSR
China
India

Refer to “Patterns,” later in this chapter, for more information about BEGIN
and END.

More information is found in “Regular Expressions” later in this chapter.

Two special patterns, BEGIN and END, match before the first record has
been read and after the last record has been processed. This program uses
BEGIN to print a title:

{ print "Countries of Asia:" }
{ print " ", $1 }

nawk

Functions

2.2.8 Some Useful One-Liners

2-10

Total population is 2201 million
Average population of 10 countries is 220.1

nawk initializes sum to zero before it is used. The first action accumulates
the population from the third field; the second action, which is executed after
the last input, prints the sum and average:

nawk has built-in functions that handle common arithmetic and string
operations. For example, there is a math function that computes square
roots. There is also a string function that substitutes one string for another,
nawk also lets you define your own functions. Functions are described in
detail in “Actions”, later in this chapter.

Print input lines with last field more than 4:
$NF > 4

Print total number of input lines:
END (print NR)

Programming Tools Guide
1003-48614-00

Although nawk can be used to write large programs of some complexity,
many programs are not much more complicated than what you’ve seen so far.
Here is a collection of other short programs that you may find useful and
instructive. Any new constructs are explained later in this chapter.

Print last field of each input line:
{ print $NF)

Print 10th input line:
NR == 10

Print last input line:
{ line = SO)

END { print line }

Print input lines that don’t have four fields:
NF != 4 { print SO, "does not have 4 fields" >

Print input lines with more than four fields:
NF > 4

{ sum = sum + $3 }
END { print "Total population is", sum, "million"
print "Average population of", NR, "countries is", sum/NR }

nawk

2-11

2.3 Patterns
In a pattern-action statement, the pattern is an expression that selects the
records for which the associated action is executed. This section describes
the kinds of expressions that may be used as patterns.

2.2.9 Error Messages

If you make an error in an nawk program, you generally get an error
message. For example, trying to run the program

$3 < 200 { print ($1)

Print total number of fields:
{ nf = nf + NF }

END (print nf }

Print total number of input characters (adding NR includes
the number of newlines in the total):

{ nc = nc + length($0))
END { print nc + NR }

Print the total number of lines that contain the string Asia.
The statement nlines++ has the same effect as nlines = nlines + 1:

/Asia/ (nlines++)
END { print nlines)

Programming Tools Guide
1003-43614-00

generates the following error messages:

nawk: syntax error at source line 1
context is

$3 < 200 (print (»> $1) «<
nawk: illegal statement at source line 1

1 extra (

Some errors are detected while your program is running. For example, if you
try to divide a number by zero, nawk stops processing and reports the input
record number (NR) and the line number in the program.

nawk

2.3.1 BEGIN and END

END

With the file countries as input, this program produces the following:

30292 2201TOTAL

2-12

BEGIN and END are two special patterns that give you a way to control
initialization and wrap-up in an nawk program. BEGIN matches before the
first input record is read, so any statements in the action part of a BEGIN
are done once, before the nawk command starts to read its first input record.
The pattern END matches the end of the input, after the last record has been
processed.

POP
262
24
866
219
116
14

637
26
19
18

COUNTRY
USSR

Canada
China

USA
Brazil

Australia
India

Argentina
Sudan

Algeria

AREA
8650
3852
3692
3615
3286
2968
1269
1072
968
920

Programming Tools Guide
1003-48614-00

The following nawk program uses BEGIN to set the field separator to tab
(\t) and to put column headings on the output. The field separator is stored
in a built-in variable called FS . Although FS can be reset at any time, the
logical place is in a BEGIN section, before any input has been read. The
program’s second printf statement, which is executed for each input line,
formats the output into a table, neatly aligned under the column headings.
The END action prints the totals. Notice that a long line can be continued
after a comma:

CONTINENT
Asia
North America
Asia
North America
South America
Australia
Asia
South America
Africa
Africa

BEGIN { FS = "\t"
printf "%10s %6s %5s %s\n",

"COUNTRY", "AREA", "POP", "CONTINENT")
{ printf ”%10s %6d %5d %s\n", ?1, $2, $3, $4
area = area + $2; pop = pop + S3)

{ printf "\n%10s %6d %5d\n", "TOTAL", area, pop }

nawk

Operator

r

2-13

In a comparison, if both operands are numeric, a numeric comparison is
made; otherwise, the operands are compared as strings. (Every value might
be either a number or a string; usually nawk can tell what is intended.
Refer to “Number or String” later in this chapter.) Thus, the pattern $3>100
selects lines where the third field exceeds 100, and the program

2.3.2 Relational Expressions
An nawk pattern can be any expression involving comparisons between
strings of characters or numbers, nawk has six relational operators and two
regular expression matching operators, (tilde) and T, for making
comparisons. Table 2-1 shows these operators and their meanings.

Programming Tools Guide
1003-48614-00

Table 2-1
nawk Relational Operators

!=
>=

<=

Meaning

less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than
matches
does not match

In the absence of any other information, nawk treats fields as strings, so the
program

$1 == $4
compares the first and fourth fields as strings of characters, and with the file
countries as input, prints the single line for which this test succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numerically.

$1 >= "S"
selects lines that begin with the letters S through Z, namely:

USSR 8650 262 Asia
USA 3615 219 North America
Sudan 96819 Africa

nawk

$4 !~ /Asia/ { print $1 }

/-.$/

2-14

$4 ~ /Asia/ { print $1 }

The following program prints the first field of all lines in which the fourth
field does not match Asia:

Programming Tools Guide
1003-48614-00

2.3.3 Regular Expressions

nawk provides more powerful patterns for searching for strings of characters
than the comparisons illustrated in the previous section. These patterns are
called regular expressions and are like those in egrep(l) and lex(l). The
simplest regular expression is a string of characters enclosed in slashes, for
example:

/Asia/

This program prints all input records that contain the substring Asia; if a
record contains Asia as part of a larger string like Asian or Pan-Asiatic, it is
also printed. In general, if re is a regular expression, then the pattern /re/
matches any line that contains a substring specified by the regular expression
re.

To restrict a match to a specific field, you use the matching operators
(matches) and T (does not match). The following program prints the first
field of all lines in which the fourth field matches Asia:

A group of characters enclosed in brackets matches any one of the enclosed
characters; for example, / [ABC] / matches records containing any one of A, B,
or C anywhere. Ranges of letters or digits can be abbreviated within
brackets: /[a-zA-Z]/ matches any single letter.

In regular expressions, the following symbols are metacharacters with special
meanings like the metacharacters in the operating system shell:

\ " $. []* + ?() I

For example, the metacharacters " and $ match the beginning and end,
respectively, of a string, and the metacharacter . (dot) matches any single
character. Thus, the following string matches all records that contain exactly
one character:

nauk

2-15Programming Tools Guide
1003-48614-00

nawk interprets any string or variable on the right side of a ~ (tilde) or F as a
regular expression. For example, consider this program:

$2 !' /“ [0-9] +$/

You could have written it like this:

BEGIN { digits = ""[0-9] + ?")
$2 !' digits

backspace
formfeed
newline
carriage return
tab
octal value ddd
quotation mark
any other character c literally

If the first character after the bracket ([) is a circumflex (“), the class is
complemented so that it matches any character not in the set: l{~a-zA-Z\l
matches any nonletter. The following program prints all records in which the
second field is not a string of one or more digits (* for beginning of string,
[0-9]+ for one or more digits, and $ for end of string). Programs like this are
often used for data validation:

$2 !' /" [0-9] + $/

Parentheses () are used for grouping and the pipe symbol (I) is used for
alternatives. The following program matches lines containing any one of the
four substrings apple pie, apple tart, cherry pie, or cherry tart'.

/ (apple I cherry) (pie I tart)/

To turn off the special meaning of a metacharacter, precede it with a \
(backslash). Thus, the following program prints all lines containing b
followed by a dollar sign:

/b\$/

In addition to recognizing metacharacters, the nawk command recognizes
the following C language escape sequences within regular expressions and
strings:

\b
V
\n
\r
\t
\ddd
V
\c

For example, to print all lines containing a tab, use this program:

/\t/

nawk

2-16

The precise form of regular expressions and the substrings they match are
given in Table 2-2. The unary operators *, +, and ? have the highest
precedence, followed by concatenation, and then alternative I. All operators
are left associative, r stands for any regular expression.

x
X

X

X

X

X

X

/b\$/
/b$/
/b$/
At/

Programming Tools Guide
1003-48614-00

Suppose you wanted to search for a string of characters like " [0-9] + $. When
a literal quoted string like "" [0-9] + $” is used as a regular expression, one
extra level of backslashes is needed to protect regular expression
metacharacters. This is because one level of backslashes is removed when a
string is originally parsed. If a backslash is needed in front of a character to
turn off its special meaning in a regular expression, then that backslash
needs a preceding backslash to protect it in a string.

For example, suppose you want to match strings containing b followed by a
dollar sign. The regular expression for this pattern is b\$. If you want to
create a string to represent this regular expression, you must add one more
backslash: "b\\$". The two regular expressions on each of the following
lines are equivalent:

"b\\$"x
"b\$"
"b?"
"\\t"

nawk

$

2.3.4 Combinations of Patterns

2-17

The negation operator ! has the highest precedence, followed by &&, and
finally I I. The operators && and 1 I evaluate their operands from left to
right; evaluation stops as soon as truth or falsity is determined.

A compound pattern combines simpler patterns with parentheses and the
logical operators I 1 (or), && (and), and ! (not). For example, suppose you
want to print all countries in Asia with a population of more than 500 million.
The following program does this by selecting all lines in which the fourth field
is Asia and the third field exceeds 500:

Programming Tools Guide
1003-48614-00

Table 2-2
nawk Regular Expressions

[s]
["si
r*
r+
r?
(r)

rl r2
rl Ir2

Matches
any nonmetacharacter c
character c literally
beginning of string
end of string
any character but newline
any character in set s
any character not in set s
zero or more r’s
one or more r’s
zero or one r
r
rl then r2 (concatenation)
rl or r2 (alternative)

Expression
c
\c

$4 == ’'Asia" && $3 > 500

The following program selects lines with Asia or Africa as the fourth field.

$4 == "Asia" II $4 == "Africa"

Another way to write the previous program is to use a regular expression
with the alternative operator I:

$4 " /"(Asia I Africa)$/

nawk

■= 1,FNR FNR

2-18

Similarly, since FNR is the number of the current record in the current input
file (and FILENAME is the name of the current input file), the following
program prints the first five records of each input file with the name of the
current input file prepended.

°= 5 { print FILENAME, $0)

3852
3692
3615
3286

24
866
219
116

Canada
China
USA
Brazil

Programming Tools Guide
1003-48614-00

2.4 Actions
In a pattern-action statement, the action determines what is to be done with
the input records that the pattern selects. Actions frequently are simple
printing or assignment statements, but they may also be a combination of one
or more statements. This section describes the statements that can make up
actions.

North America
Asia
North America
South America

2.3.5 Pattern Ranges
A pattern range consists of two patterns separated by a comma, as in the
following:

patl,pat2 (...)

In this case, the action is performed for each line between an occurrence of
patl and the next occurrence of pat2, inclusive. As an example, the pattern

/Canada/, /Brazil/

matches lines starting with the first line that contains the string Canada up
through the next occurrence of the string Brazil'.

nawk

2.4.1 Built-in Variables

Variable Default

blank&tab

2-19

applied to the file countries prints the name of each country and its
population density:

Table 2-3 lists the built-in variables that nawk maintains. Some of these
have already been described; others are used in this and later sections.

ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

Programming Tools Guide
1003-48614-00

Table 2-3
nawk Built-in Variables

%.6g
blank

newline
newline

Meaning

number of command-line arguments
array of command-line arguments
name of current input file
record number in current file
input field separator
number of fields in current record
number of records read so far
output format for numbers
output field separator
output record separator
input record separator
index of first character matched by match!)
length of string matched by match!)
subscript separator “e034”

2.4.2 Arithmetic Expressions
Actions can use conventional arithmetic expressions to compute numeric
values. As a simple example, suppose you want to print the population
density for each country in the file countries. Since the second field is the
area in thousands of square miles and the third field is the population in
millions, the expression "1000 * $3 / $2 gives the population density in people
per square mile. The following program

{ printf "%10s %6.1f\n", $1, 1000 * $3 / $2)

nawk

"Asia"

$4 "Asia" { pop += S3; ++n)

2-20

$4 ■

END

30.3
6.2

234.6
60.6
35.3
4.7

502.0
24.3
19.6
19.6

USSR
Canada
China

USA
Brazil

Australia
India

Argentina
Sudan

Algeria

Programming Tools Guide
1003-48614-00

Arithmetic is done internally in floating point. The arithmetic operators are
+, *, I, % (remainder), and ' (exponentiation; ** is a synonym). Arithmetic
expressions can be created by applying these operators to constants,
variables, field names, array elements, functions, and other expressions, all
of which are discussed later. Note that nawk recognizes and produces
scientific (exponential) notation: le6, 1E6, 10e5, and 1000000 are
numerically equal.

nawk has assignment statements like those found in the C language. The
simplest form is the assignment statement v = e where v is a variable or field
name, and e is an expression. For example, to compute the number of Asian
countries and their total population, you could write this:

{ pop = pop + $3; n = n + 1)
{ print "population of", n,

"Asian countries in millions is", pop }
Applied to countries, the program produces this:

population of 3 Asian countries in millions is 1765

The action associated with the pattern $4 == "Asia" contains two
assignment statements, one to accumulate population and the other to count
countries. The variables are not explicitly initialized, because nawk
initializes each variable with the string value and the numeric value 0.

The assignments in the previous program can be written more concisely
using the operators += and ++ :

nawk

2-21

The operator += is borrowed from the C language:

pop += $3

This has the same effect as the following:

pop = pop + $3

Note, however, that the += operator is shorter and runs faster. The same is
true of the ++ operator, which adds one to a variable.

The abbreviated assignment operators are +=, -=, »=, /=, %=, and "=. The
following assignment statements are equivalent:

Programming Tools Guide
1003-48614-00

v op = e
v = v op e

The increment and decrement operators are ++ and -, respectively. As in C,
they may be used as prefix (++x) or postfix (x++) operators. If x is 1, then
i=++x increments x, then sets i to 2, while i=x++ sets i to 1, then increments
x . An analogous interpretation applies to prefix and postfix -.

Assignment, increment, and decrement operators may all be used in
arithmetic expressions.

Default initialization is used to advantage in the following program, which
finds the country with the largest population:

maxpop < $3 { maxpop = $3; country = $1 }
END (print country, maxpop)

Note, however, that this program would not be correct if all values of $3 were
negative.

nawk

nawk provides the built-in arithmetic functions shown in Table 2-4.

Function Value Returned

(print NR $0 }

2-22

The expressions x and7 are arbitrary expressions. The function randO
returns a pseudorandom floating-point number in the range (0,1), and
srand(x) can be used to set the seed of the generator. If srandO has no
argument, the seed is derived from the time of day.

atan2(y,x)
cos(x)
exp(x)
int(x)
log(x)
rand()
sin(x)
sqrt(x)
srand(x)

arctangent ofy/x in the range -n to it
cosine of x, with x in radians
exponential function of x
integer part of x truncated towards 0
natural logarithm of x
random number between 0 and 1
sine of x, with x in radians
square root of x
x is new seed for rand()

Programming Tools Guide
1003-48614-00

Table 2-4
nawk Built-in Arithmetic Functions

The three strings representing the record number, the colon, and the record
are concatenated and the resulting string is printed. The concatenation
operator has no explicit representation other than juxtaposition.

2.4.3 Strings and String Functions

A string constant is created by enclosing a sequence of characters inside
quotation marks, as in “abc” or “hello, everyone”. String constants may
contain the C escape sequences for special characters listed in “Regular
Expressions” earlier in this chapter.

String expressions are created by concatenating constants, variables, field
names, array elements, functions, and other expressions. The following
program prints each record preceded by its record number and a colon, with
no blanks:

nawk

Function

gsub(r,s)

gsubfr,s,t)

index(s,t)

split(s,a)

split(s, a,r)

sprintf(fmt,expr-list)

sub(r,s)

sub(r,s,f)

2-23

nawk provides the built-in string functions shown in Table 2-5. In this table,
r represents a regular expression (either as a string or as /r/), s and t string
expressions, and n and p integers.

substr(s,p)
substr(s,p,n)

length(s)
match(s,r)

Programming Tools Guide
1003-48614-00

Table 2-5
nawk Built-in String Functions

The functions sub and gsub are patterned after the substitute command in
the text editor ed(l). The function gsubfr,s,t) replaces successive
occurrences of substrings matched by the regular expression r with the
replacement string s in the target string t. As in ed, the leftmost match is
used and made as long as possible, and the number of substitutions made is
returned. The function gsub(r,s) is a synonym for gsub(r,s,$O). For
example, the following program transcribes its input, replacing occurrences
of USA with United States:

Description

substitute s for r globally in current
record, return number of substitutions
substitute s for r globally in string t,
return number of substitutions
return position of string t in s, 0 if not
present
return length of s
return the position in s where r occurs,
0 if not present
split s into array a on FS, return
number of fields
split s into array a on r, return number
of fields
return expr-list formatted according to
format string fmt
substitute s for first r in current record,
return number of substitutions
substitute s for first r in t, return
number of substitutions
return suffix of s starting at position p
return substring of s of length n starting
at position p

nawk

(print length($0), $0)

920 18

2-24

index("banana", "an")
The length function returns the number of characters in its argument string.
This program prints each record, preceded by its length. Note that $0 does
not include the input record separator:

The following program applied applied to the file countries prints the longest
country name, Australia:

{ max = length($1); name = SI)
(print name }

{ gsub(/USA/, "United States"); print)
The sub functions are similar, except that they only replace the first
matching substring in the target string.

The function index(s,t) returns the leftmost position where the string t
begins in s, or zero if t does not occur in s. The first character in a string is at
position 1. The following returns 2:

length($1) > max
END

Programming Tools Guide
1003-48614-00

Asia
North America

Asia
North America

South America
Australia

Asia
South America

Africa
Africa

262
24

866
219

116
14

637
26

The match(s,r) function returns the position in string s where regular
expression r occurs, or 0 if it does not occur. This function also sets two built-
in variables RSTART and RLENGTH . RSTART is set to the starting
position of the match in the string; this is the same value as the returned
value. RLENGTH is set to the length of the matched string. If a match does
not occur, RSTART is 0 and RLENGTH is -1. For example, the following
program finds the first occurrence of the letter i followed by, at most, one
character followed by the letter a in a record:

{ if (match(S0, /i.?a/))
print RSTART, RLENGTH, $0 }

It produces the following output on the file countries:

17 2 USSR 8650
26 3 Canada 3852
3 3 China 3692
24 3 USA 3615
27 3 Brazil 3286
8 2 Australia 2968
4 2 India 1269
7 3 Argentina 1072
17 3 Sudan968 19
6 2 Algeria

hawk

2-25Programming Tools Guide
1003-48614-00

match() matches the leftmost longest matching string. For example, with
the record AsiaaaAsiaaaaan as input, the following program matches the
first string of a’s and sets RSTART to 4 and RLENGTH to 3.

(if (match($0, /a+/)) print RSTART, RLENGTH, $0 }
The function sprintf(format, exprl, expr2, . . exprri) returns (without
printing) a string containing exprl, expr2,. . exprn formatted according to
the printf specifications in the string format. Refer to “The printf
Statement”, later in this chapter, for a complete specification of the format
conventions. The following statement assigns to x the string produced by
formatting the values of $1 and $2 as a ten-character string and a decimal
number in a field of width at least six; x may be used in any subsequent
computation.

x = sprintf("%10s %6d", $1, $2)

The function substr(s,p,n) returns the substring of s that begins at position p
and is at most n characters long. If substr(s,p) is used, the substring goes to
the end of s; that is, it consists of the suffix of s beginning at position p. For
example, you could abbreviate the country names in countries to their first
three characters by invoking the following program on this file:

($1 = substr($1, 1, 3); print }

This produces the following results:

USS 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

Note that setting $1 in the program forces nawk to recompute $0 and,
therefore, the fields are separated by blanks (the default value of OFS), not
by tabs.
Strings are concatenated by writing them one after another in an expression.
For example, when invoked on file countries, the following program builds s
up a piece at a time from an initially empty string:

{ s = s substr($1, 1, 3) " ”)

nawk

END

USS Can Chi USA Bra Aus Ind Arg Sud Alg

2.4.4 Field Variables

BEGIN

2-26

(print s)

This is the result:

The number of fields can vary from record to record. The maximum is 100
fields per record.

Programming Tools Guide
1003-48614-00

BEGIN
$4 == "North America"
$4 == "South America"

The fields of the current record can be referred to by the field variables $1,
$2, ..., $NF. Field variables share all of the properties of other variables—
they may be used in arithmetic or string operations, and they may have
values assigned to them. For example, you can divide the second field of the
file countries by 1000 to convert the area from thousands to millions of square
miles:

{ $2 /= 1000; print)

You can also assign a new string to a field:

{ FS = OFS = "\t" }
($4 = "NA" }
($4 = "SA" }
(print }

The BEGIN action in this program resets the input field separator FS and
the output field separator OFS to a tab. The print in the fourth line of the
program prints the value of $0 after it has been modified by previous
assignments.

Fields can be accessed by expressions. For example, $(NF-1) is the second to
last field of the current record. The parentheses are needed, since the value
of $NF-1 is 1 less than the value in the last field.

The initial value of a nonexistent field variable, such as $(NF+1), is the
empty string. However, a new field can be created by assigning a value to it.
For example, the following program invoked on the file countries creates a
fifth field giving the population density:

{ FS = OFS = "\t" J
{ 55 = 1000 * 53 / 52; print }

nawk

00110E-1

tt H

2-27Programming Tools Guide
1003-48614-00

0
0.0

2.4.5 Number or String

Variables, fields, and expressions can have both a numeric value and a string
value, depending on the context. For example, in the context of an arithmetic
expression such as the one that follows, pop and $3 must be treated
numerically since += is a numeric operator; they are coerced to numeric
values if necessary;

pop += $3

In a string context such as the following, $1 and $2 must be treated as strings
since : is a string operator; they are coerced to string values if necessary:

print $1 $2

In an assignment such as v = e or v op=e, the type of v becomes the type of e.
In an ambiguous context such as $1 == $2, the type of the comparison
depends on whether the fields are numeric or string. This can only be
determined when the program runs and differs from record to record.

In comparisons, if both operands are numeric, the comparison is numeric;
otherwise, operands are coerced to strings, and the comparison is made on
the string values. All field variables are of type string; in addition, each field
that contains only a number is also considered numeric. This determination
is done at run time. For example, the comparison $1 == $2 succeeds on
any pair of the following inputs:

1 1.0 +1 0.1e+l

However, it fails on these inputs:

(null)
(null)
0a 0
le50

number ""
string + 0

1.0e50

There are two methods for coercing an expression of one type to the other:

concatenate a null string to a number to coerce it to type string
add zero to a string to coerce it to type numeric

Thus, to force a string comparison between two fields, enter this:

$ 1 == $2 ""

nawk

(

)

{ print country, maxpop }

2-28

The numeric value of a string is the value of any prefix of the string that
looks numeric; thus the value of 12.34xis 12.34, while the value of xl2.34is
zero. The string value of an arithmetic expression is computed by formatting
the string with the output format conversion OFMT.

Uninitialized variables have numeric value 0 and string value
Nonexistent fields and fields that are explicitly null have only the string value

they are not numeric.

Programming Tools Guide
1003-48614-00

}
END

2.4.6 Control Flow Statements

nawk provides if-else, while, do-while, and for statements, and
statement grouping with braces, as in the C language.

The if statement syntax is as follows:

if (expression) statement 1 else statement2

The expression acting as the conditional has no restrictions; it can include the
relational operators <> <=, >, >=, ==, and !=; the regular expression matching
operators ~ and T; the logical operators ! 1, &&, and !; juxtaposition for
concatenation; and parentheses for grouping.

In the if statement, expression is evaluated first. If it is non-zero and non­
null, statementl is executed; otherwise statement2 is executed. The else is
optional.

A single statement can always be replaced by a statement list enclosed in
braces. The statements in the statement list are terminated by newlines or
semicolons.

Rewriting the maximum population program found in “Arithmetic
Functions”, earlier in this chapter, with an if statement results in the
following program:

if (maxpop < $3) (
maxpop = $3
country = $1

nawk

)
)

2-29

The for statement is like that of the C language:

for (expression!; expression.', expressions) statement

It has the same effect as the following:

expression!
while (expression) {

statement
expression2

Programming Tools Guide
1003-48614-00

1
The following example does the same job as the while example above:

(for (i = 1; i <= NF; i++) print $i 1

An alternative version of the for statement is described in the next section.

The do statement has the following form:

do statement while {expression)

The statement is executed repeatedly until the value of the expression
becomes zero. Because the test takes place after the execution of the
statement (at the bottom of the loop), it is always executed at least once. As a
result, the do statement is used much less often than while or for
statements, which test for completion at the top of the loop.

The while statement is like that of the C language:

while {expression) statement

The expression is evaluated; if it is non-zero and non-null, the statement is
executed and the expression is tested again. The cycle repeats as long as the
expression is non-zero. For example, this program prints all input fields one
per line:

{ i = 1
while (i <= NF) {

print $i

nawk

2-30

The following example of a do statement prints all lines except those between
start and stop:

/start/ {

The break statement causes an immediate exit from an enclosing while or
for; the continue statement causes the next iteration to begin. The next
statement causes nawk to skip immediately to the next record and begin
matching patterns starting from the first pattern-action statement.

The exit statement causes the program to behave as if the end of the input
had occurred; no more input is read, and the END action, if any, is executed.
Within the END action, the following statement causes the program to
return the value of expr as its exit status. If there is no expr, the exit status
is zero:

exit expr

Programming Tools Guide
1003-48614-00

1
{ print 1

2.4.7 Arrays

nawk provides one-dimensional arrays. Arrays and array elements need not
be declared; like variables, they are declared by being mentioned. An array
subscript may be a number or a string.

As an example of a conventional numeric subscript, the following statement
assigns the current input line to the NRth element of the array x:

x[NR] = $0

It is possible in principle (though slow) to read the entire input into an array
with the following nawk program:

{ X [NR] = $0 }
end (... processing ...)

The first action merely records each input line in array x indexed by line
number; processing is done in the END statement.

do (
getline x

) while (x !' /stop/)

nawk

area[$4] += $2

for (i in array') statement

2-31

The following program uses a form of the for statement that iterates all
defined subscripts of an array: it executes statement with the variable i set in
turn to each value of i for which array[i] has been defined.

Array elements may also be named by nonnumeric values. For example, the
following program accumulates the total population of Asia and Africa into
the associative array pop. The END action prints the total population of
these two continents:

Africa 1888
North America 7467
South America 4358
Asia 13611
Australia 2968

Programming Tools Guide
1003-48614-00

/Asia/ (pop["Asia"] += $3)
/Africa/ { pop["Africa"] += $3)
END { print "Asian population in millions is", pop["Asia"]

print "African population in millions is",
pop["Africa"])

Using the input file countries, the program above generates this output:

Asian population in millions is 1765
African population in millions is 37

If you had used pop[Asia] instead of pop["Asia"J, the expression would have
used the value of the variable Asia as the subscript, and since the variable is
uninitialized, the values would have been accumulated in pop[""].

Suppose you want to determine the total area in each continent of the file
countries. Any expression can be used as a subscript in an array reference.
The following expression uses the string in the fourth field of the current
input record to index the array area:

The value of the second field is accumulated in that entry:

BEGIN { FS = "\t" }
(area[$4] += $2)

END (for (name in area)
print name, area[name])

Using the input file countries, this program produces the following output:

nawk

2-32 Programming Tools Guide
1003-48614-00

The loop is executed once for each defined subscript. Defined subscripts are
chosen in random order. Results are unpredictable when i or array is altered
during the loop.

nawk does not provide multidimensional arrays, but it does permit a list of
subscripts. They are combined into a single subscript with the values
separated by a string (stored in the variable SUBSEP). For example, the
following statements create an array which behaves like a two-dimensional
array; the subscript is the concatenation of i, SUBSEP, and j:

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)

arr [i,j] = ...

You can determine whether a particular subscript i occurs in an array area
by testing the condition i in area, as in the following:

if ("Africa" in area) ...

This condition performs the test without the side effect of creating
area["Africa”], which would happen if you used this:

if (area["Africa") != "") ...

Note that neither is a test of whether the array area contains an element
with value Africa.

It is also possible to split any string into fields in the elements of an array
using the built-in function split. The following function splits the string
sl:s2:s3 into three fields, using a colon as the separator, and stores si in a[l],
s2 in a[2], and s3 in a[3J:

split("si:s2:s3", a,

The number of fields found here (3 in this case) is returned as the value of
split. The third argument of split is a regular expression to be used as the
field separator. If the third argument is missing, FS is used as the field
separator.

An array element may be deleted with a delete statement of the form:

delete arrayname [subscript]

nawk

{

1

fact (n-1)n

2-33

print x, y # this is a comment

Statements in an nawk program normally occupy a single line. Several
statements may occur on a single line if they are separated by semicolons. A
long statement may be continued over several lines by terminating each
continued line by a backslash. (It is not possible to continue a "..." string.)
This explicit continuation is rarely necessary, however, since statements
continue automatically if the line ends with a comma (for example, as might

2.4.9 Some Lexical Conventions

Comments can be placed in nawk programs; they begin with the character #
and end at the end of the line like this:

2.4.8 User-Defined Functions

nawk provides user-defined functions. A function is defined as follows:

function name (argument-list') (
statements

Programming Tools Guide
1003-48614-00

1
(print SI "! is

Array arguments are passed by reference, as in C, so it is possible for the
function to alter array elements or create new ones. Scalar arguments are
passed by value, however, so the function cannot affect their values outside.
Within a function, formal parameters are local variables but all other
variables are global. (You can have any number of extra formal parameters
that are used purely as local variables.) The return statement is optional,
but the returned value is undefined if it is not included.

1
The definition can occur anywhere a pattern-action statement can. The
argument list is a list of variable names separated by commas; within the
body of the function, these variables refer to the actual parameters when the
function is called. There must be no space between the function name and
the open parenthesis of the argument list when the function is called;
otherwise it looks like a concatenation. For example, the following program
defines and tests the usual recursive factorial function:

function fact(n)
if (n <= 1)

return
else

return

" fact($l) 1

nawk

BEGIN

2-34

2.5.2 Output Separators

The output field separator and record separator are held in the built-in
variables OFS and ORS. By default, OFS is set to a single blank and ORS
to a single newline, but these values can be changed at any time. For
example, the following program prints the first and second fields of each
record with a colon between the fields and two newlines after the second field:

2.5.1 The print Statement

The statement

print exprl, expr2,. .., exprn

prints the string value of each expression separated by the output field
separator followed by the output record separator. A print statement with
no arguments is an abbreviation for the following:

print $0

To print an empty line use this:

print ""

2.5 Output
The print and printf statements are the two primary constructs that
generate output. The print statement is used for simple output; printf is
used for more carefully formatted output. Like the shell, nawk lets you
redirect output, so that output from print and printf can be directed to files
and pipes. This section describes the use of these two statements.

occur in a print or printf statement) or after the operators && and 1 1.

Several pattern-action statements may appear on a single line if separated by
semicolons.

Programming Tools Guide
1003-48614-00

{ OFS = ORS = "\n\n")
{ print SI, $2)

Notice that { print $1 $2 } prints the first and second fields with no
intervening output field separator, because $1 $2 is a string consisting of the
concatenation of the first two fields.

nawk

Letter

width

.precision.

2-35

The following additional modifiers for formatting printf output can be placed
between the % and the specification letter.

2.5.3 The printf Statement
nawk’s printf statement is the same as that in C except that the asterisk (*)
format specifier is not supported. The printf statement has the following
general form:

printf format, exprl, expr2,. . exprn

format is a string that contains both information to be printed and
specifications on what conversions are to be performed on the expressions in
the argument list. Table 2-6 lists each specification. Specifications begin
with a percent sign (%) and end with a letter that determines the conversion.

Left-justifies the expression in its field.

Pads the output field to this width as needed; fields
that begin with a leading 0 are padded with zeros.

Specifies maximum string width or digits to the right
of decimal point.

o
s
X
%

Programming Tools Guide
1003-48614-00

C
d
e
f
g

Table 2-6
nawk printf Conversion Characters

Prints Expression as

single character
decimal number
[-] d.ddddddE [+-] dd
[-Jddd.dddddd
e or f conversion, whichever is
shorter, with nonsignificant zeros
suppressed
unsigned octal number
string
unsigned hexadecimal number
print a %; no argument is converted

naivk

Statement Output

2-36

Jan I
I

The default output format of numbers is %.6g; this can be changed by
assigning a new value to OFMT. OFMT also controls the conversion of
numeric values to strings for concatenation and creation of array subscripts.

{ print $1, $3 >"bigpop")
{ print $1, $3 >"smallpop")

Programming Tools Guide
1003-48614-00

99
99

99

Here are some examples of printf statements along with the corresponding
output:

printf "%d", 99/2
printf "%e", 99/2
printf "%f", 99/2
printf "%6.2f", 99/2
printf "%g", 99/2
printf "%o",
printf "%06o",
printf "%x",
printf "|%s|", "January"
printf "|%10s|", "January"
printf "|%-10s|", "January"
printf "|%.3s|", "January"
printf "|%10.3s|", "January"
printf "|%-10.3s I ", "January"
printf "%%"

2.5.4 Output into Files

It is possible to print output into files instead of to standard output by using
the > and » redirection operators. For example, the following program
invoked on the file countries prints all lines where the population (third field)
is bigger than 100 into a file called bigpop, and all other lines into smallpop-.

$3 > 100
$3 <= 100

Notice that the file names have to be quoted; without quotes, bigpop and
smallpop are merely uninitialized variables. If the output file names were
created by an expression, they would also have to be enclosed in parentheses:

$4 ' /North America/ (print $1 > ("tmp" FILENAME) }
This is because the > operator has higher precedence than concatenation;
without parentheses, the concatenation of tmp and FILENAME would not
work.

49
4.950000e+01
49.500000
49.50
49.5
143
000143
63
I January I
I January |
I January I
I Jan I
I
I Jan %

nawk

NOTE

BEGIN

END

2-37

Africa:37
Asia:1765
Australia:14
North America:243
South America:142

Files are opened, once in an nawk program. If> is used to open
a file, its original contents are overwritten. But if» is used to
open a file, its contents are preserved and the output is
appended to the file. Once the file has been opened, the two
operators have the same effect.

Programming Tools Guide
1003-48614-00

Suppose you want to create a list of continent-population pairs, sorted
alphabetically by continent. The nawk program below accumulates the
population values in the third field for each of the distinct continent names in
the fourth field in an array called pop. Then it prints each continent and its
population, and pipes this output into the sort command.

{ FS = "\t" }
{ pop[$4] += $3 }
{ for (c in pop)

print c pop[c] I "sort")

Invoked on the file countries, this program yields the following:

2.5.5 Output into Pipes

It is also possible to direct printing into a pipe, with a command on the other
end, instead of into a file. The following statement causes the output of print
to be piped into the command-line'.

print I "command-line"

Although they are shown here as literal strings enclosed in quotes, the
command-line and filenames can come from variables and the return values
from functions.

nawk

2-38

In all of these print statements involving redirection of output, the files or
pipes are identified by their names (for example, the pipe above is literally
named sort), but they are created and opened only once in the entire run.
So, in the last example, for all c in pop, only one sort pipe is open.

There is a limit to the number of files that can be open simultaneously. The
statement close(/iZe) closes a file or pipe; file is the string used to create it in
the first place, as in

close("sort")

When opening or closing a file, different strings are different commands.

2.6 Input
The most common way to give input to an nawk program is to name the
file(s) containing the input on the command line. There are several other
methods of giving input to nawk, each of which are described in the following
section.

2.6.1 Files and Pipes
Input can be given to nawk by putting the input data into a file, say
nawkdata, and then executing the following:

nawk 'program' nawkdata

nawk reads its standard input if no file names are given (refer to “Running
nawk” earlier in this chapter); thus, a second common arrangement is to
have another program pipe its output to nawk. For example, egrep(l)
selects input lines containing a specified regular expression, but it can do so
faster than nawk since this is the only thing it does. In the following
example, egrep quickly finds the lines containing Asia and passes them on to
nawk for processing:

egrep 'Asia' countries I nawk '...’

Programming Tools Guide
1003-48614-00

nawk

2-39

The field separator can be set to any regular expression by assigning a value
to the built-in variable FS. The following example sets the field separator to
an optional comma followed by any number of blanks and tabs:

BEGIN { FS = " (, [\\t]*) | ([\\t]+)")

FS can also be set on the command line by specifying the -F option. This
example behaves the same as the previous example:

nawk -F' (, [\t] ♦) I ([\t] +) ' ' . . .'

Regular expressions used as field separators match the leftmost longest
occurrences (as in sub()), but do not match null strings.

Programming Tools Guide
1003-48614-00

2.6.3 Multiline Records

Records are normally separated by newlines, so that each line is a record, but
this can be changed in a limited way. If the built-in record separator variable
RS is set to the empty string, as in the following example, input records can
be several lines long; a sequence of empty lines separates records:

BEGIN (RS = "" }

A common way to process multiline records is to use the following statement
to set the record separator to an empty line and the field separator to a
newline:

2.6.2 Input Separators

Since the default setting of the field separator FS is blanks or tabs with
leading blanks discarded, each of these lines has the same first field:

fieldl field2
fieldl

fieldl
When the field separator is set to tab, however, leading blanks are not
discarded.

BEGIN { RS = FS = "\n”)

The limit on the length of a record is 2500 characters. For more information
about processing multiline records, refer to “The getline Function” and
“Cooperation with the Shell”, later in this chapter.

nawk

)

(# now process the data in f[l]...f[nf]

nf = 0
)

2-40 Programming Tools Guide
1003-48614-00

2.6.4 The getline Function
nawk’s facility for automatically breaking its input into records that are
more than one line long later in this chapter, is not adequate for some tasks.
For example, if records are not separated by blank lines, but by something
more complicated, merely setting RS to null doesn’t work. In such cases, it is
necessary to manage the splitting of each record into fields in the program.
Here are some suggestions.

The function getline can be used to read input either from the current input
or from a file or pipe, by redirection analogous to printf. By itself, getline
fetches the next input record and performs the normal field-splitting
operations on it. It sets NF, NR, and FNR. getline returns 1 if there was a
record present, 0 if the end-of-file was encountered, and -1 if some error
occurred (such as failure to open a file).

For example, suppose you have input data consisting of multiline records,
each of which begins with a line beginning with START and ends with a line
beginning with STOP. The following nawk program processes these
multiline records, a line at a time, putting the lines of the record into
consecutive entries of an array:

f[l] f[2] ... f[nf]

Once the line containing STOP is encountered, the record can be processed
from the data in the array f. Notice that this code relies on the fact that &&
evaluates its operands from left to right and stops as soon as one is true:

/"START/ {
f[nf=l] = $0
while (getline S4 $0 !" /"STOP/)

f[++nf] = $0
now process the data in f[l]...f[nf]

The same job can also be done by the following program:

/"START/ SS nf==0 (f[nf=l] = $0 }
nf > 1 (f[++nf] = $0)
/"STOP/

nawk

Also, if you use this getline statement form, a statement like

2-41

Each iteration of the while loop reads one more line and increments the
variable n, so after the while loop terminates, n contains a count of the
number of users.

This statement reads from file instead of the current input. It has no effect
on NR or FNR, but field splitting is performed and NF is set:

getline <"file"

This statement gets the next record from file into x; no splitting is done, and
NF, NR, and FNR are untouched:

getline x <"file"

If a filename is an expression, it must be placed in parentheses for correct
evaluation:

Programming Tools Guide
1003-48614-00

while (getline x < file) (... }
loops forever if the file cannot be read, because getline returns -1, not zero,
if an error occurs. A better way to write this test is:

while (getline x < file >0) (... }

It is also possible to pipe the output of another command directly into
getline. For example, this statement executes who and pipes its output into
getline:

while ("who" I getline)
n++

The following statement reads the next record into the variable x. No
splitting is done and NF is not set:

getline x

while (getline x < (ARGV[1] ARGV[2J)) { ... 1
This is because < has precedence over concatenation. Without parentheses, a
statement such as

getline x < "tmp” FILENAME
sets x to read the file tmp and not tmp <value ofFILENAME>.

nawk

Form Sets

2-42

Similarly, this statement pipes the output of date into the variable d, thus
setting d to the current date:

"date" | getline d

Table 2-7 summarizes the getline function.

getline
getline var
getline <file
getline var <file
cmd I getline
cmd I getline var

Programming Tools Guide
1003-48614-00

Table 2-7
getline Function

$0, NF, NR, FNR
var, NR, FNR
$0, NF
var
$0, NF
var

2.6.5 Command-Line Arguments

The command-line arguments are available to an nawk program: the array
ARGV contains the elements ARGV[0],..., ARGV[ARGC-1]; as in C,
ARGC is the count. ARGV[0] is the name of the program (generally nawk);
the remaining arguments are others given on the command line (excluding
the program and any optional arguments). The following command line
contains an nawk program that echoes the arguments that appear after the
program name:

nawk '
BEGIN (

for (i = 1; i < ARGC; i++)
printf "%s ", ARGVfi]

print f "\n"
1 ' $*

The arguments may be modified or added to; ARGC may be altered. As each
input file ends, nawk treats the next non-null element of ARGV (up to the
current value of ARGC-1) as the name of the next input file.

nawk

2-43

2.7 Using nawk with Other Commands and the Shell
nawk is most powerful when it is used in conjunction with other programs.
The following sections describe some of the ways in which nawk programs
cooperate with other commands.

The following form is an exception to the rule that an argument is a file
name:

var=value

If this form is used, the variable var is set to the value value as if by
assignment. Such an argument is not treated as a file name. If value is a
string, no quotes are needed.

Programming Toole Guide
1003-48614-00

2.1.2 Cooperation with the Shell
In all the examples given in this chapter so far, the nawk program was in a
file and specified with the -f option, or it appeared on the command line
enclosed in single quotes. Since nawk uses many of the same characters as
the shell does (such as $ and "), the single quotes around an nawk program
ensure that the shell passes the entire program unchanged to nawk.

Now, consider writing a command addr that searches a file addresslist for
name, address, and telephone information. Suppose that addresslist contains
names and addresses in which a typical entry is a multiline record such as
the following:

G. R. Emlin
600 Mountain Avenue
Murray Hill, NJ 07974
201-555-1234

2.7.1 The system Function

The built-in function system(command-line) executes the command
command-line, which may well be a string computed by, for example, the
built-in function sprintf. The value returned by system is the return status
of the command executed.

For example, the following program calls the cat command to print the file
named in the second field of every input record whose first field is #include
after stripping any c, >, or " that might be present:

$1 == "#include" { gsub(/[<>"]/, $2); system("cat " $2))

nawk

)

1

{ RS = \"\")

2-44

Records are separated by a single blank line.

You want to search the address list by issuing commands like this:

addr Emlin

Programming Tools Guide
1003-48614-00

That is easily done by a program of the following form:

nawk '
BEGIN (RS =
/Emlin/
' addresslist

The problem is how to get a different search pattern into the program each
time it is run.

There are several ways to do this. One way is to create a file called addr that
contains the following:

nawk '
BEGIN { RS =
/'$!'/
' addresslist

The quotes are critical here: the nawk program is only one argument, even
though there are two sets of quotes, because quotes do not nest. The $1 is
outside the quotes, visible to the shell, which therefore replaces it by the
pattern Emlin when the command addr Emlin is invoked. The file addr
can be made executable by changing its mode with the following operating
system command: chmod +x addr.

A second way to implement addr relies on the fact that the shell substitutes
for $ parameters within double quotes:

nawk "
BEGIN
/SI/
" addresslist

Here you must protect the quotes defining RS with backslashes so that the
shell passes them on to nawk, uninterpreted by the shell. $1 is recognized as
a parameter, however, so the shell replaces it by the pattern when the
command addr pattern is invoked.

A third way to implement addr is to use ARGV to pass the regular
expression to an nawk program that explicitly reads through the address list
with getline:

nawk

) ' S*

14

219

2-45

2.8 Sample Applications
nawk has been used in surprising ways. We have seen nawk programs that
implement database systems and a variety of compilers and assemblers, in
addition to the more traditional tasks of information retrieval, data
manipulation, and report generation. Invariably, the nawk programs are
significantly shorter than equivalent programs written in more conventional
programming languages such as Pascal or C. This section presents a few
more examples to illustrate some additional nawk programs.

Australia:
Australia

Africa:
Sudan
Algeria

866
637
262

19
18

North America:
USA

Asia:
China
India
USSR

nawk '
BEGIN

Programming Tools Guide
1003-48614-00

2.8.1 Generating Reports

nawk is especially useful for producing reports that summarize and format
information. Suppose you wish to produce a report from the file countries in
which you list the continents alphabetically and, after each continent, its
countries in decreasing order of population:

{ RS = ""
while (getline < "addresslist")

if ($0 ’ ARGV[1])
print $0

All processing is done in the BEGIN action.

Notice that any regular expression can be passed to addr; in particular, it is
possible to retrieve by parts of an address or telephone number as well as by
name.

nawk

Canada 24

BEGIN

END

2-46

South America:
Brazil
Argentina

116
26

Programming Tools Guide
1003-48614-00

BEGIN
{

{ FS = ":" }
if ($1 != prev) {

The output is in the right order but the wrong format. To transform the
output into the desired form, run it through a second nawk program format
shown here:

As with many data processing tasks, it is much easier to produce this report
in several stages. First, you create a list of continent-country-population
triples, in which each field is separated by a colon. This can be done with the
following program triples which uses an array pop indexed by subscripts of
the form continent:country to store the population of a given country. The
print statement in the END section of the program creates the list of
continent-country-population triples that are piped to the sort routine.

Africa:Sudan: 19
Africa:Algeria : 18
Asia:China:866
Asia:India:637
Asia:USSR:262
Australia:Australia: 14
North America:USA:219
North America:Canada:24
South America:Brazil:116
South America:Argentina:26

I "sort -t:

{ FS = "\t" }
{ pop[$4 $1] += $3 }
{ for (cc in pop)

print cc pop[cc] I "sort -t: +0 -1 +2nr")
The arguments for sort deserve special mention. The -t: argument tells sort
to use a colon as its field separator. The +0 and -1 arguments make the first
field the primary sort key. In general, +i -j makes fields i+1, i+2, ...,j the
sort key. If -j is omitted, the fields from i+1 to the end of the record are used.
The +2nr argument makes the third field, numerically decreasing, the
secondary sort key (n is for numeric, r for reverse order). Invoked on the file
countries, this program produces the following output:

nawk

$1

-nr"END

Accumulation

{ balance[$1] += S2)

2-47

nawk -f triples countries I nawk -f format

gives us our desired report. As this example suggests, complex data
transformation and formatting tasks can often be reduced to a few simple
nawks and sorts.

2.8.2 Additional Examples

The following sections describe some other uses for nawk. In all such
examples, a prudent strategy is to start with a small version and expand it,
trying out each aspect before moving on to the next.

Programming Tools Guide
1003-48614-00

}
This is a control-break program that prints only the first occurrence of a
continent name and formats the country-population lines associated with that
continent in the desired manner. The command line

1
printf "\t%-10s %6d\n", $2, $3

Suppose you have two files, deposits and withdrawals, of records containing a
name field and an amount field. For each name you want to print the net
balance determined by subtracting the total withdrawals from the total
deposits for each name. The net balance can be computed by the following
program:

nawk '
FILENAME == "deposits"

print "\n"
prev = SI

Word Frequencies

The first example illustrates associative arrays for counting. Suppose you
want to count the number of times each word appears in the input, where a
word is any contiguous sequence of nonblank, nontab characters. The
following program prints the word frequencies, sorted in decreasing order:

(for (w = 1; w <= NF; w++) count[$w]++)
{ for (w in count) print count[w], w I "sort -nr" }

The first statement uses the array count to accumulate the number of times
each word is used. Once the input has been read, the second for loop pipes
the final count along with each word into the sort command.

nawk

Random Choice

(

(

)
)

}

}

2-48

The following function prints (in order) k random elements from the first n
elements of the array A. In the program, k is the number of entries that still
need to be printed, and n is the number of elements yet to be examined. The
decision of whether to print the ith element is determined by the test rand()
< k/n.

Programming Tools Guide
1003-48614-00

FILENAME == "withdrawals"
END

) ' deposits withdrawals

The first statement uses the array balance to accumulate the total amount
for each name in the file deposits. The second statement subtracts associated
withdrawals from each total. If there are only withdrawals associated with a
name, an entry for that name is created by the second statement. The END
action prints each name with its net balance.

function choose(A, k, n)
for (i = 1; n > 0; i++)

if (rand() < k/n--)
print A[i]

(balance[$1] -= $2)
(for (name in balance)

print name, balance[name]

{ if (NF == 1)
system(x[NR] = x[NR-l])

else
for (i = NR-1; i > 0; i—)

if (x[i] - $2) {
system (x [NR] = x[i])
break

Shell Facility

The following nawk program simulates (crudely) the history facility of the
operating system shell. A line containing only =f reexecutes the last
command executed. A line beginning with =f cmd reexecutes the last
command whose invocation included the string cmd. Otherwise, the current
line is executed.

$1 ==

nawk

next)

/./ { system(x[NR] = $0) }

Form-Letter Generation

Replacement text of this form is generated:

BEGIN (

{

print s
)

)

2-49

The following program generates form letters, using a template stored in a
file called form.letter as follows:

1
(

field 11 field 2|field 3
one I two I three
a |b| c

Programming Tools Guide
1003-48614-00

This is a form letter.
The first field is $1, the second $2, the third ?3.
The third is $3, second is S2, and first is $1.

FS = " I "
while (getline <"form. letter")

line[++n] = $0

The BEGINf action stores the template in the array template-, the remaining
action cycles through the input data, using gsub to replace template fields of
the form with the corresponding data fields.

for (i = 1; i <= n; i++)
s = line[i]
for (j = 1; j <= NF; j++)

gsub ("\\$"j, $j, s)

nawk

2.9.2 Patterns

2-50

2.9 nawk Summary
2.9.1 Command Line
nawk 'program’
nawk ’program’ -
nawk ’program’ files
nawk ’program’ files -
nawk -f nawk-program-file files
nawk -f nawk-program-file files -
nawk -Fr sets field separator to a character or string;
-Ft sets separator to tab

A hyphen (-), with or without files specified, indicates
input coming from stdin.

2.9.3 Control Flow Statements

if (expr) statement [else statement}
if (subscript in array) statement [else statement}
while (expr) statement
for (expr; expr; expr) statement
for (subscript in array) statement
or (var in array) statement
do statement while (expr)
break
continue
next
exit [expr]
return [expr]

BEGIN
END
/regular expression/
relational expression
pattern && pattern
pattern I I pattern
(pattern)
'.pattern
pattern, pattern

Programming Tools Guide
1003-48614-00

nawk

2.9.4 Input-Output

2.9.6 String Functions

gsub(r,s,t)

index(s,t)

2-51

length (s)

match(s, r)

2.9.5 Functions
func nametparameter list) {statement)
function nametparameter list) (statement)
function-nametexpr, expr,...)

closetfile)
getline
getline <file
getline var
getline var <file
print
print expr-list
print expr-list >file
printf fmt, expr-list
printf fmt, expr-list >file
systemtcmd-line)

In print and printf above, »file appends to the file, and I command writes
on a pipe. Similarly, command I getline pipes into getline. getline
returns 0 on end of file, and -1 on error.

Substitute string s for each substring matching
regular expression r in string t, return number of
substitutions; if t omitted, use $0

Return index of string t in string s, or 0 if not
present

Return length of string s

Return position in s where regular expression r
occurs, or 0 if r is not present

close file
set $0 from next input record; set NF, NR, FNR
set $0 from next record of file', set NF
set var from next input record; set NR, FNR
set var from next record of file
print current record
print expressions
print expressions on file
format and print
format and print on file
execute command cmd-line, return status

Programming Tools Guide
1003-48614-00

nawk

split(s/x^-)

sprintfl/mt, expr-list)

sub(r^^)

substr(s,i,n)

2.9.7 Arithmetic Functions

2.9.8 Operators (Increasing Precedence)

/=%=*=

2-52

assignment
conditional expression
logical OR

Split strings into array a on regular expression r,
return number of fields; if r omitted, FS is used in
its place

Print expr-list according to fmt, return resulting
string

Like gsub except only the first matching substring
is replaced

Return n-char substring of s starting at i; if n
omitted, use rest of s

Arctangent of y/x in radians

Cosine (angle in radians)

Exponential

Truncate to integer

Natural logarithm

Random number between 0 and 1

Sine (angle in radians)

Square root

New seed for random number generator; use time
of day if no expr

atan2(y/c)

cos(expr)

exp(expr)

int(expr)

log(expr)

rand()

sin(expr)

sqrt(expr)

srand(expr)

Programming Tools Guide
1003-48614-00

?:
II

nawk

$

2.9.9 Regular Expressions (Increasing Precedence)

2.9.10 Built-in Variables

2-53

ARGC
ARGV
FILENAME
FNR
FS

matches nonmetacharacter c
matches literal character c
matches any character but newline
matches beginning of line or string
matches end of line or string
character class matches any of abc...
negated class matches any but abc... and newline
matches either rl or r2
concatenation: matches rl, then r2
matches one or more r’s
matches zero or more r’s
matches zero or one r’s
grouping: matches r

number of command-line arguments
array of command-line arguments (0.. ARGC-1)
name of current input file
input record number in current file
input field separator (default blank)

Programming Tools Guide
1003-43614-00

C
\c

logical AND
regular expression match, negated match
relational
string concatenation
add, subtract
multiply, divide, mod
unary plus, unary minus, logical negation
exponentiation (** is a synonym)
increment, decrement (prefix and postfix)
field

*/%
+ -!

$
[abc...]
["abc...]
rllr2
rlr2

r*
r?
(r)

&&
T
<<=>>= != ==
blank

nawk

2.9.11 Limits

In comparisons, if both operands are numeric, the comparison is made

2-54

NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

Any particular implementation of nawk enforces some limits. Here are
typical values:

2.9.12 Initialization, Comparison, and Type Coercion

Each variable and field can potentially be a string or a number or both at any
time. When a variable is set by the following assignment, its type is set to
that of the expression:

var = expr

(Assignment includes +=, -=, etc.) An arithmetic expression is of type
number, a concatenation is of type string, and so on. If the assignment is a
simple copy, as in the following example, the type of vl becomes that of v2:

vl = v2

number of fields in current input record
input record number since beginning
output format for numbers (default %.6g)
output field separator (default blank)
output record separator (default newline)
input record separator (default newline)
index of first character matched by match(); 0 if no match
length of string matched by match(); -1 if no match
separates multiple subscripts in array elements; default "\034”

Programming Tools Guide
1003-48614-00

100 fields
2500 characters per input record
2500 characters per output record
1024 characters per individual field
1024 characters per printf string
400 characters maximum quoted string
400 characters in character class
15 open files
1 pipe
numbers are limited to what can be represented on the local

machine, (le-38..1e+38)

nawk

2-55

The type of a field is determined by context when possible. The following
example clearly implies that $1 is to be numeric:

$1++

This example implies that $1 and $2 are both to be strings:

$1 = $1 $2

Coercion is done as needed.

In contexts where types cannot be reliably determined, the type of each field
is determined on input, for example:

if ($1 == $2) ...

All fields are strings; in addition, each field that contains only a number is
also considered numeric.
Fields that are explicitly null have the string value they are not numeric.
Nonexistent fields (i.e., fields past NF), and array elements created by
spIitO. are treated this way, too.

Programming Tools Guide
1003-48614-00

numerically. Otherwise, operands are coerced to string if necessary, and the
comparison is made on strings. The type of any expression can be coerced to
numeric by the following subterfuge:

expr + 0

The type of any expression can be coerced to string by this subterfuge (that
is, concatenation with a null string):

expr ""

Uninitialized variables have the numeric value 0 and the string value
Accordingly, if x is uninitialized,

if (x) ...

is false, and

if (!x) ...
if (x == 0) ...
if (x == "'■) . . .

are all true. But the following is false:

if (x == "0") . . .

nawk

as

2-56 Programming Tools Guide
1003-48614-00

Mentioning a variable in an expression causes it to exist, with the value ""
described above. Thus, if arr[i] does not currently exist, the following
example causes it to exist with the value "" so the if is satisfied:

if (arr[i] == "") . . .

The following special construction determines if arr[i] exists without the side
effect of creating it if it does not:

if (i in arr) . . .

Index

A

2-2,6,9,18

Index-1

Actions
Arguments

array
command-line
for printf
scalar
sort

Arithmetic expressions
Arithmetic functions

atan2
cos
exp
int
log
rand
sin
sqrt
srand

Arithmetic operators ...
Array element, deleting
Array subscripts

numeric
string

Arrays
arguments
element declaration .
one-dimensional
two-dimensional

Assignment operators ..
Assignment statements

Programming Tools Guide
1003-48614-00

.... 2-30
2-30,31
2-30,32
... 2-33
... 2-30
... 2-30
... 2-32
... 2-21
... 2-20

.... 2-33

.... 2-42

.... 2-34

.... 2-33

.... 2-46

.... 2-19
2-22,52
.... 2-52
.... 2-52
... 2-52
... 2-52
... 2-52
... 2-52
... 2-52
... 2-52
... 2-52
... 2-20
... 2-32

B

C-D

E

Index-2

Backslash escape character
BEGIN pattern
break statement

END pattern
Error messages
Escape character

backslash
Examples

accumulating
counting words
form letter generation
random choice
report generation
using the shell

exit statement

2-15,16
. 2-9,12
.... 2-30

2-9,12
.. 2-11

C escape sequences
Characters, matching
Coercion of types
Coercion of values to string or numeric
Command summary
Command-line arguments
Comments in nawk programs
Comparisons

numeric ..
of variables ...
string ...

Concatenation of strings
Continuing a line
Control flow statements
Control in a program
Conversion characters
Data validation
do statement ..

Programming Tools Guide
1003-48614-00

2-15,16
... 2-10
... 2-47
.... 2-47
... 2-49
... 2-48
... 2-45
... 2-48
... 2-30

2-15,22
.... 2-14
... 2-54
2-27,28
2-50,56
.... 2-42
.... 2-33

... 2-13
.... 2-54
.... 2-13
.... 2-25
... 2-33
2-28,50
... 2-12
... 2-35
... 2-15
... 2-29

F

Index-3

Fields
accessing with expressions
creating
in nawk input
in records
n a record
printing
separators
values of
variables

Files
example input
fields in nawk input
for nawk programs
records .
specifying input to nawk

Floating-point arithmetic
for statement
Formatting output
Functions

arithmetic
built-in
getline
gsub
index
length
match
split
sprintf
string
sub
substr

Expressions
arithmetic .
as subscripts ..
regular
relational
to access a field
values of

 2-19
................. 2-31
2-8,14,15,16,53
............. 2-8,13

 2-26
 2-27

 2-5
 2-26
 2-26
 2-5
 2-40

......... 2-26
 2-6

2-3,5,12,39
 2-27
 2-26

Programming Tools Guide
1003-48614-00

...... 2-5
 2-5
 2-3

...... 2-5
 2-3

.... 2-20

.... 2-29
 2-7

.... 2-51
2-22,52
.... 2-10
2-40,42
.... 2-51
.... 2-51
... 2-51
... 2-51
... 2-52
... 2-52
... 2-51
... 2-52
... 2-52

user-defined 2-33

G-H-I

J-K-L-M

N

Index-4

nawk ..
command
limits ...
output ..
running ..
sample applications

nawk output conversion characters
nawk with the shell
next statement
Numeric comparisons
Numeric values

Lexical conventions in nawk
Limits of nawk
Matching

characters
patterns
strings

Messages, error
Metacharacters

in regular expressions
Multiline records

getline function
if statement
Initializing variables
Input

separators
specifying to nawk

Input command summary

2-40,42
.... 2-28
2-20,54

2-14
2-39

2-33
2-54

2-14
2-14
2-14
2-11

2-39
. 2-3

 2-51

Programming Tools Guide
1003-48614-00

 2-1
 2-3

.... 2-54

.... 2-34

... 2-3,4

.... 2-45

.... 2-35
2-43,45
... 2-30
... 2-13
... 2-27

o

p

Q-R

Index-5

Operators
arithmetic
assignment
decrement
in arithmetic expressions
increment
relational
unary

Output
conversion characters
separator

Output command summary

Records
fields
length

2-35
2-34

 2-51

2-12
. 2-2

. 2-5
2-26
2-39

2-6
2-7
2-6
2-6

Pattern-action statements
separating on a line .

Patterns
BEGIN
combinations
END
matching
printing
ranges

print statement
printf statement
Printing

fields
formatted output
lines
records

Program
control
structure

Programming Tools Guide
1003-48614-00

 2-2,3
 2-34

2-2,8,11,14,50
........... 2-9,12

 2-17
........... 2-9,12
........ 2-2,3,14

 2-6
 2-18

........... 2-7,34
...... 2-7,35,36

. 2-52
.. 2-20
. 2-21

.. 2-21

.. 2-21

.. 2-21
2-8,13

.. 2-16

s

Index-6

multiline
printing
separator
separators
splitting into fields

Regular expressions
metacharacters
symbols

Relational expression operators
Relational expressions
Relational operators
Report generation
Running nawk

Scientific notation ...
Semi-colon, separating pattern-action statements
Shell, using nawk with
sort ...
Statements

assignment ..
break ..
do ..
exit ..
flow of control ..
for ...

in nawk programs ...
next ...
print ..
printf
while ...

String functions ..
built-in ...

String values .
Strings ..

built-in functions ..
comparisons ...
concatenation ...
functions ..
matching ..

Programming Tools Guide
1003-48614-00

.... 2-20
 2-34

2-43,45
... 2-46

 2-39
 2-6
 2-34
 2-39
 2-40

2-8,14,15,16,53
 2-14
 2-14
 2-8

............. 2-8,13
 2-13
 2-45

............... 2-3,4

 2-20
 2-30
 2-29
 2-30

.... 2-28,50
 2-29
 2-28
 2-33
 2-30
 2-34

2-34,35,36
 2-29
 2-51

... 2-23,26

........ 2-27
 2-22
 2-23
 2-13
 2-25
 2-22
 2-14

T-U-V-W-X-Y-Z

Index-7

Summary of commands
Symbols, in regular expressions

2-9,19,53
 2-54
 2-26

.. 2-20,54
 2-54
 2-9
 2-27
 2-29

 2-54
2-16

Programming Tools Guide
1003-48614-00

Type conversion of variables
Unary operators
Values

coercion of
numeric
string

Variables
built-in
comparing
field
initializing
type conversion
user-defined
values of

while statement

2-50,56
.... 2-14

2-27,28
... 2-27
... 2-27

co

I

§
co

3.1

Chapter 3
awk

Introduction ...
Program Structure...
Running awk...

Running a Program from a Command Line
Running a Program in a File........................

Lexical Units..
Numeric Constants...
String Constants...
Keywords...
Identifiers...
Operators..
Record and Field Tokens...............................
Comments...
Tokens Used for Grouping.............................

Primary Expressions..
Numeric Constants...
String Constants...
Variables...
Functions..

Terms
Binary Terms...
Unary Term...
Incremented Variables..................................
Terms Enclosed in Parentheses...................

Expressions..
Concatenation of Terms
Assignment Statements.................................

32 Input and Output..
Input Records and Fields..................................
Sample Input File, countries.............................
Input From the Command Line.......................
Output Printing...
Output to Files..
Output to Pipes...

3-16
3-17
3-17
3-19
3-20
3-24
3-25

..3-1

..3-1

..3-2

..3-3

..3-4

..3-4

..3-5

..3-5

..3-5

..3-5

..3-6

..3-8

..3-9
3-10
3-10
3-10
3-11
3-11
3-12
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-16

Programming Tools Guide
1003-48614-00

awk

3.3

3-17

Tables

3-1 awk Assignment Operators..............................
3-2 awk Arithmetic Operators...............................
3-3 awk Relational Operators................................
3-4 awk Logical Operators......................................
3-5 Operators for Matching Regular Expressions
3-6 Numeric Values for String Constants............
3-7 String Values for String Constants.................
3-8 Incremented Variables......................................

3-25
3-26
3-27
3-28
3-30
3-30

3-31
3-31
3-33
3-33
3-34
3-34
3-35
3-36

3-37
3-37
3-39
3-42
3-43
3-44

..3-6

..3-7

..3-7

..3-8

..3-8
3-10
3-11
3-15

Programming Tools Guide
1003-48614-00

Patterns..
BEGIN and END...
Relational Expressions...............................
Regular Expressions....................................
Combinations of Patterns...........................
Pattern Ranges..

3.4 Actions...
Variables, Expressions, and Assignments
Initialization of Variables
Field Variables..
String Concatenation.................................
Special Variables...
Type...
Arrays..

3.5 Special Features.......................................
Built-In Functions..................
Flow of Control..
Report Generation.......................................
Cooperation with the Shell........................
Multidimensional Arrays...........................

Figures

3-9 Sample Input File, countries

3.1 Introduction
NOTE

• Filters data for transmission

3-1

Chapter 3
awk

3.1.1 Program Structure

An awk program is a sequence of statements of the following form:

pattern (action)
pattern (action)

The first part of this chapter shows a general statement of the awk syntax.
Examples show the syntax rules in use in “Using awk”, later in this chapter.

awk is a file-processing programming language designed to make many
common information and retrieval text manipulation tasks easy to state and
perform, awk performs the following tasks:

• Generates reports

• Matches patterns

• Validates data

Programming Tools Guide
1003-48614-00

awk operates on a set of input files, scanning the input lines, in order, one at
a time. In each line, awk searches for the pattern described in the awk
program. If that pattern is found in the input line, a corresponding action is
performed. In this way, each statement of the awk program is executed for a
given input line. When all the patterns are tested, the next input line is
fetched and the awk program is once again executed from the beginning.

This chapter describes an earlier version o/'awk. If you want to
use this version of awk, specify awk on the invocation line. If
you want to use the newer version of awk, refer to Chapter 2.

awk

3-2

An awk program has the following structure:

BEGIN section
record or main section
END section

The BEGIN section is run before any input lines are read, and the END
section is run after all the data files are processed. The record section is run
over and over for each separate line of input. The words BEGIN and END
are actually special patterns recognized by awk.

Values are assigned to variables from the awk command line. The BEGIN
section is run before these assignments are made.

3.1.2 Running awk

There are two ways to run an awk program, shown in the following syntax
block:

In the awk command, either the pattern or the action may be omitted, but
not both. If there is no action for a pattern, the matching line is simply
printed. If there is no pattern for an action, then the action is performed for
every input line. The null awk program does nothing. Since patterns and
actions are both optional, actions are enclosed in braces to distinguish them
from patterns.

For example, this awk program prints every input line that has an x in it:

/x/ (print)

Programming Tools Guide
1003-48614-00

awk

]M-]awk -Fc

c

program

3-3

awk-program-file

file

awk ' /x/ (print) ' filel

If no input file is specified, awk expects input from standard input. You can
also specify that input comes from stdin by using a hyphen (-) as one of the
input files. In this example, the awk program (between the single quotes)
looks for input from filel and from stdin. Input from filel is processed first,
followed by input from stdin'.

awk ' /x/ (print) ' filel -

Running a Program from a Command Line

If the program is short, it is often easiest to make the program the first
argument on the command line. The program must be enclosed in single
quotes in order for the shell to accept the entire string as the first argument
to awk. In the following example, the awk program (between the single
quotes) matches the pattern x in filel and prints the lines that contain a
match:

’program’
-f awk-program-file

Any character to be used as a field separator. Blanks
and tabs are the default field separators.

The awk program itself entered on the command line
and enclosed in single quotes.

A file containing an awk program.

An input file containing field-separated records for
processing by awk.

Standard input. If no input files are specified on the
command line, or if a hyphen is specified, awk looks to
stdin for input. If input files and a hyphen are specified
on the command line, awk uses both the files and stdin
for input in the order they appear on the command line.

Programming Tools Guide
1003-48614-00

awk

3-4

2. string constants

3. keywords

4. identifiers

7. comments

8. tokens used for grouping

5. operators

6. record and field tokens

Running a Program in a File

If your awk program is long or you want to save it for future use, you can
store the program in a separate file, for example awkprog. Specifying the -f
option on the command line tells awk to fetch it, as follows:

awk -f awkprog filel

The input file filel may include stdin, as is shown previously.

These alternative ways of presenting your awk program for processing are
illustrated by the following examples. Consider the following command:

awk ' BEGIN (print "hello, world" exit) '
When this command is given to the shell, the following string is printed to
standard output:

hello, world

This awk program could be run by putting the following line in a file named
awkprog'.

BEGIN (print "hello, world" exit)

The following command given to the shell would have the same effect as the
previous procedure:

awk -f awkprog

3.1.3 Lexical Units

Programming Tools Guide
1003-48614-00

All awk programs are made up of lexical units called tokens. In awk there
are eight token types:

1. numeric constants

awk

Identifiers

3-5

Keywords

The following strings are used as keywords:

String Constants

A string constant is a sequence of zero or more characters surrounded by
double quotes as in "a", "ab", and "12". A double quote is put in a string by
preceding it with a backslash (\) as in "He said, \" Sit! A newline is put
in a string by using \n in its place. No other characters need to be escaped.
Strings can be any length.

Numeric Constants

A numeric constant is either a decimal constant or a floating constant. A
decimal constant is a non-null sequence of digits containing at most one
decimal point as in 12, 12., 1.2, and .12. \ floating constant is a decimal
constant followed by e or E, followed by an optional + or - sign, followed by a
non-null sequence of digits as in 12e3, 1.2e3, 1.2e-3, and 1.2E+3. The
maximum size and precision of numeric constants are machine dependent.

BEGIN
END
FILENAME
FS
NF
NR
OFS
ORS

print
printf
split
sprintf
sqrt
string
substr
while
length

Programming Tools Guide
1003-48614-00

OFMT
RS
break
close
continue
exit
exp
for

getline
if
in
index
int
log
next
number

Identifiers in awk serve to denote variables and arrays. An identifier is a
sequence of letters, digits, and underscores, beginning with a letter or an
underscore. Uppercase and lowercase letters are different.

awk

DescriptionSymbol Usage

minus-equals

times-equals

divide-equalsS5

mod-equals%=

increments

decrements

3-6

Operators

awk has assignment, arithmetic, relational, and logical operators similar to
those in the C programming language and regular expression pattern
matching operators similar to those in egrep(l) and lex(l).

Assignment operators are shown in Table 3-1.

assignment
plus-equals

Programming Tools Guide
1003-48614-00

Table 3-1
awk Assignment Operators

X += Y is similar to
X = X+Y
X-=Y is similar to
X = X—Y
X *= Y is similar to
X = X*Y
X /= Y is similar to
X = X/Y
X %= Y is similar
to X = X%Y
++X and X++ are
similar to X=X+1
— X and X — are
similar to X = X -1

awk

Arithmetic operators are shown in Table 3-2.

DescriptionSymbol

Relational operators are shown in Table 3-3.

DescriptionSymbol

3-7

Table 3-3
awk Relational Operators

unary and binary plus
unary and binary minus
multiplication
division
modulus
grouping

less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than

Programming Tools Guide
1003-48814-00

Table 3-2
awk Arithmetic Operators

%
(...)

<
<=

!=
>=
>

awk

Logical operators are shown in Table 3-4.

Symbol Description

Regular expression matching operators in awk are shown in the Table 3-5.

Symbol Description

r

3-8

Record and Field Tokens

$0 is a special variable whose value is that of the current input record. $1,
$2, and so forth, are special variables whose values are those of the first field,
the second field, and so forth, of the current input record. The keyword NF
(Number of Fields) is a special variable whose value is the number of fields in
the current input record. Thus $NF has the value of the last field of the
current input record. Notice that the first field of each record is numbered 1
and that the number of fields can vary from record to record. None of these
variables is defined in the action associated with a BEGIN or END pattern,
where there is no current input record.

The keyword NR (Number of Records) is a variable whose value is the
number of input records read so far. The first input record read is 1.

&&
II

I

matches
does not match

and
or
not

Table 3-4
awk Logical Operators

Table 3-5
Operators for Matching Regular Expressions

Programming Tools Guide
1003-48614-00

awk

A comment can be appended to the end of any line of an awk program.

3-9

Multiline Records. The assignment RS =" " makes an empty line the
record separator and makes a non-null sequence (consisting of blanks, tabs,
and possibly a newline) the field separator. With this setting, none of the
first NF fields of any record are null.

Field Separator. The keyword FS (Field Separator) is a variable indicating
the current field separator. Initially, the value of FS is a blank, indicating
that fields are separated by white space (any non-null sequence of blanks and
tabs). Keyword FS is changed to any single character, c, by executing the
assignment statement F = "c" in an action or by using the optional command
line argument-Fc. Two values of c have special meaning: space and tab (\t).
The assignment statement FS =" " makes white space (a tab or blank) the
field separator; on the command line, -F\t makes a tab the field separator.

If the field separator is not a blank, then there is a field in the record on each
side of the separator. For instance, if the field separator is 1, the record
1XXX1 has three fields. The first and last are null. If the field separator is
blank, then fields are separated by white space and none of the NF fields are
null.

Record Separators. The keyword RS (Record Separator) is a variable
whose value is the current record separator. The value of RS is initially set
to newline, indicating that adjacent input records are separated by a newline.
Keyword RS may be changed to any character, c, by executing the
assignment statement RS = "c" in an action.

Programming Tools Guide
1003-48614-00

Output Record and Field Separators. The value of OFS (Output Field
Separator) is the output field separator. It is put between fields by print.
The value of ORS (Output Record Separators) is put after each record by
print. Initially, ORS is set to a newline and OFS to a space. These values
may change to any string by assignments such as ORS = "abc" and OFS =
"xyz".

Comments

A comment is introduced by a # and terminated by a newline. For example:

this line is a comment

awk

3-10

Tokens Used for Grouping

Tokens in awk are usually separated by non-null sequences of blanks, tabs,
and newlines, or by other punctuation symbols such as commas and
semicolons. Braces (...) surround actions, slashes /..J surround regular
expression patterns, and double quotes "..." surround string constants.

3.1.4 Primary Expressions
In awk, patterns and actions are made up of expressions. The basic building
blocks of expressions are the primary expressions:

numeric constants
string constants
variables
functions

Numeric Constants

The format of a numeric constant was defined earlier in this chapter (refer to
“Lexical Units”). Numeric values are stored as floating-point numbers. The
string value of a numeric constant is computed from the numeric value. The
preferred value is the numeric value. Numeric values for string constants
are shown in Table 3-6.

Each expression has both a numeric and a string value, one of which is
usually preferred. The rules for determining the preferred value of an
expression are explained in “Expressions” later in this chapter.

Numeric
Constant

Numeric
Value

0
1
0.5

50

String
Value

Table 3-6
Numeric Values for String Constants

Programming Tools Guide
1003-48614-00

0
1
.5
,5e2

0
1
.5

50

awk

3-11

String Constants

The format of a string constant was defined earlier in “Lexical Units.” The
numeric value of a string constant is 0 unless the string is a numeric constant
enclosed in double quotes. In this case, the numeric value is the number
represented. The preferred value of a string constant is its string value. The
string value of a string constant is always the string itself. String values for
string constants are shown in Table 3-7.

Variables

A variable is one of the following:

identifier
identifier [expression]
$term

The numeric value of any uninitialized variable is 0, and the string value is
the empty string.

An identifier by itself is a simple variable. A variable of the form identifier
[expression] represents an element of an associative array named by
identifier. The string value of expression is used as the index into the array.
The preferred value of identifier or identifier [expression] is determined by
context.

String
Constant

"a''
"XYZ"
"o"
"1"
”.5”
",5e2"

Numeric
Value

0
0
0
0
1
0.5
0.5

String
Value

Programming Tools Guide
1003-48614-00

Table 3-7
String Values for String Constants

empty space
a
XYZ
0
1
.5
.5e2

awk

3-12

Functions

awk has a number of built-in functions that perform common arithmetic and
string operations. The built-in arithmetic functions are as follows:

exp (expression)
int (expression)
log (expression)
sqrt (expression)

These functions (exp, int, log, and sqrt) compute the exponential, integer
part, natural logarithm, and square root, respectively, of the numeric value of
expression. The (expression) may be omitted; then the function is applied to
$0. The preferred value of an arithmetic function is numeric. The built-in
string functions are as follows:

getline
indexlexpressionl, expression2)
length (expression)
split(expression, identifier, expression2)
split(eapression, identifier)
sprintf(format, expression!, expression...)
substr(expressionl, expression)
substr(expressionl, expression, expressions)

Programming Tools Guide
1003-48614-00

The variable $0 refers to the current input record. Its string and numeric
values are those of the current input record. If the current input record
represents a number, then the numeric value of $0 is the number and the
string value is the literal string. The preferred value of $0 is string unless
the current input record is a number. $0 cannot be changed by assignment.

The variables $1, $2,... refer to fields 1, 2, and so forth, of the current input
record. The string and numeric value of $i for l<=i<=NF are those of the ith
field of the current input record. As with $0, if the ith field represents a
number, then the numeric value of $i is the number and the string value is
the literal string. The preferred value of $i is string unless the ith field is a
number. Si may be changed by assignment; the value of $0 is changed
accordingly.

In general, $term refers to the input record if term has the numeric value 0
and to field i if the greatest integer in the numeric value of term is i. If i<0
or if i>=100, then accessing $i causes awk to produce an error diagnostic. If
NF<i<=100, then $i behaves like an uninitialized variable. Accessing Si for i
> NF does not change the value of NF.

auik

3-13

The function length without an argument returns the number of characters
in the current input record. With an expression argument, length(e) returns
the number of characters in the string value of e. For example:

length ("abc")=3
length (17)=2.

Programming Tools Guide
1003-48614-00

The function getline causes the next input record to replace the current
record. One is returned if there is a next input record; zero is returned if
there is no next input record. The value of NR is updated.

The function index(ef,e2) takes the string value of expressions el and e2 and
returns the first position of where e2 occurs as a substring in el. If e2 does
not occur in el, index returns 0. For example:

index ("abc", "be")=2
index ("abc", "ac")=0.

The function splitfe array, Sep) splits the string value of expression e into
fields that are then stored in arrayll], array[2], ..., arrayin] using the string
value of sep as the field separator, split returns the number of fields found
in e. The function split(e, array) uses the current value of FS to indicate the
field separator. For example, after invoking the following function, a[2],....
a[n] is the same sequence of values as $1, $2 ..., $NF:

n = split ($0, a), a[l],

The function sprintft/j el, e2, ...) produces the value of expressions el, e2, ...
in the format specified by the string value of the expression f. The format
control conventions are those of the printf(3S) statement in the C language,
except that the use of the asterisk, *, for field width or precision is not
allowed.

The function substr(sfring, pos) returns the suffix of string starting at
position pos. The function substr (st ring, pos, length) returns the substring
of string that begins at position pos and is length characters long. If pos +
length is greater than the length of string, then substr(siring, pos, length) is
equivalent to substr(siring, pos). For example:

substr("abc", 2, 1) = "b"
substr("abc", 2, 2) = "be"
substr("abc", 2, 3) = "be"

If position is less than 1, 1 is used. A negative or zero length produces a null
result. The preferred value of sprintf and substr is string. The preferred
value of the remaining string functions is numeric.

awk

3.1.5 Terms

3-14

Incremented Variables

An incremented variable has one of the following forms:

Binary Terms

Binary terms are of the following form:

terml binop term2

binop can be one of the five binary arithmetic operators: + (addition), -
(subtraction), * (multiplication), / (division), and % (modulus). The binary
operator is applied to the numeric value of the operands terml and term2,
and the result is the numeric value. This numeric value is the preferred
value, but it can be interpreted as a string value (see “Numeric Constants”
earlier in this chapter). The operators *, /, and % have higher precedence
than + and -. All operators are left-associative.

Unary Term

Unary terms are of the following form:

unop term
unop can be unary + or -. The unary operator is applied to the numeric value
of term, and the result is the numeric value which is preferred. However, it
can be interpreted as a string value. Unary + and - have higher precedence
than *, /, and %.

++ var
— var
var ++
var —

Table 3-8 shows the incremented variables, their value, and the effect of the

Various arithmetic operators are applied to primary expressions to produce
larger syntactic units called terms. All arithmetic is done in floating-point. A
term has one of the following forms:

primary expression
terml binop term2
unop term
incremented variable
(term)

Programming Tools Guide
1003-48614-00

awk

EffectValueForm
var = var + 1var + 1++ var

var = var - 1var - 1— var

var = var + 1var ++ var

var = var - 1var = var - 1var —

Terms Enclosed in Parentheses

Parentheses are used to group terms in the usual manner.

Concatenation of Terms

1+2 3+4

3-15

3.1.6 Expressions

An awk expression is one of the following forms:

incremented variable. The preferred value of an incremented variable is
numeric.

term
terml term2 ...
var asgnop expression

Programming Tools Guide
1003-48614-00

Table 3-8
Incremented Variables

In an expression of the form terml term2 the string value of the terms are
concatenated. The preferred value of the resulting expression is a string
value. Concatenation of terms has lower precedence than binary + and -.
This example has the string (and numeric) value of 37:

awk

ss

%=

3-16

Assignment Statements

Assignment statements have the form:

var asgnop expression
asgnop is one of the following assignment operators:

3.2 Input and Output
Input to awk can come from one or more files, or from standard input.
Output can go to standard output, to a printer, to one or more files, or be
piped to another program. For more information on handing input to awk,
refer to “Running awk” earlier in this chapter.

Programming Tools Guide
1003-48614-00

The preferred value of var is the same as that of expression.

In a statement of the form var = expression, the numeric and string values of
var become those of expression. The form var op - expression is equivalent to
var = var op expression, where op is one of the following operators:

+ (addition),
- (subtraction),
* (multiplication),
/ (division), and
% (modulus).

The asgnops are right-associative and have the lowest precedence of any
operator. Thus, a += b *= c-2 is equivalent to the sequence of assignments

b = b * (c-2)
a = a + b

au>k

Figure 3-9. Sample Input File,countries.

3-17

The wide spaces are tabs in the original input and a single blank separates
North and South from America. We use this data as the input for many of
the awk programs in this chapter since it is typical of the type of material
that awk is best at processing (a mixture of words and numbers arranged in
fields or columns separated by blanks and tabs).

3.2.2 Sample Input File, countries

For use as an example, the file countries, shown in Figure 3-1, has been
created. The file contains the area in thousands of square miles, the
population in millions, and the continent for the ten largest countries in the
world. (Figures are from 1978; Russia is placed in Asia.)

8650
3852
3692
3615
3286
2968
1269
1072
968
920

262
24

866
219
116
14

637
26
19
18

Programming Tools Guide
1003-48614-00

Russia
Canada
China
USA
Brazil
Australia
India
Argentina
Sudan
Algeria

Asia
North America
Asia
North America
South America
Australia
Asia
South America
Africa
Africa

3.2.1 Input Records and Fields

awk reads its input one record at a time. Unless changed by you, a record is
a sequence of characters from the input ending with a newline character or
with an end-of-file. awk reads in characters until it encounters a newline or
end-of-file and assigns the string of characters to the variable $0.

Once awk has read in a record, it then views the record as being made up of
fields. Unless you change it, a field is a string of characters separated by
blanks or tabs.

awk

3-18

You’ll notice that this does not produce exactly the output you wanted
because the field separator defaults to white space (tabs or blanks). North
America and South America inconveniently contain a blank. The -F option
allows you to designate only tabs as field separators so that the blanks in
North America and South America are not used as field separators. This
command line prints the desired results:

awk -F\t '{print $4, $1, $3}' countries

When this record is read by awk, it is assigned to the variable $0. If you
want to refer to this entire record, do it through the variable, $0. For
example, the following action prints the entire record:

{print $0}

Fields within a record are assigned to the variables $1, $2, $3, and so forth;
that is, the first field of the present record is referred to as $1 by the awk
program. The second field of the present record is referred to as $2 by the
awk program. The ith field of the present record is referred to as $i by the
awk program. Thus, in the file countries, the field values of the first record
are as follows:

$1 is equal to the string "Russia"
$2 is equal to the integer 8650
$3 is equal to the integer 262
$4 is equal to the string "Asia”
$5 is equal to the null string

To print the continent, followed by the name of the country, followed by its
population, use the following command:

awk '{print ?4, SI, S3)' countries

Programming Tools Guide
1003-48614-00

Each of the lines in the file has either four or five fields, depending on
whether blanks, or blanks and tabs, are defined as field separators. For
example, if blanks only are used as field separators, the lines containing
North America and South America have five fields. If tabs only are defined
as field separators, North America and South America are each considered to
be one field. In the example, the first record is

Russia 8650 262 Asia

awk

3-19Programming Tools Guide
1003-48614-00

3.2.3 Input From the Command Line

As shown above, under “Presenting Your Program for Processing,” you can
give your program to awk for processing by either including it on the
command line enclosed by single quotes, or by putting it in a file and naming
the file on the command line (preceded by the -f flag). It is also possible to
set variables from the command line.

Values may be assigned to variables from within an awk program. Variable
types are not declared: a variable is created simply by referring to it. The
following is an example of assigning a value to a variable:

x=5

This statement in an awk program assigns the value 5 to the variable x.
This type of assignment can be done from the command line. This provides
another way to supply input values to awk programs. For example, the
following command prints the value 5 to stdout'.

awk ' (print x }' x=5 -

The minus sign at the end of this command is necessary to indicate that input
is coming from stdin instead of a file called x=5. After entering the
command, the user must proceed to enter input. The input is terminated
with alctrl-Dl

If the input comes from a file (filel in the example), the command is this:

awk '(print x)' filel

It is not possible to assign values to variables used in the BEGIN section in
this way.

If it is necessary to change the record separator and the field separator, it is
useful to do so from the command line as in the following example:

awk -f awkprog RS=":" filel

Here, the record separator is changed to the colon (:) character. This causes
your program in the file awkprog to run with records separated by the colon
instead of the newline character and with input coming from filel. It is
similarly useful to change the field separator from the command line.

The separate option, -Fx, that is placed directly after the command awk can
also change the field separator from white space to the character x. Consider
this example:

awk -F: -f awkprog filel

This command changes the field separator, FS, to the colon (:) character.

awk

awk ' {

{x=5; print x)

3-20

print $1, $3 }' countries

The output produced is this:

Note that if the field separator is specifically set to a tab (that is, with the -F
option or by making a direct assignment to FS), then blanks are not
recognized by awk as separating fields. However, the reverse is not true.
Even if the field separator is specifically set to a blank, tabs are still
recognized by awk as separating fields.

3.2.4 Output Printing

An action may have no pattern; in this case, the action is executed for all
lines as in this simple printing program:

(print)

This is one of the simplest actions performed by awk. It prints each line of
the input to the output. More useful is to print one or more fields from each
line. For instance, using the file countries that was used earlier, the
following program prints the name of the country and the population:

A semicolon at the end of statements is optional, awk accepts the following
statements and considers them to be equivalent:

(print $1)
(print $1;}

If you want to put two awk statements on the same line of an awk script, the
semicolon is necessary. For example, this program prints the number 5:

Programming Tools Guide
1003-48614-00

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 14
Sudan 19
Algeria 18

awk

3-21

(print NR, $1)

Using this program on the file countries yields the following:

As you have already seen, awk includes a number of special variables with
useful values, for example FS and RS. Two other special variables are
shown in the next example.

NR and NF are both integers that contain the number of the present record
and the number of fields in the present record, respectively. This statement
prints each record number and the number of fields in each record followed
by the record itself.

Parentheses are optional with the print statement. The following two
statements are equivalent:

{print $3, $2}
{print ($3, $2))

8650
3852
3692
3615
3286
2968
1269
1072
968
920

Items separated by a comma in a print statement are separated by the
current output field separator (normally spaces, even though the input is
separated by tabs) when printed. The output field separator (OFS) is
another special variable that you can change. (Refer to “Special Variables”
later in this chapter.) print also prints strings directly from your programs,
as with the following awk script:

{print "hello, world"}

262
24
866
219
116
14
637
26
19
18

Programming Tools Guide
1003-48614-00

Asia
North America
Asia
North America
South America
Australia
Asia
South America
Africa
Africa

{print NR, NF, $0}
Using this program on the file countries yields the following:

1 4 Russia
2 5 Canada
3 4 China
4 5 USA
5 5 Brazil
6 4 Australia
7 4 India
8 5 Argentina
9 4 Sudan
10 4 Algeria

The following program prints the record number and the first field of each
record:

auik

{print 1

3-22

8650
3852
3692
3615
3286
2968
1269
1072
968
920

262
244
866
219
116
14
637
26
19
18

Russia
Canada
China
USA

Brazil
Australia

India
Argentina

Sudan
Algeria

1 Russia
2 Canada
3 China
4 USA
5 Brazil
6 Australia
7 India
8 Argentina
9 Sudan
10 Algeria

This is an easy way to supply sequence numbers to a list, print, by itself,
prints the input record, using the default format %.6g for each numeric
variable printed. To print an empty line, type the following:

Programming Tools Guide
1003-48614-00

awk also provides the printf statement so that you can format output as
desired, printf formats the expressions in the list according to the
specification in the string format, and prints them.

printf "format", expr, expr, ...

The format statement is almost identical to that of printf(3S) in the C
library. The following example prints $1 as a string of 10 characters (right
justified):

{ printf "%10s %6d %6d\n", $1, $2, $3)

The second and third fields (6-digit numbers) make a neatly columned table:

awk

/x/

or

3-23

With printf, no output separators or newlines are produced automatically-—
you must add them as in this example. The escape characters \n (newline),
\t (tab), \b (backspace), and \r (carriage return) may be specified.

There is a third way that printing can occur on standard output when a
pattern without an action is specified. In this case, the entire record, $0, is
printed. For example, the following program prints any record that contains
the character x.

Programming Tools Guide
1003-48614-00

There are two special variables that go with printing, OFS and ORS. By
default, these are set to blank and the newline character, respectively. The
variable OFS is printed on the standard output when a comma occurs in a
print statement such as the following:

{ x="hello”; y="world"
print x,y
1

The statement above prints the following:

hello world

However, without the comma in the print statement the spacing is incorrect:

{ x="hello"; y="world"
print x y
)

The statement above prints the following:

helloworld
To get a comma in the output, you can either insert it in the print statement
or you can change OFS in a BEGIN section. The following statements
produce a comma in the output:

(x="hello"; y="world"
print x"," y
1

BEGIN {OFS=", "}
(x="hello"; y="world"
print x, y
)

awk

3-24

Both of these last two scripts yield hello, world. Note that the output
field separator is not used when $0 is printed.

Programming Tools Guide
1003-48614-00

3.2.5 Output to Files

The operating system shell allows you to redirect standard output to a file,
awk also lets you direct output to many different files from within your awk
program. For example, with your input file countries, you want to print all
the data from countries of Asia in a file called ASIA., all the data from
countries in Africa in a file called AFRICA, and so forth. This is done with the
following awk program:

{ if ($4 == "Asia") print > "ASIA"
if ($4 == "Europe") print > "EUROPE"
if ($4 == "North") print > "NORTH_AMERICA"
if ($4 == "South") print > "SOUTH_AMERICA"
if ($4 == "Australia") print > "AUSTRALIA"
if ($4 == "Africa") print > "AFRICA"

)
Control flow statements are discussed in “Flow of Control” later in this
chapter.

In general, you may direct output into a file after a print or a printf
statement by using a statement of the following form:

print > "filename"

filename is the name of the file receiving the data. The print statement may
have any legal arguments to it.

Notice that the filename is quoted. Without quotes, filenames are treated as
uninitialized variables and all output then goes to stdout, unless redirected
on the command line.

If > is replaced by », output is appended to the file rather than overwriting
it. A maximum of ten files can be written in this way.

awk

"sort”

3.3 Patterns

3-25

A pattern in front of an action acts as a selector that determines if the action
is to be executed. A variety of expressions are used as patterns:

• Certain keywords

• Arithmetic relational expressions

• Regular expressions

• Combinations of these

Only one output statement to a pipe is permitted in an awk program. In all
output statements involving redirection of output, the files or pipes are
identified by their names, but they are created and opened only once in the
entire run.

Programming Tools Guide
1003-48614-00

awk executes the entire program before it executes the command after a
pipe; in the case above, the mailx(l) command. The following example takes
the first field of each input record, sorts these fields, and then prints them:

(
print $1 I
)

The following example guarantees that the output from print always goes to
your terminal:

(
print ... I "cat -v > /dev/tty"
1

3.2.6 Output to Pipes

It is also possible to direct printing into a pipe instead of a file. In the
following example, mary is a person’s login name. Any record with the
second field equal to XX is sent to the user, mary, as mail;

{
if ($2 == "XX") print I "mailx mary"
1

awk

3.3.1 BEGIN and END

Country Area Population Continent

3-26

The keyword, BEGIN, is a special pattern that matches the beginning of the
input before the first record is read. The keyword, END, is a special pattern
that matches the end of the input after the last line is processed. BEGIN
and END thus provide a way to gain control before and after processing for
initialization and wrapping up.

As you have seen, you can use BEGIN to put column headings on the output.
The following line puts a heading on the population table:

BEGIN { FS= "\t"
printf "Country\t\t Area\tPopulation\tContinent\n\n"}
{printf "%-10s\t%6d\t%6d\t\t% -14s\n", $1, $2, $3, $4}

END (print "The number of records is", NR}
In this program, FS is set to a tab in the BEGIN section and as a result all
records in the file countries have exactly four fields. Note that if BEGIN is
present, it is the first pattern; END must be last if it is used.

Programming Tools Guide
1003-48614-00

BEGIN {print ’’Country", "Area", "Population", "Continent"}
{print}

The output looks like this:

Russia 8650
Canada 3852
China 3692
USA 3615

262 Asia
24 North America
866 Asia

219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa
Algeria 92018 Africa

Formatting is not very good here; printf would do a better job and is
generally used when appearance is important.

Recall also, that the BEGIN section is a good place to change special
variables such as FS or RS. For example:

awk

$3 > 100

$1 >= "S"

In the file countries, these are as follows;

Australia

3-27

North America
Africa

In the absence of other information, fields are treated as strings, so the
following program compares the first and fourth fields as strings of
characters:

3.3.2 Relational Expressions

An awk pattern is any expression involving comparisons between strings of
characters or numbers. For example, if you want to print only countries with
more than 100 million population, use

Russia
China
India

3615
968

219
19

8650
3692
3615
3286
1269

262
866
219
116
637

Asia
Asia
North America
South America
Asia

USA
Sudan

Programming Tools Guide
1003-48614-00

Russia
China
USA
Brazil
India

This awk program is a pattern without an action, so it prints each line whose
third field is greater than 100 as follows:

The conditions tested are < , <= , ==, !=, >=, and >. In such relational tests if
both operands are numeric, a numerical comparison is made. Otherwise, the
operands are compared as strings. The following statement selects lines that
begin with S, T, U, and greater:

$1 == $4

The following single line is printed:

2968 14 Australia

To print the names of the countries that are in Asia, use the following
program:

$4 == "Asia" {print $1)

The output produced is this:

awk

3-28

3.3.3 Regular Expressions

awk provides more powerful capabilities for searching for strings of
characters than were illustrated in the previous section. These are called
regular expressions. The simplest regular expression is a literal string of
characters enclosed in slashes:

Programming Tools Guide
1003-48614-00

/Asia/

This is a complete awk program that prints all lines that contain any
occurrence of the name Asia. If a line contains Asia as part of a larger word
like Asiatic, it is also printed (but there are no such words in the countries
file.)

awk regular expressions include regular expression forms found in the text
editor, ed(l), and the pattern finder, grep(l), in which certain characters
have special meanings.

For example, you could print all lines that begin with A:

/"A/

You could print all lines that begin with A, B, or C:

[ABC]/

Or, you could print all lines that end with ia\

/ia$/

In general, the circumflex (") indicates the beginning of a line. The dollar
sign ($) indicates the end of the line, and characters enclosed in brackets ([])
match any one of the characters enclosed. In addition, awk allows
parentheses for grouping, the pipe (I) for alternatives, a plus sign (+) for one
or more occurrences, and a question mark (?) for zero or one occurrences.
This example prints all records that contain either an x or ay:

/x|y/ (print)

This example prints all records that contain an a followed by one or more x’s
followed by a b, for example axb, Paxxxxxxxb, QaxxbR:

/ax+b/ (print)

The following example prints all records that contain an a followed by zero or
one x followed by a b, for example ab, axb, yaxbPPP, or CabD:

/ax?b/ (print)

awk

3-29

The two characters, period (.), and asterisk (*) have the same meaning as
they have in ed(l), namely, a period can stand for any character and an
asterisk means zero or more occurrences of the character preceding it. The
following example matches any record that contains an a followed by any
character followed by a b.

/a.b/

That is, the record must contain an a and a 6 separated by exactly one
character. For example, Ia.b/ matches axb, aPb and xxxxaXbxx, but not ab
or axxb.

The following example matches a record that contains an a followed by zero
or more x’s followed by a c. For example, it matches ac, axe, or
pqraxxxxxxxxxxc901:

/ax*c/

Russia
Australia
India
Algeria

Programming Tools Guide
1003-48614-00

Just as in ed(l), it is possible to turn off the special meaning of
metacharacters such as " and * by preceding these characters with a
backslash. An example of this is the following pattern which matches any
string of characters enclosed in slashes:

/\/*\//
You can also specify that any field or variable matches a regular expression
(or does not match it) by using the operators ~ or !". For example, using the
input file countries as before, the following program prints all countries
whose name ends in ia, which is different from lines that end in ia:

$1 ' /ia$/ (print $1}

auk

/“Asia|Africa) $/$4

3-30

&& and I I guarantee that their operands are evaluated from left to right;
evaluation stops as soon as truth or falsehood is determined.

8650
3692
3615
3286

262
866
219
116

Asia
Asia
North America
South America

Russia
China
USA
Brazil

Programming Tools Guide
1003-48614-00

3.3.4 Combinations of Patterns

A pattern can be made up of similar patterns combined with the operators 1 I
(OR), && (AND), I (NOT), and parentheses. This example selects lines where
the area ($2) is equal to or greater than 3000 square miles and the population
($3) is equal to or greater than 100 million:

82 >= 3000 &S 83 >= 100

The following output is produced:

3.3.5 Pattern Ranges

The pattern that selects an action may also consist of two patterns separated
by a comma:

patteml, pattem.2 {action)

In this case, the action is performed for each line between an occurrence of
patteml and the next occurrence of pattern2 inclusive. As an example with
no action, the following pattern prints all lines between the one containing
Canada and the line containing Brazil'.

/Canada/,/Brazil/

The following output is produced;

This example selects lines with Asia or Africa as the fourth field:

84 == "Asia" II 84 — "Africa"

An alternative way to write this last expression is with a regular expression
which selects records where the fourth field matches Africa or begins with
Asia:

awk

NR

NOTE

3-31

3.4 Actions
An awk action is a sequence of action statements separated by newlines or
semicolons. These action statements do a variety of bookkeeping and string
manipulating tasks.

This discussion of pattern matching pertains to the pattern
portion of the pattern / action awk statement. Pattern matching
can also take place inside an if or while statement in the action
portion. See “Flow of Control”, later in this chapter.

3852
3692
3615
3286

24
866
219
116

Programming Tools Guide
1003-48614-00

Canada
China
USA
Brazil

3.4.1 Variables, Expressions, and Assignments

awk provides the ability to do arithmetic and to store the results in variables
for later use in the program. As an example, consider printing the population
density for each country in the file countries.

{print $1, (1000000 * $3) / ($2 ♦ 1000))

(Recall that in this file the population is in millions and the area in
thousands.) The result is population density in people per square mile.

Russia 30.289
Canada 6.23053
China 234.561

North America
Asia
North America
South America

This examples does the action for lines 2 through 5 of the input:

NR == 2, NR == 5 { ...)

Different types of patterns may be mixed, such as in the following example
which prints all lines from the first line containing Canada up to and
including the next record whose fourth field is Africa.

/Canada/, $4 == "Africa"

awk

$1, 1000) }

"Asian countries is", pop }n,

total population of 3 Asian countries is 1765.

3-32

{printf "%10s %6.1f\n",

The output produced is this:

To compute the total population and number of countries from Asia, you
could write the following statement:

30.3
6.2

234.6
60.6
35.3
4.7

502.0
24.3
19.6
19.6

Programming Tools Guide
1003-48614-00

Russia
Canada
China
USA
Brazil
Australia
India
Argentina
Sudan
Algeria

USA 60.5809
Brazil 35.3013
Australia 4.71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is not good; using printf instead gives the output a better
look. The following statement produces better output:

/Asia/ { pop +== $3; ++n }
END {print "total population of",

The output produced is:

S3) / ($2 *

The operators ++, —, -=, /=, * =, +=, and %= are available in awk as they
are in C. The ++ operator, for example, adds one to the value of a variable.
The increment and decrement operators, ++ and —, are used as in the C
language. These operators are also used in expressions.

Arithmetic is done internally in floating-point. The arithmetic operators are
+, -, *, /, and % (modulus).

(1000000 *

awk

3.4.2 Initialization of Variables

END

3.4.3 Field Variables

BEGIN

3-33

Fields are accessed by expressions, thus $NF is the last field and $(NF -1) is
the second to the last. Note that the parentheses are needed since $NF - 1 is
1 less than the value in the last field.

In the previous example, you did not initialize pop or n; yet everything
worked properly. This is because (by default) variables are initialized to a
null string, which has a numerical value of 0. This eliminates the need for
most initialization of variables in BEGIN sections. We can use default
initialization to advantage in this program, which finds the country with the
largest population. This program produces the output China 866:

Programming Tools Guide
1003-48614-00

maxpop < $3 (
maxpop = $3
country = $1
1
{print country, maxpop)

(FS = "\t")
{ $4 = 1000 * $3 / $2; print)

or assign strings to a field as in

/USA/ { $1 = "United States" ; print)
which replaces USA by United States and prints the affected line:

United States 3615 219 North America

Fields in awk share the properties of variables. They are used in arithmetic
and string operations, may be initialized to a null string, or have other values
assigned to them. For example, divide the second field by 1000 to convert the
area to millions of square miles with

($2 /= 1000; print)

or process two fields into a third with

awk

NR

NF

FS

RS

3-34

Australia Argentina Algeria

Variables, string expressions, and numeric expressions may appear in
concatenations; the numeric expressions are treated as strings in this case.

/A/
END

3.4.5 Special Variables
Some variables in awk have special meanings. These are detailed here.

Number of the current record.

Number of fields in the current record.

Input field separator (by default it is set to a blank or
tab).
Input record separator (by default it is set to the newline
character).

The ith input field of the current record.

The entire current input record.

Output field separator (by default it is set to a blank).

Programming Tools Guide
1003-48614-00

$i
$0

OFS

{ s = s " " $1 }
{ print s)

3.4.4 String Concatenation

Strings are concatenated by writing them one after the other as in the
following example:

{ x = "hello"
x = x ", world"
print x

1
This results in the usual output:

hello, world

With input from the file countries, the following program prints countries
beginning with A.

awk

ORS

OFMT

FILENAME

3-35

Output record separator (by default it is set to the
newline character).

The format for printing numbers, with the print
statement, is %.6g by default.

The name of the input file currently being read. This is
useful because awk commands are typically of this form:

awk -fprogram filel file2 file3 ...

Programming Tools Guide
1003-48614-00

3.4.6 Type
Variables (and fields) take on numeric or string values according to context.
In this example, pop is presumably a number:

pop += $3

In this example country is a string.

country = $1

In the following example, the type of maxpop depends on the data found in
$3. It is determined when the program is run:

maxpop < $3
In general, each variable and field is potentially a string or a number, or both
at any time. When a variable is set by the assignment such as v = expr, its
type is set to that of expr. (Assignment also includes +=, ++, -=, and so
forth.) An arithmetic expression is of the type number; a concatenation of
strings is of type string. If the assignment is a simple copy as in vl = v2
then the type of vl becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to strings if necessary and the
comparison is made on strings.

The type of any expression may be coerced to numeric with expr + 0 and to
string with expr This last expression is string concatenated with a
null string.

awk

END

"Russia"

3-36 Programming Tools Guide
1003-48614-00

3.4.7 Arrays
As well as ordinary variables, awk provides one-dimensional arrays. Array
elements are not declared; they come into existence by being mentioned.
Subscripts may have any non-null value including non-numeric strings. As
an example of a conventional numeric subscript, the following statement
assigns the current input line to the NRth element of the array x:

x[NR] = $0

In fact, it is possible in principle (though perhaps slow) to process the entire
input in a random order with the following awk program:

(X [NR] = SO }
(... program ... }

The first line of this program records each input line into the array x. When
run on the file countries, the following program produces an array of
elements:

Arrays are also indexed by non-numeric values that give awk a capability
that resembles the associative memory of Snobol tables. For example, the
following program prints the specified country and its population:

/Asia/(pop["Asia"] += $3)
/Africa/{pop[Africa] += $3)
END (print "Asia=" pop["Asia"], "Africa="pop["Africa"])

The output looks like this:

Asia=1765 Africa=37

Notice the concatenation. Also, any expression can be used as a subscript in
an array reference. Thus, the following statement uses the first field of a line
(as a string) to index the array area:

area[51] = $2

{ x[NR] = $1)

The output looks like this:

x[l] =
x[2] = "Canada"
x[3] = "China"

and so forth.

awk

3-37

{max = length($l); name = $1 }
{print name}

3.5 Special Features
The final section describes the use of some special awk features.

3.5.1 Built-In Functions

The function length is provided by awk to compute the length of a string of
characters. The following program prints each record preceded by its length:

(print length, $0 }

In this case the variable length means Iength($0), the length of the present
record. In general, length(x) returns the length of x as a string.

With input from the file countries, the following awk program prints the
longest country name:

length($1) > max
END

Programming Tools Guido
1003-48614-00

The function split(s, array) assigns the fields of the strings to successive
elements of the array, array.

The following example assigns the value Now to w[l], is to w[2], the to w[3],
and time to w[4],

split ("Now is the time", w)

All other elements of the array w[], if any, are set to a null string.

It is possible to have a character other than a blank as the separator for the
elements of w. For this, use split with three elements as follows:

n = split(s, array, sep)

This splits the string s into array[1], array[n]. The number of elements
found is returned as the value of split. If the sep argument is present, its
first character is used as the field separator; otherwise, FS is used. This is
useful if, in the middle of an awk script, it is necessary to change the record
separator for one record, awk also provides the following math functions:

sqrt
log
exp
int

awk

3-38

8650
3852
3692
3615
3286
2968
1269
1072
968
920

262
24

866
219
116
14

637
26
19
18

Rus
Can
Chi
USA
Bra
Aus
Ind
Arg
Sud
Alg

Programming Tools Guide
1003-48614-00

They provide the square root function, the base e logarithm function, the
exponential function, and integral part function. This last function returns
the greatest integer less than or equal to its argument. These functions are
the same as those of the C math library (int corresponds to the libm floor
function) and so they have the same return on error as those in libm. (Refer
to the Programmer’s Reference Manual.')

The function substr(s,m,ri) produces the substring of s that begins at position
m and is at most n characters long. If the third argument (n in this case) is
omitted, the substring goes to the end of s. For example, you could
abbreviate the country names in the file countries with the following
statement:

The function index(s/,s2) returns the leftmost position where the string s2
occurs in si or zero if s2 does not occur in si.

The function sprintf formats expressions as the printf statement does but
assigns the resulting expression to a variable instead of sending the results to
stdout. This example sets x to the string produced by formatting the values
of $1 and $2:

x = sprintf("%10s %6d", $1, ?2)

The x may then be used in subsequent computations.

Asia
North America
Asia
North America
South America
Australia
Asia
South America
Africa
Africa

{ $1 - substr(51, 1, 3); print)

The output looks like this:

If s is a number, substr uses its printed image:

substr(123456789,3,4)=3456.

awk

The if statement is used as follows:

{

1

1
1

3-39

The function getline immediately reads the next input record. Fields NR
and $0 are set but control is left at exactly the same spot in the awk
program, getline returns 0 for the end of file and a 1 for a normal record.

3.5.2 Flow of Control

awk provides the following basic control statements within actions with
statement grouping as in the C language:

if-else
while
for

Programming Tools Guide
1003-48614-00

1
END { print country, maxpop }

The while statement is used as follows:

if (condition) statementl else statement2

The condition is evaluated and, if it is true, statementl is executed;
otherwise, statement2 is executed. The else part is optional. Several
statements enclosed in braces, {}, are treated as a single statement.
Rewriting the maximum population computation from the pattern section
with an if statement results in the following:

if (maxpop < S3) (
maxpop = S3
country = $1

while (condition) statement

The condition is evaluated; if it is true, the statement is executed. The
condition is evaluated again and, if true, the statement is executed. The cycle
repeats as long as the condition is true. For example, the following prints all
input fields, one per line:

{ i = 1
while (i <= NF) {

print Si
++i

awk

"is"

$2

{

)

END

BEGIN

END

3-40

Another example is the Euclidean algorithm for finding the greatest common
divisor of $1 and $2:

The for statement is like that of C, as follows:

for (expression! ; condition ; expressions) statement

This is another awk program that prints all input fields, one per line:

for (i = 1 ; i <= NF; i++)
print Si

Programming Tools Guide
1003-48614-00

1
In this program, the body of the for loop is executed for i equal to the string
Asia, then for i equal to the string North America, and so forth until all the

There is an alternative form of the for statement that is useful for accessing
the elements of an associative array in awk, as follows:

for (i in array) statement

This form executes statement with the variable i set in turn to each subscript
of array. The subscripts are each accessed once but in undefined order.
Chaos ensues if the variable i is altered or if any new elements are created
within the loop. For example, you could use the for statement to print the
record number followed by the record of all input records after the main
program is executed.

(x[NR] = $0 }
(for(i in x) print i, x[i] }

A more practical example is the following use of strings to index arrays to
add the populations of countries by continents:

{FS="\t"}
{population[S4] += $3)
{for(i in population)

print i, population[i]

1
printf SI "\n"
1

{printf "the greatest common divisor of " $1 "and ", $2,
while ($1 != $2) {

if ($1 > $2) SI -
else $2 -= $1

awk

3-41

An exit that occurs in the main body of an awk program causes execution of
the main body of that program to stop. No more records are read and the
END section is executed.

An exit in the END section causes execution to terminate at that point.

Note that the expression in the condition part of an if, while, or, for
statement can include the following:

• Relational operators like <, <=, >, >=, ==, and !=
• Regular expressions that are used with the matching operators and !

• Logical operators I I, &&, and 1

• Parentheses for grouping

possible values of i are exhausted (that is, until all the strings of names of
countries are used). Note, however, the order in which the loops are executed
is not specified. If the loop associated with Canada is executed before the
loop associated with the string Russia, such a program produces this:

South America 26
Africa 16
Asia 637
Australia 14
North America 219

Programming Tools Guide
1003-48614-00

The break statement (when it occurs within a while or for loop) causes an
immediate exit from the while or for loop.

The continue statement, when it occurs within a while or for loop, causes
the next iteration of the loop to begin.

The next statement in an awk program causes awk to skip immediately to
the next record and begin scanning patterns from the top of the program.
(Note the difference between getline and next: getline does not skip to the
top of the awk program.)

If an exit statement occurs in the BEGIN section of an awk program, the
program stops executing and the END section, if there is one, is not
executed.

awk

3.5.3 Report Generation

END
" use[np] I "sort +0 +2nr"

}

3-42

The flow of control statements in the last section are especially useful when
awk is used as a report generator, awk is useful for tabulating,
summarizing, and formatting information. We have seen an example of awk
tabulating populations in the last section. Here is another example. Suppose
you have a file prog.usage that contains lines of three fields: name, program,
and usage:

Brown
Brown
Jones
Jones
Smith
Smith

3
1
4
1

(uselSl "\t" $2) += S3)
{for (np in use)

print np "

Smith
Brown
Jones
Smith
Jones
Brown
Smith

9
1

Programming Tools Guide
1003-48614-00

The first line indicates that Smith used the draw program three times. If
you want to create a program that has the total usage of each program along
with the names in alphabetical order and the total usage, you could use the
following program, called listl:

This program produces the following output when used on the input file,
prog.usage:

eqn 1
spell 9
nroff 4
spell 5
draw
nroff

draw
eqn
nroff
nroff
spell 5
spell 9
draw 6

awk

{

}

Brown:

Jones:

Smith:

3-43

3.5.4 Cooperation with the Shell

Normally, an awk program is either contained in a file or enclosed within
single quotes:

awk '{print $1)' ...

Since awk uses many of the same characters the shell does (such as the
dollar sign and double quote), surrounding the program by single quotes
ensures that the shell passes the program to awk intact.

draw
nrof f

nrof f
spell

eqn
spell

4
5

1
9

Programming Tools Guide
1003-48614-00

9
1

if ($1 != prev) {
print $1 " : "
prev = $1

1
print " " $2 " " $3

The variable prev is used to ensure each unique value of $1 prints only once.
The following command combines the program usage for each person:

awk -f listl prog.usage I awk -f formatl

The output is this:

To format the previous output so that each name is printed only once, pipe
the output of the previous awk program into the following program, called
formatl:

It is often useful to combine different awk scripts with other shell commands
such as sort(l), as was done in the listl program above.

awk

3-44

runs the awk program

awk '(print $n)'

There are several ways to get the value of n into the awk program. One is to
define field as follows:

awk '{print $'$!'}'

Spaces are critical here: as written there is only one argument, even though
there are two sets of quotes. The $1 is outside the quotes, visible to the shell,
and therefore substituted properly when field is invoked.

Another method relies on the fact that the shell substitutes for $ parameters
within double quotes.

awk "{print \$ $1)"

Here the trick is to protect the first $ with a backslash; the $1 is again
replaced by the number when field is invoked.

Consider writing an awk program to print the nth field, where n is a
parameter determined when the program is run. That is, you want a
program called field such that

field n

Programming Tools Guide
1003-48614-00

3.5.5 Multidimensional Arrays

You can simulate the effect of multidimensional arrays by creating your own
subscripts. For example:

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)

mult[i j] = . . .

creates an array whose subscripts have the form ij; that is, 1,1; 1,2; and so
forth; and thus simulate a two-dimensional array.

Index

A

B-C

Index-1

Actions
Arithmetic functions
Arithmetic operators ..
Arrays

element declaration
identifiers
multidimensional
one-dimensional
subscripts

Assignment operators .
Assignment statements
awk command
awk program files
awk, running

BEGIN pattern
Binary terms
Characters

matching
Coercion of types
Comparisons

numeric
of variables
string

Concatenation
numeric expressions
strings
terms
variables

Constants
decimal
floating
numeric

.... 3-5

.... 3-5
3-5,10

3-28
3-35

 3-34
3-34
3-15
3-34

Programming Tools Guide
1003-48614-00

..... 3-1,31

........ 3-12

.... 3-7,32
 3-36
 3-36
 3-5

........ 3-44
 3-36
 3-36

.......... 3-6
3-16,31,35

 3-2
 3-3

 3-2,4

3-27,35
.... 3-35
3-27,35

3-2,26
.. 3-14

D-E

F

3-9

Index-2

Field separators
Fields

accessing with expressions
in records
number of fields in
number of records in
numbering
separators
special variables
tokens
variables

Files
output
specifying input to awk ...

Floating constants
Floating-point arithmetic
Floating-point numbers
Functions

arithmetic
built-in
getline
index
length
math

Decimal constants ...
Decrement operator .
ed text editor
END pattern
Expressions

as array subscripts
concatenation ..
regular
relational
to access a field

size limits
string

 3-33
 3-8
 3-8
 3-8
 3-18

3-3,18,19
 3-8
 3-8
 3-33

Programming Tools Guide
1003-48614-00

.... 3-5
3-5,11

..... 3-5

.... 3-32
... 3-28

. 3-2,26
3-10,31
... 3-36
... 3-34
... 3-28
... 3-27
... 3-33

 3-24
..... 3-3,19

 3-5
........ 3-32

 3-10
 3-10
 3-12

3-12,37,39
... 3-12,39
... 3-13,38
... 3-13,37

 3-37

G-H

I

J-K-L

M

Index-3

Keywords
length function
Lexical units
Logical operators

Matching
characters
pattern ranges
patterns
regular expressions

getline function ...
grep pattern finder
Grouping terms

Identifiers
Increment operator ...
Incremented variables
index function
Initializing variables .
Input

fields
from a file
from standard input
records

split ...
sprintf
string .
substr

 3-28
 3-30

3-6,28,29
 3-8

3-13,37
3-13,38
.... 3-12
3-13,38

3-5,26
.. 3-13
... 3-4

 3-6,8

3-12
3-28
3-15

Programming Tools Guide
1003-48614-00

.... 3-5,11

...... 3-32
 3-14
 3-13

...... 3-33
 3-16
 3-17
 3-19

3-3,17,19
 3-17

N

O

P-Q

Index-4

Operators
arithmetic
assignment
decrement
increment
logical
matching
regular expression matching
relational

Output
appending to a file

printing
to a pipe
to files

Output record separators

Numeric comparisons
Numeric constants
Numeric values, for string constants

 3-30
.. 3-7,32

 3-6
 3-32
 3-32

3-6,8,41
 3-41
 3-8

3-6,7,41
3-16,20
 3-24

3-21,23
.... 3-25
.... 3-24

 3-9

.. 3-27
3-5,10
.. 3-10

Pattern-action statements
Patterns

BEGIN
combinations
END
matching
matching ranges
ranges

Piping awk output
print statement
printf statement
Program structure

Programming Tools Guide
1003-48614-00

 3-1
. 3-1,25,27

 3-2
 3-30
 3-2

. 3-6,28,29
 3-30
 3-30
 3-25

3-21,22,24
3-22,23,24

 3-1,2

R

S

Index-5

Record separators
Records

multiline
numbering in fields .
output separators
separator

Regular expressions ...
Relational expressions
Relational operators ...
Report generation
Running awk

from a command line
using a program file

Programming Tools Guide
1003-48614-00

Separators
field
output record
record

Shell, using awk with
sort
split function
sprintf function
Statements

assignment
break
continue
exit
flow of control
for
if
next
print
printf
relational
while

String constants
numeric values
string values

 3-16
 3-41
 3-41
 3-41
 3-39

....... 3-40
 3-39
 3-41

3-21,22,24
3-22,23,24

 3-41
 3-39

. 3-5,10,11
 3-10
 3-11

 3-9
 3-9
 3-9

 3-43,44
3-25,43
.... 3-13
... 3-13

... 3-9
3-8,18
.... 3-9
.... 3-8
.... 3-9
.. 3-19
.. 3-28
.. 3-27
. 3-6,7
.. 3-42
. 3-2,4
.... 3-3
.... 3-4

T-U

V-W-X-Y-Z

Index-6

Terms
binary
concatenation
grouping
syntactic units
unary

Tokens
Type conversion of variables
Unary terms

Variables
assignment ...
built-in
concatenation
declaring .
identifiers
incremented ,
initializing
output
type

String functions
String values, for string constants
Strings

comparisons
concatenation

substr function

3-10,11,31,33
............. 3-35
........ 3-21,34

 3-34
 3-19
 3-5

............. 3-14

............. 3-33
 3-23
 3-35

3-12
3-11

3-27
3-34
3-13

Programming Tools Guide
1003-48614-00

 3-14
 3-15
 3-15
 3-14
 3-14

3-4,8,10
 3-35
 3-14

8

4.1 Introduction 4-1

4-2

4-17
4-19

Chapter 4
lex

Figures

4-1 Creation and use of a lexical analyzer with lex

..4-2

..4-3

..4-3

..4-6

..4-7

..4-8
4-12
4-13
4-14

Programming Tools Guide
1003-48614-00

42 Writing lex Programs............
The Fundamentals of lex Rules

Specifications......................
Actions......................................

Advanced lex Usage...................
Some Special Features..........
Definitions...............................
Subroutines

Using lex with yacc...................

4.3 Running lex...............................
Running lex with yacc.............

4-1

Chapter 4
lex

Programming Tools Guide
1003-48614-00

4.1 Introduction
lex is a software tool that helps you solve problems drawn from text
processing, code enciphering, compiler writing, and other areas. In text
processing, you can check the spelling of words for errors; in code
enciphering, you can translate certain patterns of characters into others; and
in compiler writing, you can identify the tokens (smallest meaningful
sequences of characters) in the program to be compiled. The problem
common to all of these tasks is recognizing different strings of characters that
satisfy certain characteristics. In the case of compiler writing, creating the
ability to solve the problem requires implementing the compiler’s lexical
analyzer. Hence the name lex.

It is not essential to use lex to handle problems of this kind. You could also
write programs in a standard language such as C to handle them. lex
produces such C programs and is therefore called a program generator, lex
offers a faster, easier way to create programs that perform these tasks. Its
weakness is that the C programs it creates that are often longer than
necessary for the task at hand and execute more slowly than they otherwise
might. In many applications, this is a minor consideration, and the
advantages of using lex considerably outweigh it.

To understand what lex does, refer to the diagram in Figure 4-1. The lex
source, often called the lex specification, consists of a list of rules specifying
sequences of characters (expressions) to be searched for in an input text, and
the actions to take when an expression is found. The source is read by the
lex program generator. The output of the program generator is a C program
(lex analyzer in C) that is compiled by a C compiler to generate the
executable object program (lex analyzer program a.out) that performs the
lexical analysis.

Finally, a.out takes as input any source file and produces the desired output,
such as altered text or a list of tokens.

lex

lex

Figure 4-1. Creation and use of a lexical analyzer with lex.

• Translate lex source.

4-2

• Compile, link, and execute the lexical analyzer in C.

• Run the lexical analyzer program.

lex can also be used to collect statistical data from the input, such as
character count, word length, and number of occurrences of a word.

This chapter describes how to perform the following tasks:

• Write lex source.

lex
source

Input
Text

lex
analyzer

inC

output:
tokens,

text, etc.

4.2 Writing lex Programs
Alex specification can consist of three sections: definitions, rules, and user
subroutines. The rules section is mandatory. Definitions and user
subroutines are optional, but must appear in the indicated order if they are
present. When all sections are present, a full specification file looks like this:

definitions
%%
rules
%%
subroutines

Programming Tools Guide
1003-48614-00

c
compiler

lex
analyzer
program

lex

4.2.1 The Fundamentals of lex Rules

4-3

The rules section opens with the delimiter %%. If a subroutine section
follows, another %% delimiter ends the rules section. If there is no second
delimiter, the rules section is presumed to continue to the end of the
program. Because the definition and subroutine sections are optional, the
smallest lex program specification is as follows:

%%

orange;
Because you did not specify an action before the semicolon, lex does nothing
but print out the original input text with every occurrence of this regular
expression removed (that is, without any occurrence of the string orange at
all).

Each rule consists of a specification of the pattern sought and the action(s) to
take on finding it. (Note the dual meaning of the term specification. It can
mean either the entire lex source itself or, within it, a representation of a
particular pattern to be recognized.) Whenever the input consists of patterns
not sought, lex writes out the input exactly as it finds it. So, the simplest lex
program consists only of the beginning rules delimiter: %%. It writes out the
entire input with no changes at all. Typically, the rules are more elaborate
than that.

Programming Tools Guide
1003-48614-00

Specifications

The patterns that you are interested in are specified with a notation called
regular expressions. A regular expression is formed by stringing together
characters with or without operators. The simplest regular expressions are
strings of text characters with no operators at all.

apple
orange
pluto

These three regular expressions match any occurrences of those character
strings in an input text. If you want to have your lexical analyzer, a.out,
remove every occurrence of orange from the input text, specify the following
rule. The semicolon indicates the end of a line.

lex

?

(*)

For example, m+ is a regular expression matching any string of m’s:

or

4-4

Unlike the orange example, most expressions to be searched for cannot be
specified so easily. The expression itself might simply be too long.

More commonly, the class of desired expressions is too large; it can, in fact,
be infinite. Using operators, regular expressions can be formed signifying
any expression of a certain class. The operators are as follows:

777

The string of blanks on the third line matches simply because it has no 7’s in
it at all.
Brackets ([]) indicate any one character from the string of characters
specified between the brackets. Thus, [dgka] matches a single d, g, k, or a.
Note that commas are not included within the brackets. Any comma here
would be taken as a character to be recognized in the input text. Ranges
within a standard alphabetic or numeric order are indicated with a hyphen
(-). The sequence [a-z], for instance, indicates any lowercase letter.

The following regular expression matches any letter (whether uppercase
lowercase), any digit, an asterisk, an ampersand, or a pound sign.

[A-Za-z0-9*s#]

Consider the following input text. A lexical analyzer with the previous

One or more occurrences of the preceding expression.

Zero on one occurrence(s) of the preceding expression (this is
equivalent to saying that the preceding expression is optional).

Zero or more occurrences of the preceding expression. (It may at
first seem odd to speak of 0 occurrences of an expression and to
need an operator to capture the idea, but it is often quite helpful.
An example is shown later.)

mmm
m
mmmmm
mm

And 7* is a regular expression matching any string of zero or more 7’s:

77
77777

Programming Tools Guide
1003-4861400

lex

4-5

specification in one of its rules recognizes the *, &, r, and # characters. On
recognition of these characters, the lex analyzer performs whatever action
the rule specifies (no action is specified here); and prints the rest of the text
as it stands.

e
pay
distance
PH
EngineNo99
R2D2

Note that it would not recognize the following as identifiers:

not_idenTIFER
5times
Shello

This occurs because not_idenTIFER has an embedded underscore, 5times
starts with a digit rather than a letter, and Shello starts with a special
character.

Special characters can be searched for in two ways. The character can be
enclosed in single quotes (’), or, as in the C language, a backslash (\) can
precede the special character. All C language escapes are recognized. The
following are understood by lex:

newline
return
single quote (')

Programming Tools Guide
1003-48614-00

$$$$?? ????>!!*$$ $$$$$$S+====r”# ((

The operators are powerful in combination. For example, the regular
expression to recognize an identifier in many programming languages is as
follows:

[a-zA-Z][0-9a-zA-ZJ*

An identifier in these languages is defined to be a letter followed by zero or
more letters or digits, and that is just what the regular expression says. The
first pair of brackets matches any letter. The second, if it were not followed
by an asterisk, would match any digit or letter. The two pairs of brackets
with their enclosed characters would then match any letter followed by a
digit or a letter. But with the asterisk, the example matches any letter
followed by any number of letters or digits. In particular, it would recognize
the following as identifiers:

lex

4-6

backslash (\)
tab
backspace
form feed
xxx in octal notation

Programming Tools Guide
1003-48614-00

'\t'
'\b'
'\f'
z\xxxz

lex stores every character string that it recognizes in a character array called
yytext[]. The contents of the array can be printed or manipulated with
actions. The following example counts the total number of all digit strings in
an input text, prints the running total of the number of digit strings (not their
sum) and prints out each one as soon as it is found:

For example, to use the backslash method to recognize an asterisk followed
by any number of digits, you can use this pattern:

[1-91

Actions

Actions are program fragments in the C language that specify the action to be
taken once lex recognizes a string matching the regular expression. Actions
can do input and output, call subroutines, and alter arrays and variables.
When lex recognizes a matching string at the start of a rule, it looks to the
right of the rule for the action to be performed. An action can consist of as
many statements as are needed for the job at hand. If the action is more
than one line, enclose it in braces to inform lex that the action is for one rule
only. Kinds of actions include recording the token type found and its value, if
any; replacing one token with another; and counting the number of instances
of a token or token type. You might want to print out a message noting that
the text has been found or a message transforming the text in some way. For
example, the following rule recognizes the expression Amelia Earhart and
notes this recognition:

"Amelia Earhart" printf("found Amelia");

The next example replaces a lengthy medical term with its acronym:

Electroencephalogram printf("EEG");

To count the lines in a text, lex must recognize end-of-lines and increment a
line counter, lex uses the standard escape sequences from C such as \n for
end-of-line. The following example shows a line-counter where lineno, like
other C variables, is declared in the definitions section of the lex source:

\n lineno++;

lex

+?[1-91+

4-7Programming Tools Guide
1003-48614-00

4.2.2 Advanced lex Usage

lex provides features that let you process input text containing complicated
patterns. The features include rules that decide what specification is
relevant when more than one seems so at first, functions that transform one
matching pattern into another, and the use of definitions and subroutines.
Consider the following example:

printf("negative integer");
printf("positive integer");
printf("negative fraction, no whole number part");
printf("railroad is one word");
printf("Here's a crook");
subprogcount++;

{ printf("may have a G word here: %s", yytext);
Gstr ingcount.++; }

The first three rules recognize negative integers, positive integers, and
negative fractions between 0 and —1. The use of the terminating + in each
specification ensures that one or more digits compose the number in question.
Each of the next three rules recognizes a specific pattern. The specification
for railroad matches cases where one or more blanks intervene between the
two syllables of the word. In the cases of railroad and crook, you may have
simply printed a synonym rather than the messages stated. The rule
recognizing a function simply increments a counter. The last rule illustrates
three points:

• The braces specify an action sequence extending over several lines.

• Its action uses the lex array yytextf], which stores the recognized
character string.

{ digstrngcount++;
printf (’'%d"< digstrngcount) ;
printf("%s", yytext); }

This specification matches digit strings whether they are preceded by a plus
sign (+) or not, because the question mark (?) indicates that the preceding
plus sign is optional. In addition, it catches negative digit strings because
that portion following the minus sign (-) matches the specification. The next
section explains how to distinguish negative from positive integers.

%%
-[0-9]+
+ ? [0-9] +
-0.[0-9]+
rail []+road
crook
function
G[a-zA-Z]*

lex

NOTE

4-8

By placing the rule for end and the other reserved words before the rule for
identifiers, you ensure that your reserved words are recognized.

Another potential problem arises from cases where a pattern you are
searching for is the prefix of another. For instance, the last two rules in the
previous lexical analyzer example are designed to recognize > and >= . If the
text has the string >= at one point, you might worry that the lexical analyzer
would stop as soon as it recognized the > character to execute the rule for >,
rather than read the next character and execute the rule for >=.

• Its specification uses the asterisk (*) to indicate that zero or more
letters may follow the G.

lex follows the rule that says: "Where there is a match with two
or more rules in a specification, the first rule is the one whose
action is executed."

Programming Tools Guide
1003-48614-00

Some Special Features
Besides storing the recognized character string in yytext[], lex automatically
counts the number of characters in a match and stores it in the variable
yyleng. You can use this variable to refer to any specific character just
placed in the array yytext[]. Because C numbers locations in an array
starting with 0, you could write the following lines to print out the third digit
(if there is one) in a just recognized integer.

[1-9]+ {if (yyleng > 2)
printf("%c", yytext[2]);)

lex follows a number of high-level rules to resolve ambiguities that may arise
from the set of rules that you write. For example, in the lexical analyzer
example developed later in the section on lex and yacc, the reserved word
end could match the second rule as well as the seventh, the one for
identifiers.

lex

NOTE

4-9

lex follows the rule that says: "Match the longest character
string possible and execute the rule for that."

Programming Tools Guide
1003-48614-00

Here it would recognize the >= and act accordingly. As a further example,
the rule would enable you to distinguish + from ++ in a program in C.

Still another potential problem exists when the analyzer must read
characters beyond the string you are seeking because you cannot be sure you
have found it until you’ve read the additional characters. These cases reveal
the importance of trailing context. The classic example here is the DO
statement in FORTRAN. In the following statement, you cannot be sure that
the first 1 is the initial value of the index k until you read the first comma.

DO 50 k = 1 , 20, 1

Until then, you might have this assignment statement:

DO50k = 1

(Remember that FORTRAN ignores all blanks.) The way to handle this is to
use the slash (/) instead of the backslash (\), which signifies that what follows
is trailing context, something not to be stored in yytext[], because it is not
part of the token itself. So the rule to recognize the FORTRAN DO statement
could be as follows:

30/[]*[0-9][]»[a-z A-ZO-9]+=[a-z A-Z0-91+, printf("found DO") ;

Different versions of FORTRAN have limits on the size of identifiers, here the
index name. To simplify the example, the rule accepts an index name of any
length.

lex uses the dollar sign ($) as an operator to mark a special trailing context—
the end of line. (It is therefore equivalent to \n.) An example would be a
rule to ignore all blanks and tabs at the end of a line:

[\t]+$
If you want to match a pattern only when it starts a line, use the circumflex
(“) as the operator. For example, the nroff formatter demands that you
never start a line with a blank, so you might want to create a rule to check
input to nroff:

- [] printf("error: remove leading blank");

lex

yymoreO

yyless(n)

REJECT

4-10

inputO

unput(c)

output(c)

Read another character

Put a character back

Write a character to output

Recognizes succeeding characters and appends them
to those already in yytext.

Resets the end point of a string to be considered the
nth character in the original yytext.

Jumps to the next rule without changing the contents
of yytext.

Programming Tools Guide
1003-48614-00

One way to ignore all characters between two special characters, such as
between a pair of double quotation marks, would be to use inputO as follows:

\" while (inputO ! =

Upon finding the first double quotation mark, a.out continues reading all
subsequent characters so long as none is a quotation mark, and does not look
for a match again until it finds a second double quotation mark.

To handle special I/O needs, such as writing to several files, you can use
standard I/O routines in C to rewrite the functions inputO, unput(c), and
output. These and other programmer-defined functions should be placed in
the subroutine section of the lex source. The new routines replace the
standard ones. The standard inputO, in fact, is equivalent to getchar(), and
the standard output(c) is equivalent to putchar(c).

There are a number of lex routines that let you handle sequences of
characters to be processed in more than one way. They are described in
detail in the following paragraphs and are as follows:

Recall that the text matching a given specification is stored in the array
yytext[]. In general, once the action is performed for the specification, the
characters in yytext[] are overwritten with succeeding characters in the
input stream to form the next match. The function yymoreO, by contrast,
ensures that the succeeding characters recognized are appended to those

Finally, some of your action statements themselves may require your reading
another character, putting one back to be read again a moment later, or
writing a character on an output device, lex supplies three functions to
handle these tasks:

lex

B...B..,B

B[“B]

4-11

already in yytextt], This lets you do one thing and then another, when one
string of characters is significant and a longer one including the first is
significant as well. Consider a character string bound by Bs and containing a
B at an arbitrary location.

In a simple code-deciphering situation, you may want to count the number of
characters between the first and second B and add it to the number of
characters between the second and third B. (Only the last B is not to be
counted.)

Programming Tools Guide
1003-48614-00

(if (flag = 0)
save = yyleng;
flag = 1;
yymore();

else {
importantno = save + yyleng;
flag = 0;)

}

flag, save, and importantno are declared (and at least flag initialized to 0)
in the definitions section of the lex source. The flag distinguishes the
character sequence terminating just before the second B from that
terminating just before the third.

The function yyless(n) lets you reset the end point of the string to be
considered as the nth character in the original yytext[]. Suppose you are
again in deciphering code and want to work with only half the characters in a
sequence ending with a certain character, say upper or lowercase Z:

[a-yA-Y]+[Zz] { yyless(yyleng/2);
... process first half of string... }

Finally, the function REJECT lets you more easily process strings of
characters even when they overlap or contain one another as parts. REJECT
does this by immediately jumping to the next rule and its specification
without changing the contents of yytextf]. If you want to count the number
of occurrences both of the regular expression snapdragon and of its
subexpression dragon in an input text, you could use the following example:

snapdragon {countflowers++; REJECT;)
dragon countmonsters++;

As an example of one pattern overlapping another, the following counts the
number of occurrences of the expressions comedian and diana, even where
the input text has sequences such as comediana. .:

lex

4-12

comedian {comiccount++; REJECT;)
diana princesscount++;

Note that the actions here may be considerably more complicated than
simply incrementing a counter. In all cases, the counters and other
necessary variables are declared in the definitions section commencing the
lex specification.

Definitions
The lex definitions section may contain any of several classes of items. The
most critical are external definitions, #include statements, and
abbreviations. For lex source this section is optional, but in most cases it is
necessary. External definitions have the same form and function that they
have in C. They declare that variables globally defined elsewhere (perhaps in
another source file) are accessed in your lex-generated a.out. Consider a
declaration from an example to be developed later:

extern int tokval;

When you store an integer value in a variable declared in this way, it is
accessible in the routine, say a parser, that calls it. If, on the other hand, you
want to define a local variable for use within the action sequence of one rule
(as you might for the index variable for a loop), you can declare the variable
at the start of the action itself right after the left brace ({).

The purpose of the tfinclude statement is the same as in C: to include files
of importance for your program. Since some variable declarations and lex
definitions may be needed by more than one lex source file, they can be
placed in a separate file to be included in every lex file that needs them. For
example, the file y.tab.h should be included when using lex with yacc. yacc
generates parsers that call a lexical analyzer that can contain #defines for
token names. Like the declarations, #include statements should come
between %(and]%.

%{
♦include "y.tab.h"
extern int tokval;
int lineno;
%}

In the definitions section, place your abbreviations for regular expressions to
be used in the rules section that ends your #include’s and declarations after
the %). The abbreviation appears on the left of the line and, separated by one
or more spaces, its definition or translation appears on the right. Later,
when you use abbreviations in your rules, be sure to enclose them in braces.

Programming Tools Guide
1003-48614-00

lex

NOTE

4-13

The last rule ensures that a period always precedes a quotation mark at the
end of a sentence. It changes example” .to example.”

The purpose of abbreviations is to avoid needless repetition in
writing your specifications and to provide clarity in reading
them.

Programming Tools Guide
1003-48614-00

D
L
B %%
-{D) +
+?(D)+
-0.(D)+
G{L}*
rail{B}+road
crook
\"\./{Bit-

Subroutines

You might want to use subroutines in lex for much the same reason that you
do so in other programming languages. Action code that is to be used for
several rules can be written once and called when needed. As with
definitions, this can simplify the writing and reading of programs. The
function put_in_tabl(), to be discussed in the next section on lex and yacc,
is a good candidate for a subroutine.

Another reason to place a routine in the subroutine section is to highlight
some code of interest or to simplify the rules section, even if the code is to be
used for one rule only. As an example, consider the following routine to
ignore comments in a language like C where comments occur between /» and
*/.

As an example, reconsider the lex source reviewed at the beginning of this
section on advanced lex usage. The use of definitions simplifies our later
reference to digits, letters, and blanks. This is especially true if the
specifications appear several times.

[0-9]
[a-zA-Z]
[\t]

printf("negative integer");
printf("positive integer");
printf("negative fraction");
printf("may have a G word here");
printf("railroad is one word");
printf("criminal") ;
printf(".\"");

lex

skipcmnts() ;

/* rest of rules /

1

4-14 Programming Tools Guide
1003-48614-00

while (input() !=
if (input () !='/') (

unput(yytext[yyleng-1]);
else return;

%%
skipcmnts ()
{

fort;;)
(

}

There are three points of interest in this example. First, the unput(c)
function (putting back the last character read) is necessary to avoid missing
the final slash (/) if the comment ends unusually with a ♦•/. In this case,
eventually having read an asterisk (*), the analyzer finds that the next
character is not the terminal slash (/) and must read some more. Second, the
expression yytext[yyleng-l] picks out that last character read. And third,
this routine assumes that the comments are not nested. (This is indeed the
case with the C language.) If, unlike C, they are nested in the source text,
after inputOing the first */ ending the inner group of comments, a.out reads
the rest of the comments as if they were part of the input to be searched for
patterns.

Other examples of subroutines would be programmer-defined versions of the
I/O routines inputO, unput(c), and outputO, discussed above. Subroutines
such as these that can be exploited by many different programs would
probably best be stored in their own individual file or library to be called as
needed. The appropriate #include statements would then be necessary in
the definitions section.

4.2.3 Using lex with yacc
If you work on a compiler project or develop a program to check the validity
of an input language, you might want to use the yacc program tool, yacc
generates parsers, programs that analyze input to ensure that it is
syntactically correct, (yacc is discussed in Chapter 5.) lex often forms a
fruitful union with yacc in the compiler development context. Whether or
not you plan to use lex with yacc, be sure to read Chapter 5 because it
contains information of interest to all lex programmers.

lex

[0-9]+

\+

\-

4-15

begin
end
while
if
package
reverse
loop
[a-zA-Z][a-zA-ZO-9]

Programming Tools Guide
1003-48614-00

Despite appearances, tokens returned and values assigned to tokval are
indeed integers. Good programming style dictates the use of informative
terms such as BEGIN, END, and WHILE, to signify the integers the parser
understands, rather than use the integers themselves. You establish the
association by using #define statements in your parser calling routine in C.

return(BEGIN);
return(END);
return(WHILE);
return(IF);
return(PACKAGE);
return(REVERSE);
return(LOOP);

{ tokval = put_in_tabl();
return(IDENTIFIER) ;)

{ tokval = put_in_tabl();
return(INTEGER) ; }

{ tokval = PLUS;
return(ARITHOP);)

{ tokval = MINUS;
return(ARITHOP);)

{ tokval = GREATER;
return(RELOP) ;)

(tokval = GREATEREQL;
return(RELOP) ;)

The lexical analyzer that lex generates (not the file that stores it) takes the
name yylex(). This name is convenient because yacc calls its lexical
analyzer by this name. To use lex to create the lexical analyzer for the
parser of a compiler, you need to end each lex action with the statement
return token, where token is a defined term whose value is an integer. The
integer value of the token returned indicates to the parser what the lexical
analyzer has found. The parser, whose file is called y.tab.c by yacc, then
resumes control and makes another call to the lexical analyzer when it needs
another token.
In a compiler, the different values of the token indicate what, if any, reserved
word of the language has been found or whether an identifier, constant,
arithmetic operand, or relational operator has been found. In the latter
cases, the analyzer must also specify the exact value of the token: what the
identifier is, whether the constant, say, is 9 or 888, whether the operand is +
or * (multiply), and whether the relational operator is = or >. Consider the
following portion of lex source for a lexical analyzer for some programming
language:

lex

♦define PLUS 7

4-16

If the need arises to change the integer for some token type, you then change
the #define statement in the parser rather than hunt through the entire
program, changing every occurrence of the particular integer. In using yacc
to generate your parser, it is helpful to insert the following statement into the
definitions section of your lex source.

♦include y.tab.h

The file y.tab.h provides #define statements that associate token names such
as BEGIN, END, and so on, with the integers of significance to the generated
parser.

To indicate the reserved words in the example, the returned integer values
suffice. For the other token types, the integer value of the token type is
stored in the programmer-defined variable tokval. This variable, whose
definition was an example in the definitions section, is globally defined so that
the parser as well as the lexical analyzer can access it. yacc provides the
variable yylval for the same purpose.

Note that the example shows two ways to assign a value to tokval. First, a
function put_in_tabl() places the name and type of the identifier or constant
in a symbol table so that the compiler can refer to it in this or a later stage of
the compilation process. More to the present point, put_in_tabl() assigns a
type value to tokval so that the parser can use the information immediately
to determine the syntactic correctness of the input text. The function
put_in_tabl() would be a routine that the compiler writer might place in the
subroutines section discussed later. Second, in the last few actions of the
example, tokval is assigned a specific integer indicating which operand or
relational operator the analyzer recognized. If the variable PLUS, for
instance, is associated with the integer 7 by means of the #define statement
above, then when a + sign is recognized, the action assigns to tokval the
value 7, which indicates the +. The analyzer indicates the general class of
operator by the value it returns to the parser (in the example, the integer
signified by ARITHOP or RELOP).

♦define
♦define

BEGIN
END :

Programming Tools Guide
1003-48614-00

[1
2

lex

lex [-ctvuc] {file] ...

file A file containing lex source.

The command line options are as follows:

—c

4-17

4.3 Running lex
As you review the following steps, recall Figure 4-1 at the start of this
chapter.

To produce the lexical analyzer in C, use the following command syntax:

Indicates that the actions specified in file are in C. This is the
default.

Causes the output file produced by lex, lex.yy.c, to be written to
standard out.

Provides a one-line summaiy of statistics, lex uses a table (a two-
dimensional array in C) to keep track of the states used by the lex
rules. When -v is used, the number of states used is indicated by
the value preceding (%n). By default, the maximum number of
states is 500. If your lex source has a large number of rules or the
rules are very complex, this default value may be too small. You
can enlarge the value by placing an entry like this in the
definitions section of your lex source:

%n 700
This entry tells lex to make the table large enough to handle as
many as 700 states. If you need to increase the maximum number
of state transitions beyond 2000, the designated parameter is %a:

%a 2800

where %a is the number of packed transitions used.

Programming Tools Guide
1003-48614-00

lex

Suppresses the statistics summary. This is the default.-n

4-18 Programming Tools Guide
1003-48614-00

In the following command example, lex.l is the file containing the lex
specification:

$ lex lex.l

The name lex.l is the conventional favorite, but you can use whatever name
you want, lex automatically produces an output file named lex.yy.c; this is
the lexical analyzer program that you created with lex. You then compile
and link this as you would any C program, making sure that you invoke the
lex library with the -11 option:

5 cc lex.yy.c -11

The lex library provides a default main() program that calls the lexical
analyzer under the name yylex(), so you need not supply your own main().

If you have the lex specification in several files, you can run lex with each of
them individually, but be sure to rename or move each lex.yy.c file (with mv)
before you run lex on the next one. Otherwise, each overwrites the previous
one. Once you have generated the .c files, you can compile all of them in one
command line.

With the executable a.out produced, you are ready to analyze any desired
input text. The lexical analyzer, a.out, by default takes input from your
terminal. If text is stored in a file, use redirection to use the file as input.
For example, if the text is stored under the filename textin, the following
command uses textin as input:

$ a.out < textin
By default, output appears on your terminal, but you can redirect output as
well:

$ a.out < textin > textout

lex

4-19

4.3.1 Running lex with yacc

In running lex with yacc, either may be run first. The following commands
spawn a parser in the filey.ta&.c. (The -d option creates the file y.tab.h,
which contains the #define statements that associate the yacc assigned
integer token values with the user-defined token names.)

$ yacc -d grammar .y
$ lex lex.l

To compile and link the output files produced, run this command:

$ cc Iex.yy.c y.tab.c -ly -11

Note that the yacc library is loaded (with the -ly option) before the lex
library (with the -11 option) to ensure that the main() program supplied calls
the yacc parser.

Programming Tools Guide
1003-48614-00

Index

A

B

C

D

E

Index-1

Escape sequences ..
Escaped characters
Expressions
External definitions

Actions
Ambiguities
Asterisk

Definitions section .
Delimiter
Dollar sign operator

Backslash
Backslash escape character
Braces
Brackets

Character arrays
Character count in a pattern match
Circumflex operator
Count lines
Count occurrences of a token

#define statements .
#include files
#include statements

4-15,16
.... 4-12
.... 4-12

4-12
. 4-3
. 4-9

. 4-6

. 4-5

. 4-3
4-12

4-6
4-8
4-9
4-6
4-6

Programming Tools Guide
1003-48614-00

.... 4-9

.... 4-5
4-6,12
... 4-4

4-3,6,7
 4-8

.... 4-4

F

G-H-l-J-K

L

M

Index-2

Files
#include
definitions section
rules section
section delimiters
y.tab.h
y.tabl.h
yylex

Functions
input!)
output!)
unputO

Hyphen
Incrementing line counters
input!) function
Invoking lex

lex
analyzer
command
generator
program
source
specification .
use with yacc

Lexical analyzer
Line count
Line counters ...

Matching
beginning of line
end of line

See also Patterns

4-12
4-12

. 4-3

. 4-3
4-15
4-12
4-15

4-10
4-10
4-10

4-9
4-9

. 4-4

. 4-6
4-10
4-17

Programming Tools Guido
1003-48614-00

 4-1
........ 4-17

 4-1
 4-1
 4-1

.......... 4-1
4-12,14,19

 4-1
 4-6

.......... 4-6

N-0

P-Q

R

S

Index-3

Slash
Source

Negative integers
Operators
outputO function
Overview

Parser ...
Patterns

matching
Plus sign ...
Positive integers
Process characters in multiple ways
Programs ..
Put back a character
Question mark

 4-15
...... 4-3,7
4-3,6,7,12

 4-4
 4-7
 4-10

.. 4-1,2,16
 4-10

........ 4-4

. 4-7

. 4-4
4-10

. 4-1

4-9
4-1

Programming Tools Guide
1003-48614-00

Read another character
Record the token type ..
Regular expressions
REJECT routine
Replace a token
Reserved words
return token
Routines

REJECT
yylessO
yymoreO

Rules
delimiter
section in a file
to resolve ambiguities

Running lex

.... 4-10

..... 4-6

... 4-3,6

.... 4-10
 4-6
 4-8

.... 4-15

.... 4-10

.... 4-10

.... 4-10

.... 4-10
 4-1
 4-3
 4-3
 4-8

4-17,19

T

u-v-w-x
4-10

Y-Z

Index-4

y.tab.h file
y.tabl.h file
yacc

use with lex
yyleng variable
yylessO routine
yylex file
yymoreO routine
yy text[] character array

unputO function
Variables

declaring
yyleng
yytextt]

Write character to output device
Writing programs

Special characters .
Specification

definitions section
files
rules section
sections in a file .

Specifying patterns
Statistics
Subroutines

4-12,14,19
 4-8
 4-10
 4-15
 4-10
 4-6,8

.. 4-12

.... 4-8

. 4-6,8

.. 4-10
4-2,16

4-15
4-12

Tokens
associating names
counting
recording type
replacing type
return token
type

Trailing context

Programming Tools Guide
1003-48614-00

.. 4-5
4-1,3
4-12

.. 4-3

.. 4-3

.. 4-2
. 4-3
. 4-2
4-13

.. 4-16

.... 4-6

.... 4-6

.... 4-6

.. 4-15
4-6,16
.... 4-9

CD

■So

o

io

Chapter 5
yacc

5.1 Introduction 5-1

5-10

5-15

5-20

5-23

5-25

5-26

5-36
5-36
5-40

5-31
5-31
5-31
5-32
5-34

5-27
5-28
5-28
5-29
5-30

5-3
5-4
5-6
5-9

Programming Tools Guide
1003-48614-00

5.10 Advanced Topics
Simulating error and accept in Actions
Accessing Values in Enclosing Rules
Support for Arbitrary Value Types
yacc Input Syntax

5.11 Examples
A Simple Example
An Advanced Example .

5.6 Error Handling

5.7 Running yacc

5.8 The yacc Environment

5.9 Hints for Preparing Specifications
Input Style
Left Recursion
Lexical Tie-Ins
Reserved Words

5J2 Basic Specifications
Rules
Actions
Lexical Analysis

5.3 Parser Operation

5.4 Ambiguity and Conflicts

5.5 Precedence

Chapter 5
yacc

5.1 Introduction

5-7

yacc provides a general tool for imposing structure on the input to a
computer program. The yacc user prepares a specification that includes
these items:

• A set of rules to describe the elements of the input

• Code to be invoked when a rule is recognized

• Either a definition or declaration of a low-level routine to examine the
input

Programming Tools Guide
1003-48614-00

yacc then turns the specification into a C language function that examines
the input stream. This function, called a parser, works by calling the low-
level input scanner. The low-level input scanner, called a lexical analyzer,
picks up items from the input stream. The selected items are known as
tokens. Tokens are compared to the input construct rules, called grammar
rules. When one of the rules is recognized, the user-supplied code for that
rule, an action, is invoked. Actions are fragments of C code. They can return
values and make use of values returned by other actions.

The heart of the yacc specification is the collection of grammar rules. Each
rule describes a construct and gives it a name. Following is an example of a
grammar rule:

date : month_name day ' year ;

date, month_name, day, and year represent constructs of interest;
presumably, month_name, day, and year are defined in greater detail
elsewhere. In the example, the comma is enclosed in single quotes. This
means that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule and have no significance in
evaluating the input. With proper definitions, the following input might be
matched by the rule:

July 4, 1776

The lexical analyzer is an important part of the parsing function. This user-
supplied routine reads the input stream, recognizes the lower-level

yacc

'D' ’ c'' e'

5-2 Programming Tools Guide
1003-48614-00

' n'
'b'

'a'
' e'

month_name :

While the lexical analyzer only needs to recognize individual letters, such
low-level rules tend to waste time and space, and may complicate the
specification beyond the ability of yacc to deal with it. Usually, the lexical
analyzer recognizes the month names and returns an indication that a
month_name is seen. In this case, monthname is a token and the
detailed rules are not needed.

Literal characters such as a comma must also be passed through the lexical
analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add the following
rule to the above example:

date : month '/' day '/' year ;

It allows 7/4/1776 as a synonym for July 4, 1776 on input. Inmost
cases, this new rule could be slipped into a working system with minimal
effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. With a left-to-
right scan, input errors are detected as early as is theoretically possible.
Thus, not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data usually can be found quickly. Error
handling, provided as part of the input specifications, permits the reentry of
bad data or the continuation of the input process after skipping over the bad
data.

constructs, and communicates these as tokens to the parser. The lexical
analyzer recognizes constructs of the input stream as terminal symbols; the
parser recognizes constructs as nonterminal symbols. To avoid confusion, we
will refer to terminal symbols as tokens.

There is considerable leeway in deciding whether to recognize constructs
using the lexical analyzer or grammar rules. For example, the following
rules might be used in the previous example:

month_name : 'J'
month name : ' F'

yacc

In addition, there are two examples and a summary of the yacc input syntax.

5-3

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self-contradictory, or
they may require a more powerful recognition mechanism than that available
to yacc. The former cases represent design errors; the latter cases often can
be corrected by making the lexical analyzer more powerful or by rewriting
some of the grammar rules. While yacc cannot handle all possible
specifications, its power compares favorably with similar systems. Moreover,
the constructs that are difficult for yacc to handle are also frequently
difficult for users to handle. Some users have reported that the discipline of
formulating valid yacc specifications for their input revealed errors of
conception or design early in the program development.

The remainder of this chapter describes the following subjects:

• Basic process of preparing a yacc specification

• Parser operation

• Handling ambiguities

• Handling operator precedences in arithmetic expressions

• Error detection and recovery

• The operating environment and special features of the parsers yacc
produces

• Suggestions to improve the style and efficiency of the specifications

• Advanced topics

5.2 Basic Specifications
Names refer to either tokens or nonterminal symbols, yacc requires token
names to be declared as such. While the lexical analyzer may be included as
part of the specification file, it is perhaps more in keeping with modular
design to keep it as a separate file. Like the lexical analyzer, other
subroutines may be included as well. Thus, every specification file
theoretically consists of three sections: the declarations, grammar rules, and
subroutines. The sections are separated by double percent signs, %% (the
percent sign is generally used in yacc specifications as an escape character).

Programming Tools Guide
1003-48614-00

yacc

5.2.1 Rules

A BODY

5-4

The rules section is made up of one or more grammar rules. A grammar rule
has this form:

Blanks, tabs, and newlines are ignored, but they cannot appear in names or
multicharacter reserved symbols. Comments can appear wherever a name is
legal. They are enclosed in /* ... */, as in the C language.

When all sections are used, a full specification file looks like this:

declarations
%%
rules
%%
subroutines

The declarations and subroutines sections are optional. The smallest legal
yacc specification is as follows:

%%
rules

Programming Tools Guide
1003-48614-00

'\t'
'\b'.\f.
'\xxx'

The NULL character (\0 or 0) should never be used in grammar rules.

A represents a nonterminal symbol; BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

Names can be of any length and can be made up of letters, dots, underscores,
and digits. A digit cannot be the first character of a name. Uppercase and
lowercase letters are distinct. The names used in the body of a grammar rule
can represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes (’). As in the C
language, the backslash (\) is an escape character within literals, and all the
C escapes are recognized, yacc understands the following literals:

newline
return
single quote (')
backslash (\)
tab
backspace
form feed
xxx in octal notation

yacc

D

A D

5-5

A
A
A

B
E
G

C
F

C
F

Programming Tools Guide
1003-48614-00

If there are several grammar rules with the same left-hand side, a vertical
bar (I) can be used to avoid rewriting the left-hand side. The semicolon at
the end of a rule is dropped before a vertical bar. Thus the following sets of
grammar rules are equivalent:

B
E
G

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input more
readable and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated by
the following:

epsilon : ;

The blank space following the colon is understood by yacc to be a
nonterminal symbol named epsilon.

Names representing tokens must be declared. This is most simply done by
writing the following in the declarations section:

%token namel name2 ...

Every name not defined in the declarations section is assumed to represent a
nonterminal symbol. Every nonterminal symbol must appear on the left side
of at least one rule.

Of all the nonterminal symbols, the start symbol has particular importance.
By default, the start symbol is taken to be the left-hand side of the first
grammar rule in the rules section. It is possible and desirable to declare the
start symbol explicitly in the declarations section using the %start keyword.

%start symbol
The end of the input to the parser is signaled by a special token, called the
end-marker. The end-marker is represented by either a zero or a negative
number. If the tokens up to but not including the end-marker form a
construct that matches the start symbol, the parser function returns to its
caller after the end-marker is seen and accepts the input. If the end-marker
is seen in any other context, it is an error.

yacc

(
hello(1, "abc");

}

YYYXXX zzz
{

5-6

It is the job of the user-supplied lexical analyzer to return the end-marker
when appropriate. Usually, the end-marker represents some reasonably
obvious I/O status, such as end-of-file or end-of-record.

(void) printf("a message\n");
flag = 25;

Programming Tools Guide
1003-48614-00

1
The dollar sign symbol ($) is used to facilitate communication between the
actions and the parser. The pseudovariable $$ represents the value returned
by the complete action. For example, the following action returns the value
of one; in fact, that’s all it does:

{ $? = 1; 1
To obtain the values returned by previous actions and the lexical analyzer,
the action may use the pseudovariables $1, $2,... $n. These refer to the
values returned by components 1 through n of the right side of a rule, with
the components being numbered from left to right. If the rule is as follows,
then $2 has the value returned by C, and $3 the value returned by D:

A ; B C D

The following rule provides a common example:

expr : ' (' expr ') ' ;

You might expect the value returned by this rule to be the value of the expr

5.2.2 Actions
With each grammar rule, the user may associate actions to be performed
when the rule is recognized. Actions may return values and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can
return values for tokens if desired.

An action is an arbitrary C language statement and as such can do input and
output, call subroutines, and alter arrays and variables. An action is
specified by one or more statements enclosed in curly braces ((and)). The
following examples show grammar rules with actions:

A : B ')'

yacc

exprexpr
{

$$ = $2 ;

BA

BA
{

$$ = 1;

(

}

$ACT
{

$$ = 1;)

5-7

X = $2;
y = $3;

The interior action is the action triggered by recognizing this added rule,
yacc treats the above example as if it had been written as follows, where
$ACT is an empty action:

/» empty */

1
C

Programming Tools Guide
1003-48614-00

)
By default, the value of a rule is the value of the first element in it ($1).
Thus, grammar rules of the following form frequently need not have an
explicit action:

within the parentheses. Since the first component of the action is the literal
left parenthesis, the desired logical result can be indicated as follows:

' (' expr ') '

Actions that do not terminate a rule are handled by yacc by manufacturing a
new nonterminal symbol name and a new rule matching this name to the
empty string.

In previous examples, all the actions came at the end of rules. Sometimes, it
is desirable to get control before a rule is fully parsed, yacc permits an
action to be written in the middle of a rule as well as at the end. This action
is assumed to return a value accessible through the usual $ mechanism by
the actions to the right of it. In turn, it may access the values returned by
the symbols to its left. Thus, in the following rule, the effect is to set x to 1
and y to the value returned by C.

yacc

$ACTA B C
I

}

expr expr expr
{

$$ = node($1, $3);

5-8

= $2;
= $3;

x
y

Programming Tools Guide
1003-48614-00

}

The user can define other variables to be used by the actions. Declarations
and definitions can appear in the declarations section enclosed in the marks
%(and %}. These declarations and definitions have global scope, so they are
known to the action statements and can be made known to the lexical
analyzer. For example, the following could be placed in the declarations
section, making variable accessible to all of the actions:

%{ int variable =0; %)

Users should avoid names beginning with yy because the yacc parser uses
only such names. In the examples shown thus far, all the values are integers.
A discussion of values of other types is found in “Advanced Topics” later in
this chapter.

In many applications, output is not done directly by the actions. A data
structure, such as a parse tree, is constructed in memory and
transformations are applied to it before output is generated. Parse trees are
particularly easy to construct given routines to build and maintain the tree
structure desired. For example, suppose there is a C function node written so
that the call creates a node with label L and descendants nl and n2 and
returns the index of the newly created node:

node(L, nl, n2)

Then a parse tree can be built by supplying actions such as the following in
the specification:

yacc

c = getchar();

' 0' ;

)

5-9

extern int yylval;
int c;

case ' 9' :
yylval = c
return (DIGIT);

case '0':
case '1':

Programming Tools Guide
1003-48614-00

5.2.3 Lexical Analysis
The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical
analyzer is an integer-valued function called yylex. The function returns an
integer, the token number, representing the kind of token read. If there is a
value associated with that token, it should be assigned to the external
variable yylval.

The parser and the lexical analyzer must agree on these token numbers in
order for communication between them to take place. The numbers may be
chosen by yacc or the user. In either case, the #define mechanism of C is
used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIGIT has been defined in the
declarations section of the yacc specification file. To return the relevant
token, a portion of the lexical analyzer might look like this:

int yylex ()
(

1
The intent is to return a token number of DIGIT and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed
in the subroutines section of the specification file, the identifier DIGIT is
defined as the token number associated with the token DIGIT.

switch (c)
{

yacc

5-10

5.3 Parser Operation
yacc turns the specification file into a C language procedure, which parses
the input according to the specification given. The algorithm used to go from
the specification to the parser is complex and is not discussed here. The
parser itself, though, is relatively simple and understanding its usage makes
treatment of error recovery and ambiguities easier.

Programming Tools Guide
1003-48614-00

This mechanism leads to clear, easily-modified lexical analyzers. The only
pitfail involves using any token names in the grammar that are reserved or
significant in C or the parser. For example, the use of token names if or
while will almost certainly cause severe difficulties when the lexical analyzer
is compiled. The token name error is reserved for error handling and should
not be used carelessly.

In the default situation, token numbers are chosen by yacc. The default
token number for a literal character is the numerical value of the character
in the local character set. Other names are assigned token numbers starting
at 257. If the yacc command is invoked with the -d option, a file called
y.tab.h is generated, y.tab.h contains #define statements for the tokens.

If the user prefers to assign the token numbers, the first appearance of the
token name or literal in the declarations section must be followed
immediately by a nonnegative integer. This integer is taken to be the token
number of the name or literal. Names and literals not defined this way are
assigned default definitions by yacc. The potential for duplication exists
here. Care must be taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or be
negative. This token number cannot be redefined by the user. Thus, all
lexical analyzers should be prepared to return 0 or a negative number as a
token upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex utility. Lexical
analyzers produced by lex are designed to work in close harmony with yacc
parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules, lex can be easily used to produce
quite complicated lexical analyzers, but there remain some languages (such
as FORTRAN), which do not fit any theoretical framework and whose lexical
analyzers must be written by hand.

yacc

IF

5-11

The reduce action keeps the stack from growing without bounds, reduce
actions are appropriate when the parser has seen the right-hand side of a
grammar rule and is prepared to announce that it has seen an instance of the
rule replacing the right-hand side by the left-hand side. It may be necessary
to consult the look-ahead token to decide whether or not to reduce (usually
it is not necessary). In fact, the default action, represented by a dot, is often
a reduce action.

reduce actions are associated with individual grammar rules. Grammar
rules are also given small integer numbers, and this leads to some confusion.
The following action refers to grammar rule 18:

. reduce 18

The next action refers to state 34:

Programming Tools Guide
1003-48614-00

IF shift 34

Suppose the following rule is being reduced:

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a look-ahead token.

The following example says that in state 56, if the look-ahead token is IF, the
current state (56) is pushed down on the stack, and state 34 becomes the
current state (on the top of the stack). The look-ahead token is cleared.

shift 34

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
called the look-ahead token. The current state is always the one on the top of
the stack. The states of the finite state machine are given small integer
labels. Initially, the machine is in state 0 (the stack contains only state 0)
and no look-ahead token has been read.

The machine has only four actions available—shift, reduce, accept, and
error. Parsing is done as follows:

1. Based on its current state, the parser decides if it needs a look-ahead
token to choose the action to be taken. If it needs one and does not have
one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token, if needed, the parser
decides on its next action and carries it out. This may result in states
being pushed onto the stack or popped off of the stack and the look-
ahead token being processed or left alone.

yacc

A

A

5-12

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with the rule
is executed before the stack is adjusted. In addition to the stack holding the
states, another stack running in parallel with it holds the values returned
from the lexical analyzer and the actions. When a shift takes place, the
external variable yylval is copied onto the value stack. After the return from
the user code, the reduction is carried out. When the goto action is done, the
external variable yyval is copied onto the value stack. The pseudovariables
$1, $2, and so on, refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the look-ahead token is the end­
marker and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it
has seen (together with the look-ahead token) cannot be followed by anything

goto 20

In effect, the reduce action turns back the clock in the parse, popping the
states off the stack to go back to the state where the right-hand side of the
rule was first seen. The parser then behaves as if it had seen the left side at
that time. If the right-hand side of the rule is empty, no states are popped off
of the stacks. The uncovered state is in fact the current state.

Programming Tools Guide
1003-48614-00

x y z ;

The reduce action depends on the left-hand symbol (A in this case) and the
number of symbols on the right-hand side (three in this case). To reduce,
first pop off the top three states from the stack. (In general, the number of
states popped equals the number of symbols on the right side of the rule.) In
effect, these states were the ones put on the stack while recognizing x, y, and
z and no longer serve any useful purpose. After popping these states, a state
is uncovered, which was the state the parser was in before beginning to
process the rule. Using this uncovered state and the symbol on the left side
of the rule, perform what is in effect a shift of A. A new state is obtained,
pushed onto the stack, and parsing continues.

However, there are significant differences between the processing of the left­
hand symbol and an ordinary shift of a token, so this action is called a goto
action. In particular, the look-ahead token is cleared by a shift but is not
affected by a goto. In any case, the uncovered state contains an entry such
as the following causing state 20 to be pushed onto the stack and become the
current state:

yacc

Consider the following entry as a yacc specification:

DING DONG DELL

sound place

sound DING DONG

place DELL

$endSaccept __rhyme
shift 3

state 1
rhyme_endaccept

state 2
sound_jplacerhyme

goto 4place
state 3

sound DING DONG

5-13

that would result in a legal input. The parser reports an error and attempts
to recover the situation and resume parsing. The error recovery (as opposed
to the detection of error) is discussed later in this chapter.

rhyme
sound

goto 1
goto 2

Programming Tools Guide
1003-48614-00

%tok.en%%
rhyme

DING
error

When yacc is invoked with the -v option, a file called y.output is produced
with a readable description of the parser. (Refer to “Running yacc” later in
this chapter.) The y.output file corresponding to the previous yacc
specification (with some statistics stripped off the end) follows:
state 0

$end accept
error

DONG shift 6
error

DELL shift 5
error

yacc

state 4
rhyme sound place_ (1)

reduce 1
state 5

(3)place DELL
3reduce

state 6
(2)sound DING DONG

2reduce

DING DONG DELL

5-14 Programming Tools Guide
1003-48614-00

Initially, the current state is state 0. The parser needs to refer to the input
in order to decide between the actions available in state 0, so the first token,
DING, is read and becomes the look-ahead token. The action in state 0 on
DING is shift 3, state 3 is pushed onto the stack, and the look-ahead token is
cleared. State 3 becomes the current state. The next token, DONG, is read
and becomes the look-ahead token. The action in state 3 on the token DONG
is shift 6, state 6 is pushed onto the stack, and the look-ahead is cleared.
The stack now contains 0, 3, and 6. In state 6, without even consulting the
look-ahead, the parser reduces by the following, which is rule 2:

sound : DING DONG

Two states, 6 and 3, are popped off of the stack uncovering state 0.
Consulting the description of state 0 (looking for a goto on sound), the
following is obtained:

sound goto 2

State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token, DELL, must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the
look-ahead token is cleared. In state 5, the only action is to reduce by rule 3.
This has one symbol on the right-hand side, so one state, 5, is popped off, and
state 2 is uncovered. The goto in state 2 on place (the left side of rule 3) is
state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states

The actions for each state are specified and there is a description of the
parsing rules being processed in each state. The underscore (_) character is
used to indicate what has been seen and what is yet to come in each rule.
The following input can be used to track the operations of the parser:

yacc

exprexpr expr

expr

5-15

expr
The parser then reads the final part of the input:

are popped off, uncovering state 0 again. In state 0, there is a goto on
rhyme causing the parser to enter state 1. In state 1, the input is read and
the end-marker is obtained indicated by $end in they.output file. The action
in state 1 (when the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG
DELL DELL, and so on. A few minutes spent with this and other simple
examples is repaid when problems arise in more complicated contexts.

expr - expr

The parser could reduce the input by applying this rule. After applying the
rule, the input is reduced to the following (the left side of the rule):

expr - expr - expr

When the parser has read the second expr, the following input seen matches
the right side of the grammar rule above:

5.4 Ambiguity and Conflicts
A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the following
grammar rule shows that one way of forming an arithmetic expression is to
put two expressions together with a minus sign between them:

expr : expr 'expr

Unfortunately, this grammar rule does not completely specify the way that
all complex inputs should be structured. Consider the following input:

Programming Tools Guide
1003-48614-00

expr - expr - expr

The rule allows this input to be structured in either of the following ways:

(expr - expr)

expr - (expr - expr)
The first is called left association, the second, right association.

yacc detects such ambiguities when it is attempting to build the parser.
Given the following input, consider the problem that confronts the parser:

yacc

5-16

The parser reduces this final part. The effect of this is to take the left-
associative interpretation.

Alternatively, if the parser sees

expr - expr

it could defer the immediate application of the rule and continue reading the
input until it sees

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to
expr. This results in the following being left:

expr - expr

Now the rule can be reduced once more. The effect is to take the right-
associative interpretation.

You can see that given the grammar expr - expr, the parser can do one of
two legal things: shift or reduce. It has no way of deciding between them.
This is called a shift-reduce conflict. It may also happen that the parser
has a choice of two legal reductions. This is called a reduce-reduce conflict.
There are never any shift-shift conflicts.

When there are shift-reduce or reduce-reduce conflicts, yacc still
produces a parser. It does this by selecting one of the valid steps wherever it
has a choice. A rule describing the choice to make in a given situation is
called a disambiguating rule.

yacc invokes two default disambiguating rules:

1. In a shift-reduce conflict, the default is to do the shift.

2. In a reduce-reduce conflict, the default is to reduce by the earlier
grammar rule (in the yacc specification).

Programming Tools Guide
1003-48614-00

Rule 1 implies that reductions are deferred in favor of shifts when there is a
choice. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce-reduce conflicts should be avoided when
possible.

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than yacc
can construct. The use of actions within rules can also cause conflicts if the
action must be done before the parser can be sure which rule is being
recognized. In these cases, the application of disambiguating rules is
inappropriate and leads to an incorrect parser. For this reason, yacc always

yacc

stat
ELSE stat

(Cl)

IF

S2
or

(Cl)

IF

ELSE
S2

)

5-17

}
ELSE

IF
(

IF
{

Programming Tools Guide
1003-48614-00

(C2)
SI

(C2)
SI

reports the number of shift-reduce and reduce-reduce conflicts resolved
by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the
same inputs are read but there are no conflicts. For this reason, most
previous parser generators have considered conflicts to be fatal errors. Our
experience has suggested that this rewriting is somewhat unnatural and
produces slower parsers. Thus, yacc produces parsers even in the presence
of conflicts.

As an example of the power of disambiguating rules, consider the following
fragment from a programming language involving an if-then-else statement:

IF '(' cond ')' stat
IF ' (' cond ')' stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol
describing conditional (logical) expressions, and stat is a nonterminal symbol
describing statements. The first rule will be called the simple if rule and the
second the if-else rule.

These two rules form an ambiguous construction because input of the
following form can be structured according to these rules in two ways:

IF (Cl) IF (C2) SI ELSE S2

The two constructions are as follows:

yacc

S2ELSE

5-18 Programming Tools Guide
1003-48614-00

The second is the one given in most programming languages having this
construct; each ELSE is associated with the last preceding un-ELSE’d IF. In
this example, consider the situation where the parser has seen the following
entry and is looking at the ELSE:

IF (Cl) IF (C2) SI

It can immediately reduce by the simple if rule to get the following:

IF (Cl) stat

It then reads the remaining input:

ELSE S2

and reduces by the if-else rule as follows:

IF (Cl) stat ELSE S2

This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right­
hand portion of

IF (Cl) IF (C2) SI

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple if rule. This leads to the second of the
above groupings of the input, which is usually desired.

Once again, the parser can do two valid things—there is a shift-reduce
conflict. The application of disambiguating rule 1 tells the parser to shift in
this case, which leads to the desired grouping.

This shift-reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs, such as the following have
already been seen:

IF (Cl) IF (C2) SI

In general, there may be many conflicts, and each one will be associated with
an input symbol and a set of previously read inputs. The previously read
inputs are characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the verbose
(-v) option output file. For example, the output corresponding to the above
conflict state might be as follows:

23: shift-reduce conflict (shift 45, reduce 18) on ELSE

yacc

state 23

ELSE

5-19

))
stat
stat

IF
IF

((
cond
cond

stat_
stat ELSE

(18)
stat

Programming Tools Guide
1003-48614-00

stat : IF (cond) stat ELSE_stat
In state 23, the alternative action (describing a dot,.), is done if the input
symbol is not mentioned explicitly in the actions. In this case, if the input
symbol is not ELSE, the parser reduces to the following by grammar rule 18:

stat : IF ' (' cond ') ' stat

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed in parentheses
after those rules, which can be reduced. In most states, there is a reduce
action possible in the state and this is the default command. The user who
encounters unexpected shift-reduce conflicts will probably want to look at
the verbose output to decide whether the default actions are appropriate.

shift 45
reduce 18

The first line describes the shift-reduce conflict, giving the state and the
input symbol. The ordinary state description gives the grammar rules active
in the state and the parser actions. Recall that grammar rules which have
been seen are marked by an underscore. Thus, in the example, in state 23
the parser has seen input corresponding to the following statement. The two
grammar rules shown are active at this time.

IF (cond) stat

The parser can do one of two things. If the input symbol is ELSE, it could
shift into state 45. State 45 has, as part of its description, the following line
because the ELSE has been shifted in this state:

yacc

5-20 Programming Tools Guide
1003-48614-00

5.5 Precedence
One common situation in which the disambiguating rules are insufficient is
the parsing of arithmetic expressions. Most commonly used constructions for
arithmetic expressions can be described by the notion of precedence levels for
operators, together with information about left or right associativity. Parsers
with ambiguous grammars that have appropriate disambiguating rules are
faster and easier to write than parsers constructed from unambiguous
grammars. The idea is to write grammar rules for all binary and unary
operators desired of the following form:

expr : expr OP expr
expr : UNARY expr

This creates an ambiguous grammar with many parsing conflicts. As
disambiguating rules, the user specifies the precedence or binding strength of
all the operators and the associativity of the binary operators. This
information is sufficient to allow yacc to resolve the parsing conflicts in
accordance with these rules, and to construct a parser with the correct
precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a yacc keyword:
%left, %right, or %nonassoc, followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or binding
strength. Thus, the following entry describes the precedence and
associativity of the four arithmetic operators:

%left '+'
%left '/'

Plus and minus are left associative and have lower precedence than star and
slash, which are also left associative. The keyword %right is used to
describe right-associative operators, and the keyword %nonassoc is used to
describe operators, like .LT. in FORTRAN, that may not associate with
themselves. Thus, the following entry is illegal in FORTRAN and such an
operator would be described with the keyword %nonassoc in yacc:

A .LT. B .LT. C

As an example of the behavior of these declarations, the description

%right
%left
%left

yacc

%%
expr

%%
expr

NAME

5-21

IIIII

expr
expr
expr
expr

expr

expr
expr
expr
expr
expr

Programming Tools Guide
1003-48614-00

expr
expr
expr
expr
expr
NAME

expr
expr
expr
expr

%prec

might be used to structure the input

a = b = c*d e f*g

as follows in order to perform the correct precedence of operators.

a = (b = (((c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the
same symbolic representation but different precedences. An example is
unary and binary minus,

Unary minus may be given the same strength as multiplication, or even
higher, while binary minus has a lower strength than multiplication. The
keyword, %prec, changes the precedence level associated with a particular
grammar rule. The keyword %prec appears immediately after the body of
the grammar rule, before the action or closing semicolon, and is followed by a
token name or literal. It causes the precedence of the grammar rule to
become that of the following token name or literal. For example, the
following rules might be used to give unary minus the same precedence as
multiplication:

%left
%left

yacc

1.

2.

3.

4.

5-22

When there is a reduce-reduce conflict or there is a shift-reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two default disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

If there is a shift-reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with them,
then the conflict is resolved in favor of the action—shift or reduce—
associated with the higher precedence. If precedences are equal, then
associativity is used. Left associative implies reduce; right associative
implies shift; nonassociating implies error.

Programming Tools Guide
1003-48614-00

Conflicts resolved by precedence are not counted in the number of shift-
reduce and reduce-reduce conflicts reported by yacc. This means that
mistakes in the specification of precedences may disguise errors in the input
grammar. It is a good idea to be sparing with precedences and use them in a
cookbook fashion until some experience has been gained. The y.output file is
very useful in deciding whether the parser is actually doing what was
intended.

A token declared by %left, %right, and %nonassoc need not be, but may be,
declared by %token as well.

Precedences and associativities are used by yacc to resolve parsing conflicts.
They give rise to the following disambiguating rules:

Precedences and associativities are recorded for those tokens and
literals that have them.

A precedence and associativity is associated with each grammar rule. It
is the precedence and associativity of the last token or literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and associativity
associated with them.

yacc

5-23

stat : error ’;'
Here, when there is an error, the parser attempts to skip over the statement

Programming Tools Guide
1003-48614-00

5.6 Error Handling
Error handling is difficult; many of the problems are semantic ones. When
an is found, for example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, or, typically, set switches to avoid
generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is
more useful to continue scanning the input to find further syntax errors.
This leads to the problem of getting the parser restarted after an error. A
general class of algorithms to do this involves discarding a number of tokens
from the input string and attempting to adjust the parser so that input can
continue.

To allow the user some control over this process, yacc provides the token
name error. This name can be used in grammar rules. In effect, it suggests
places where errors are expected and recovery might take place. The parser
pops its stack until it enters a state where the token error is legal. It then
behaves as if the token error were the current look-ahead token and
performs the action encountered. The look-ahead token is then reset to the
token that caused the error. If no special error rules have been specified, the
processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting
an error, remains in error state until three tokens have been successfully
read and shifted. If an error is detected when the parser is already in error
state, no message is given, and the input token is quietly deleted.

As an example, a rule of the following form means that on a syntax error the
parser attempts to skip over the statement in which the error is seen:

stat : error
More precisely, the parser scans ahead, looking for three tokens that might
legally follow a statement, and starts processing at the first of these. If the
beginnings of statements are not sufficiently distinctive, it may make a false
start in the middle of a statement and end up reporting a second error where
there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, and so on.

The error rules described above are general but difficult to control. Rules
such as the following are somewhat easier:

yacc

(void) printf("Reenter last line: ");

(
$$ = $4;

}

") ;

{
$S = $4;

)

5-24 Programming Tools Guide
1003-48614-00

)
input

)
input

error
{

error
{

There is one potential difficulty with this approach. The parser must
correctly process three input tokens before it admits that it has correctly
resynchronized after the error. If the reentered line contains an error in the
first two tokens, the parser deletes the offending tokens and gives no
message. This is clearly unacceptable. For this reason, there is a mechanism
that can force the parser to believe that error recovery has been
accomplished. The following statement in an action resets the parser to its
normal mode.

yyerrok;
(void) printf("Reenter last line:

but does so by skipping to the next semicolon. All tokens after the error and
before the next semicolon cannot be shifted and are discarded. When the
semicolon is seen, this rule will be reduced and any cleanup action associated
with it performed.

Another form of error rule arises in interactive applications where it may be
desirable to permit a line to be reentered after an error. The following
example shows one way to do this:

input : error ' \n'

yyerrok ;

The last example can be rewritten as follows, which is somewhat better:

input : error ' \n'

yacc

stat error
{

)

5-25

5.7 Running yacc
Use the following command syntax to run yacc:

As previously mentioned, the token seen immediately after the error symbol
is the input token at which the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might take upon itself
the job of finding the correct place to resume input. In this case, the previous
look-ahead token must be cleared. The following statement in an action will
have this effect:

resynch() ;
yyerrok ;
yyclearin;

Programming Tools Guide
1003-48614-00

These mechanisms are admittedly crude but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the
program.

yyclearin ;

For example, suppose the action after error were to call some sophisticated
resynchronization routine (supplied by the user) that attempted to advance
the input to the beginning of the next valid statement. After this routine is
called, the next token returned by yylex is presumably the first token in a
legal statement. The old illegal token must be discarded and the error state
reset. A rule similar to the following could perform this.

yacc

yacc [-vdlt] grammar

The replaceable parameter is as follows:

yacc specifications.grammar

The command line options are as follows:

-t

5-26

Produce the file y.output, which contains a description of the
parsing tables and reports on conflicts and ambiguities in the
grammar.

Produces y.tab.h with ^define statements that associate yacc
token codes with the user-declared token names so that
source files other than y.tab.c can access the token codes.

Produces y.tab.c so that it contains no tiling constructs.

Produces debugging code in y.tab.c.

Programming Tools Guide
1003-48614-00

5.8 The yacc Environment
When the user inputs a specification to yacc, the output is a file of C
subroutines called y.tab.c. The function produced by yacc is called
yyparseO; it is an integer-valued function. When it is called, it in turn
repeatedly calls yylex(), the lexical analyzer supplied by the user to obtain
input tokens (refer to “Lexical Analysis” earlier in this chapter). Eventually,
an error is detected, yyparseO returns the value 1, and no error recovery is
possible, or the lexical analyzer returns the end-marker token and the parser
accepts. In this case, yyparseO returns the value 0.

The user must provide a certain amount of environment for this parser in
order to obtain a working program. For example, as with every C language
program, a routine called main() must be defined that eventually calls
yparseO. In addition, a routine called yyerrorO is needed to print a
message when a syntax error is detected.

yacc

return (yyparse());

include <stdio.h>

s;
{

(void) fprintf(stderr, ”%s\n”, s);

5-27

5.9 Hints for Preparing Specifications
This section contains miscellaneous hints on preparing efficient, easy-to-
change, and clear specifications. The individual subsections are independent.

yyerror(s)
char

1
The argument to yerrorO is a string containing an error message, usually
the string syntax error. The average application should do better than this.
Ordinarily, the program should keep track of the input line number and print
it along with the message when a syntax error is detected. The external
integer variable yychar contains the look-ahead token number at the time the
error was detected. This may be of some interest in giving better diagnostics.
Since the mainO routine is probably supplied by the user, the yacc library is
useful only in small projects or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions
including a discussion of the input symbols read and what the parser actions
are.

1
and

Programming Tools Guide
1003-48614-00

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc, a library has been provided with default
versions of main() and yerrorf). The library is accessed by specifying the
-ly option to the cc(l) or ld(1) command. The following source codes show
the triviality of these default programs:

main()
{

yacc

1.

2.

3.

4.

5.

6.

item

and

seq

5-28 Programming Tools Guide
1003-48614-00

5.9.1 Input Style

It is difficult to provide rules with substantial actions and still have a
readable specification file. A few style hints follow:

Use all uppercase letters for token names and all lowercase letters for
nonterminal names. This is useful in debugging.

Put grammar rules and actions on separate lines. It makes editing
easier.

Put all rules with the same left-hand side together. Put the left-hand
side in only once and let all following rules begin with a vertical bar.

Put a semicolon only after the last rule with a given left-hand side and
put the semicolon on a separate line. This allows new rules to be easily
added.

Indent rule bodies by one tab stop and action bodies by two tab stops.

Put complicated actions into subroutines defined in separate files.

The first simple example in “Examples”, later in this chapter, is written
following this style, as are the examples in this section (where space permits).
The user must decide about these stylistic questions. The central problem,
however, is to make the rules visible through the morass of action code.

In each case, the first rule is reduced for the first item only; the second rule is
reduced for the second and all succeeding items.

5.9.2 Left Recursion

The algorithm used by the yacc parser encourages so called left-recursive
grammar rules. Rules of the following form match this algorithm:

name : name rest_of_rule

These rules, such as the following, frequently arise when writing
specifications of sequences and lists:

list : item
list

item
seq item

yacc

seq
seq

seq

other declarations . . .

%%

decls statsprog

5-29

With right-recursive rules, the parser is a bit bigger and the items are seen
and reduced from right to left:

item
item

Programming Tools Guide
1003-48614-00

Once again, the first rule would always be reduced exactly once before the
first item was read, and then the second rule would be reduced once for each
item read. Permitting empty sequences often leads to increased generality.
However, conflicts may arise if yacc is asked to decide which empty sequence
it has seen when it hasn’t seen enough to know.

More seriously, an internal stack in the parser is in danger of overflowing if a
very long sequence is read. Thus, the user should use left recursion wherever
reasonable.

It is worth considering if a sequence with zero elements has any meaning,
and if so, consider writing the following sequence specification as using an
empty rule:

5.9.3 Lexical Tie-Ins

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally, but not within quoted strings, or
names might be entered into a symbol table in declarations but not in
expressions. One way of handling these situations is to create a global flag
that is examined by the lexical analyzer and set by actions. For example, the
following specifies a program that consists of zero or more declarations
followed by zero or more statements.

%{
int dflag;

%}

/* empty */
seq item

yacc

/* empty Idecls
(

dflag = 1;

declarationdecls

/* empty /stats
(

dflag = 0;

stats statement

5-30

}
I

)
I

5.9.4 Reserved Words
Some programming languages permit you to use words like if, which are
normally reserved as label or variable names, provided that such use does not
conflict with the legal use of these names in the programming language. This
is hard to do in the framework of yacc. It is difficult to pass information to
the lexical analyzer and to tell it that this instance of if is a keyword while
that instance is a variable. Therefore, it is better that the keywords be
reserved, that is, forbidden for use as variable names.

Programming Tools Guide
1003-48614-00

other rules ...

The flag dflag is now 0 when reading statements and 1 when reading
declarations, except for the first token in the first statement. This token
must be seen by the parser before it can tell that the declaration section has
ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of back-door approach may not be desirable, but it represents a
way of doing some things that are difficult to do otherwise.

yacc

adjverbsent nounnoun
{

look at the sentence ..
}

adj THE
{

$$ = THE;

YOUNG

$$ = YOUNG;
}

DOGnoun (
$$ = DOG;

CRONE

YOUNG)

(void) printf("what?\n");

}

5-31

}
$$ = CRONE;

}
I
{

5.10 Advanced Topics
This section discusses a number of advanced features of yacc.

1
I
{

Programming Tools Guide
1003-48614-00

5.10.1 Simulating error and accept in Actions

The parsing actions of error and accept can be simulated in an action by
use of the macros YYACCEPT and YYERROR. The YYACCEPT macro causes
yyparseO to return the value 0, YYERROR causes the parser to behave as if
the current input symbol had been a syntax error, yyerrorf) is called, and
error recovery takes place. These mechanisms can be used to simulate
parsers with multiple end-markers or context-sensitive syntax checking.

if < SO ==
{

5.10.2 Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current
rule. The mechanism is simply the same as with ordinary actions, a dollar
sign followed by a digit.

adj

yacc

body of union . . .

<name>

5-32

In this case, the digit may be 0 or negative. In the action following the word
CRONE, a check is made that the preceding token shifted was not YOUNG.
This is possible only when a great deal is known about what might precede
the symbol noun in the input. There is a distinctly unstructured flavor to
this. Nevertheless, at times this mechanism prevents trouble, especially
when a few combinations are to be excluded from an otherwise regular
structure.

5.10.3 Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are
integers, yacc can also support values of other types, including structures.
In addition, yacc keeps track of the types and inserts appropriate union
member names so that the resulting parser is strictly type checked, yacc
value stack is declared to be a union of the various types of values desired.
The user declares the union and associates union member names with each
token and nonterminal symbol having a value. When the value is referenced
through a $$ or $n construction, yacc automaticallys insert the appropriate
union name so that no unwanted conversions take place. In addition, type­
checking commands such as lint(l) are silent.

There are three mechanisms used to provide for this typing. First, you can
define the union. This must be done by the user since other subroutines,
notably the lexical analyzer, must know about the union member names.
Second, you can associate a union member name with tokens and
nonterminals. Finally, you can define the type of those values where yacc
cannot easily determine the type.

To declare the union, the user includes the following in the declaration
section:

1
This declares the yacc value stack and the external variables yylval and
yyval to have type equal to this union. If yacc was invoked with the -d
option, the union declaration is copied onto they.ta&./i file as YYSTYPE.

Once YYSTYPE is defined, the union member names must be associated with
the various terminal and nonterminal names. The following construction is
used to indicate a union member name.

Programming Tools Guide
1003-48614-00

%union
{

yacc

expr

aaa
{

$<intval>$ = 3;

{
fun($<intval>2, $<other>0);

)

5-33Programming Tools Guide
1003-48614-00

)
bbb

If this follows one of the keywords %token, %left, %right, and %nonassoc,
the union member name is associated with the tokens listed. Specifying the
following causes any reference to values returned by these two tokens to be
tagged with the union member name optype:

%left <optype> '+'

Another keyword, %type, is used to associate union member names with
nonterminals. To associate the union member nodetype with the
nonterminal symbols expr and stat, you could say the following:

%type <nodetype> expr stat

There are a couple of cases where these mechanisms are insufficient. If there
is an action within a rule, the value returned by this action has no
predetermined type. Similarly, reference to left-context values (such as $0)
leaves yacc with no easy way of determining the type. In this case, a type
can be imposed on the reference by inserting a union member name between
< and > immediately after the first $. The following example shows this
usage:

rule

This syntax is not great, but the situation arises rarely.

A sample yacc specification is given in the advanced example in “Examples”
at the end of this chapter. The facilities in this subsection are not triggered
until they are used. In particular, the use of %type will turn on these
mechanisms. When they are used, there is a fairly strict level of checking.
For example, use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is used
to hold ints.

yacc

5.10.4 yacc Input Syntax

The following displays grammar for the input to yacc.

IDENTIFIER
(but not literal) followed by a : */

reserved words: %type=>TYPE %left=>LEFT,etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

MARK
LCURL
RCURL

ASCII character literals stand for themselves *//*
%token spec

%%
defs MARK rules tailspec

tail MARK
(

In this action, eat up the rest of the file
}

5-34

%token
%token
%token

C_IDENTIFIER
NUMBER

/* the %% mark */
/* the %{ mark */
/* the %} mark */

/* includes identifiers and literals */
/* identifier
/* [0-9]+ */

Programming Tools Guide
1003-48614-00

This section describes the yacc input syntax by showing a yacc specification.
Context dependencies are not considered. Although yacc accepts an LALR(l)
grammar, the yacc input specification language is most naturally specified as
an LR(2) grammar. Problems arise when an identifier occurs in a rule
immediately following an action. If this identifier is followed by a colon, it is
the start of the next rule; otherwise, it is a continuation of the current rule,
which happens to have an action embedded in it. As implemented, the lexical
analyzer looks ahead after seeing an identifier and decides whether the next
token (skipping blanks, newlines, and comments) is a colon. If so, it returns
the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals
(quoted strings) are also returned as IDENTIFIERS, but never as part of
C.IDENTIFIERS.

/* basic entries */
%token
%token
%token

yacc

/* empty: the second MARK is optional */

defs

def START IDENTIFIER
UNION

{
Copy union definition to output

}
LCURL

{
Copy C code to output file

}
RCURL
rword tag nlist

rword TOKEN
LEFT
RIGHT
NONASSOC
TYPE

tag

nlist nmno
nlist nmno
nlist ', * nmno

IDENTIFIERnmno
IDENTIFIER NUMBER

/* rule section */

: C_IDENTIFIER rbody precrules

5-35

/* empty */
defs def

/* Note: literal illegal with % type */
/* Note: illegal with % type */

Programming Tools Guide
1003-48614-00

/* empty: union tag is optional */
'<' IDENTIFIER '>'

yacc

rules rule

rule

rbody

act

Copy action translate $$ etc.

prec

5-36

'{■

(

>

5.11 Examples
The first example gives a complete yacc application for a desk calculator.
The second example modifies the desk calculator application to add floating­
point arithmetic.

5.11.1 A Simple Example
The following example is a yacc application for a small desk calculator with
26 registers labeled a through z. The calculator accepts assignments and
arithmetic expressions made up of the following operators:

/* empty */
rbody IDENTIFIER
rbody act

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec •;'

Programming Tools Guide
1003-48614-00

: C-IDENTIFIER rbody prec
I ' |' rbody prec

yacc

*

%}
%start list

%token DIGIT LETTER

&
/'

/* beginning of rules section */%%

list

5-37

addition
subtraction
multiplication
division
mod operator
bitwise and
bitwise or

If an expression at the top level is an assignment, only the assignment is
done; otherwise, the expression is printed. As in C , an integer that begins
with zero is assumed to be octal; otherwise, it is assumed to be decimal.

/* empty */
list stat '\n'
list error '\n'

int regs[26];
int base;

/* supplies precedence for unary minus */

As an example of a yacc specification, the desk calculator shows how
precedence and ambiguities are used and demonstrates simple recovery. The
major oversimplifications are that the lexical analyzer is much simpler than
for most applications, and the output is produced immediately line by line.
Note the way that decimal and octal integers are read in by grammar rules.
This job is probably done better by the lexical analyzer.
%(
include <stdio.h>
include <ctype.h>

Programming Tools Guide
1003-48614-00

I
%
&

I

%left • I•
%left •
%left •
%left ’
%left UMINUS

I
I (

yyerrok;

yacc

stat expr
{

(void) printf("%d\n", $1);

regs[$l] = $3;
}

' (' expr ')'expr
{

$$ = $2;

expr ' expr

$$ = $1 + $3;

expr 'expr

$$ = $1 $3;

expr expr

$$ = $1 * $3;

$$ - $1 / $3;

$$ = $1 % $3;

expr ' expr

$$=$!& $3;
}

expr 'I' expr
(

$$ = $1 I $3;

%prec UMINUSexpr

$$ = -$2;

LETTER

$$ = reg($!];
}

5-38

}
I
{

}
I
{

}
I
{

{
l
{

}
l<

l
{

}
I
{

}
I
{

1
I
{

Programming Tools Guide
1003-48614-00

exp '%' expr

expr '/' expr

LETTER '=' expr

yacc

number

number DIGIT
{

$$ = $1; base = ($1> 0) ? 8 ; 10;

number DIGIT

$$ = base * $1 + $2;
}

/* beginning of subroutines section */%%

int c;

/* c is now nonblank */

(c) ;
}

5-39

if (islower (c))
{

}
if (isdigit (c))
}

int yylex ()
{

)
I
{

yylval = c - 'a'
return (LETTER);

Programming Tools Guide
1003-48614-00

}
return

/* lexical analysis routine */
/* return LETTER for lowercase letter, */
/* yylval = 0 through 25 */
/* returns DIGIT for digit, yylval = 0 through 9 */
/* all other characters are returned immediately */

/"skip blanks*/
while ((c = getcharO) =- ' ')

yylval = c - ' 0' ;
return (D.IGIT);

yacc

4.)

5-40 Programming Tools Guide
1003-48614-00

2.5 + (3.5
2.5 + (3.5, 4)

In the second line, the 2.5 is meant to be an interval value expression, but
this fact is not known until the comma is read. By this time, 2.5 is finished,
and the parser cannot go back and change its mind. It may be necessary to
look ahead an arbitrary number of tokens to decide whether to convert a
scalar to an interval. This problem is avoided by having two rules for each
binary interval valued operator—one when the left operand is a scalar and
one when the left operand is an interval. In the second line, the right
operand must be an interval, so the conversion is applied automatically.
There are still cases where the conversion may be applied or not, leading to

5.11.2 An Advanced Example

This section gives an example of a grammar using some of the advanced
features. The desk calculator example in Example 1 is modified to provide a
desk calculator that does floating-point interval arithmetic. The calculator
understands floating-point constants; the arithmetic operations +, - *, /,
unary - a through z. It also understands intervals written (X,Y), where X
is less than or equal to Y. There are 26 interval valued variables A through
Z that may also be used. The usage is similar to that in the previous
example; assignments return no value and print nothing while expressions
print the (floating or interval) value.

This example shows some interesting features of yacc and C. Intervals are
represented by a structure consisting of the left and right endpoint values
stored as doubles. This structure is given a type name, INTERVAL, by using
typedef. The yacc value stack can also contain floating-point scalars and
integers (used to index into the arrays holding the variable values). The
entire strategy depends on being able to assign structures and unions in C.
In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions—
division by an interval containing 0 and an interval presented in the wrong
order. The error recovery mechanism of yacc throws away the rest of the
offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates the use of syntax to keep track of the type (for example, scalar
or interval) of intermediate expressions. The scalar can be automatically
promoted to an interval if the context demands an interval value. This
causes shift-reduce and reduce-reduce conflicts when the grammar is run
through yacc. The problem can be seen by looking at the following input
lines:

yacc

%{

1

INTERVAL vmul () , vdiv () ;

double atof();

%start line

/* indices into dreg, vreg arrays */%token <ival> DREG VREG

5-41

typedef struct interval
{

This method of handling multiple types is useful. If there are more than two
expression types, the number of rules needed would increase dramatically
and the conflicts would increase even more dramatically. Thus, while this
example is instructive, it is better practice in a more normal programming
language environment to keep the type information as part of the value and
not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating-point constants. The C library routine atofO is used to
do the actual conversion from a character string to a double-precision value.
If the lexical analyzer detects an error, it responds by returning a token that
is illegal in the grammar causing the syntax error, and causing error
recovery in the parser.

the above conflicts. They are resolved by listing the rules that yield scalars
first in the specification file; in this way, the conflict is resolved in the
direction of keeping scalar valued expressions scalar valued until they are
forced to become intervals.

double dreg[26);
INTERVAL vreg[26);

Sinclude <stdio.h>
#include <ctype.h>

Programming Tools Guide
1003-48614-00

double lo, hi;
INTERVAL;

%union
{

int ival;
double dval;
INTERVAL vval;

}

yacc

/* floating point constant */%token <dval> CONST

%type <dval> dexp /* expression */

/* interval expression */%type <vval> vexp

/* precedence information about the operators */

/* precedence for unary minus */

/* beginning of rules section */%%
lines

line dexp '\n'
{

(void) printf("%15.8f\n",$1);

vexp '\n'

(void) printf (’• (%15.8f, %15.8f)\n". $1.10, Sl.hi);

dexp •\n'DREG '

dreg[$l] = $3;

vexp '\n'VREG '

vreg[$l] = $3;

error '\n'

yyerrok;
}

dexp

$$ = dreg[$l];

dexpdexp '

$$ = $1 + $3;

dexp dexp

5-42

%left
%left
%left

}
I
{

}
I
{

}
I
{

}
I
{

I
{

)
I
{

/* empty */
lines line

CONST
DREG

)
I

Programming Tools Guide
1003-48614-00

UMINUS

yacc

{
$$ = $1 $3;

dexp dexp

$$ = $1 * $3;

dexp '/' dexp

$$ = $1 / $3;

dexp %prec UMINUS

$$ = -$2;

' (' dexp') '

$$ = $2;)

dexpvexp
{

$$.hi - $$.lo = $1;

' dexp * dexp

{

}

VREG

$$ = vreg[$l];

vexp ' vexp

dexp ' vexp

5-43

1
l (

}
I
{

}
I
{

)
I(

}
I
{

}
I
{

}
I
{

}
I
{

Programming Tools Guide
1003-48614-00

$$.hi = $1 + $3.hi;
$$.lo «= $1 + $3.1o;

(void) printf("interval out of order \n");
YYERROR;

$$.lo = $2;
$$.hi = $4;
iff $$.lo > $$.hi)

$$.hi = $l.hi + $3.hi;
$$.lo = $l.lo + $3.1o;

yacc

vexp ’vexp
{

dvep 'vdep

vexp vexp

$$ = vmul ($l.lo,$.hi,$3)

dexp '*' vexp

$$ = vmul ($1, $1, $3)

vexp '/' vexp

{
$$ = vdiv($l.lo.

}
dexp '/' vexp

{
$l.hi, $3)

%prec UMINUS*vexp
$$.hi = -$2.1o;$$.lo = -$2.hi

' (' vexp ')'

$$ = $2
}

/* beginning of subroutines section */%%
/* buffer size for floating point number */# define BSZ 50

/* lexical analysis */

register int c;
/* skip over blanks */

5-44

}
1
{

}
I

int yylexf)
(

$$.hi = $1
$$.lo = $1

)
I
{

}
I
{

}
I
{

}
I
}

$$.hi = $l.hi - $3.1o;
$$.lo = $l.lo - $3.hi;

$3.1o;
$3.hi

Programming Tools Guide
1003-48614-00

if (dcheck($3)) YYERROR;
$l.hi, $3)

if(dcheck($3)) YYERROR;
$$ = vdiv($l.lo.

yacc

while ((c = getcharO) == *

'k'

if (islower (c))

{

}

/* gobble up digits, points, exponents */

/★ will cause syntax error */

/* will cause syntax error */

}

/* push back last char read */

}

5-45

if (isdigit(c) (

yylval.ival = c
return(DREG) ;

Programming Tools Guide
1003-48614-00

fort; (cp - buf) < BSZ ; ++cp, c = getcharO)
{

if (isupper(c))
{

*cp = * \0';
if (cp - buf >= BSZ)

(void) printf("constant too long - truncated\n");
else

ungetc(c, stdin);
yylval.dval = atof(buf);
return (CONST);

char buf[BSZ+1], *cp = buf;
int dot = 0, exp = 0;

yylval.ival = c
return (VREG);

*cp = c;
if (isdigit (c))

continue;
if (c == •

{
if (dot++ |I exp)

return ('.');
continue;

}
if (c -« 'e')
{
if (exp++)

return ('e');
continue;)

I I c

/* end of number */
break;

yacc

return (c);

{
and d *//* returns the smallest interval containing a, b.

(c > d)

}

{
return (hilo(a * v.hi.

{
&& v.lo <= 0.)

5-46

}
if
{

if (v.hi >= 0.
{

}
else
}

if (a > b) (

)
else
{

}
return (v);

v.hi = a;
v.lo = b;

Programming Tools Guide
1003-48614-00

}
INTERVAL
hilo(a, b, c, d)

double a, b, c, d;

INTERVAL
vmulfa, b, v)

double a, b;
INTERVAL v;

/* used by *,/ routine */
INTERVAL v;

}
dcheck(v)

INTERVAL v;

if (c > v.hi)
v.hi = c;

if (d < v.lo)
v.lo = d;

if (d > v.hi)
v.hi = d;

if (c < v.lo)
v.lo = c;

v.hi = b;
v.lo = a;

b * v.hi, b * v.lo));

yacc

{

5-47

}
return (0);

(void) printf("divisor interval contains 0.\n");
return (1);

INTERVAL
vdiv(a, b, v)

double a, b;
INTERVAL v;

Programming Tools Guide
1003-48614-00

(
return (hilofa / v.hi, a / v,lo, b / v.hi, b / v.lo));

}

Index

A

B-C-D

E

Index-1Programming Tools Guide

End-marker
Environment
error
Error action
Error handling ..
error token
Escape character

Backslash escape character
Binary operators
Declarations section
Dollar sign

accept ...
Accept action ..
Actions

accessing values in enclosing rules
inside of rules
specifying ..

Ambiguities and conflicts in grammar
Arbitrary value types
Arithmetic expressions, parsing
Associativity ...

..... 5-5,10
5-26 to 27
... 5-22,31

 5-12
5-23 to 25

 5-23
 5-3,4

. 5-9,10
5-20,33
5-20,33
5-21,22
5-20,33
 5-5

... 5-33

... 5-33

. 5-4
5-21

. 5-5

. 5-6

#define statement ...
%left keyword
%nonassoc keyword
%prec keyword
%right keyword
%start keyword
%token keyword
%type keyword

 5-31
 5-12

5-1,6 to 8,28
 5-31
 5-7
 5-6

... 5-15 to 19
 5-32

... 5-20 to 22
 5-22

F

G

H-I-J

K

L

Left recursion 5-28

Index-2

Files
declarations section
rules section
specification
subroutines section
y.output
y.tab.h

Functions
yyerror()
yylex()
yyparseO

goto action
Grammar rules

actions
ambiguities and conflicts

Input style
Input syntax .
Invoking yacc

 5-12
.. 5-1,4,28

 5-31
5-15 to 19

5-20,33
5-20,33
5-21,22
5-20,33

 5-5
.... 5-33
.... 5-33

.... 5-28

.... 5-34
5-13,25

5-27
. 5-9
5-26

Programming Tools Guide
1003-48614-00

 5-5
 5-4

5-3 to 4
.... 5-28
.... 5-13
.... 5-10

Keywords
%left
%nonassoc
%prec
%right
%start
%token
%type

M

N-O

P

Q-R

Index-3

Recursion
Reduce action
reduce-reduce conflict

Names
nonterminal symbols
tokens

Nonterminal name
Nonterminal symbol ...
Nonterminal symbols .

Parse tree
Parser
Parser operation

error action
goto action
reduce action
shift action

Parsing arithmetic expressions
Precedence
Precedence keyword
Precedence levels

lex
use with yacc

Lexical analyzer .
Lexical tie-ins
Literals
Look-ahead token

 5-10
5-1 to 3,9,10
............ 5-29

 5-4
 5-11

5-28,29
.... 5-11
5-16,22

5-31
5-31
5-27

Programming Tools Guide
1003-48614-00

Macros
YYACCEPT .
YYERROR ...

mainO routine

.... 5-3,28

.... 5-3,28
 5-28

5-2,17,32
... 5-3,4,5

 5-8
5-1,10 to 15

.. 5-10 to 15
 5-12
 5-12
 5-11
 5-11

. 5-20 to 22
 5-22

.... 5-21,22

. 5-20 to 22

s

T

U-V-W-X

Index-4

Terminal symbols. See tokens
Tokens

assigning numbers
end-marker
look-ahead
names
numbers

Type checking

Reserved words
Right recursion
Routines

main()
yyerror()
yylex()
yyparseO ...

Rules section ...
Running yacc .

Unary operators
Union
Value types
Variables

yylval
Vertical bar in grammar rules

 5-21
5-32 to 33

 5-32

.... 5-27

.... 5-27
 5-9

.... 5-26

..... 5-4
5-13,25

5-30
5-29

5-9
 5-5

5-1,3,4,26,30,32
 5-10

............... 5-5,10
 5-11
 5-28

.............. 5-9,10

........ 5-32 to 33

shift-reduce conflict
Simulating error and accept
Specification file
Stack ...
Structures
Subroutines

Programming Tools Guide
1003-4861400

5-16,18,22
 5-31

... 5-3 to 4
 5-11
 5-32
 5-28

Y-Z

Index-5

y.output file
y.tab.h file
yacc

command
specification
environment
examples
input syntax
library
overview
specification file
use with lex

yyerror() routine
yylexO function ...
yylval variable
yyparseO function

5-13
5-10

Programming Tools Guide
1003-48614-00

 5-25
...... 5-1,3
5-26 to 27
5-36 to 47

 5-34
 5-27

... 5-1 to 3
 5-3
 5-10
 5-27

.......... 5-9

.......... 5-9
 5-26

p
3
Q

o
03
E

CD

6.1 Introduction 6-1

62 Basic Features 6-2

6.7 Suggestions and Warnings 6-21

6-21Internal Rules6.8

Chapter 6
make

6-14
6-15
6-16
6-16
6-16

6-18
6-19

6-10
6-10
6-11
6-12

6-6
6-6
6-6
6-6
6-7
6-7
6-8
6-8
6-9

Programming Tools Guide
1003-48614-00

6.4 Recursive Makefiles.....................
Suffixes and Transformation Rules
Implicit Rules....................................
Archive Libraries

6.6 Running make...........
Environment Variables

6.5 Source Code Control System Filenames: the Tilde
The Null Suffix..
include Files..
SCCS Makefiles...
Dynamic Dependency Parameters....................................

6.3 Description Files and Substitutions
Comments ..
Continuation Lines....................................
Macro Definitions......................................
General Form...
Dependency Information..........................
Executable Commands.............................
Extensions of $*, $@, and $<...................
Output Translations.................................

make

6-11

Figures

6-1 Summary of default transformation path

Programming Tools Guide
1003-48614-00

6-1

Chapter 6
make

The description file that holds the information on interfile dependencies and
command sequences is, by convention, called makefile, Makefile, or
s.[mM]akefile. The make command looks for these default description
filenames in the order given and regenerates the target regardless of the
number of files edited since the last make. In most cases, the makefile
(description file) is not difficult to write and changes infrequently. Even if
only a single file has been edited, rather than typing all the commands to
regenerate the target, typing the make command ensures that the
regeneration is done in the prescribed way. The description file, no matter

6.1 Introduction
The make(l) command provides a method for maintaining, updating, and
regenerating up-to-date versions of programs that consist of a number of files.

make keeps track of the following items:

• File-to-file dependencies

• Files that were modified and the impact those modifications have on
other files

• The exact sequence of operations needed to generate a new version of
the program

In a description file, make keeps track of the commands that create files and
the relationship between files. Whenever a change is made in any of the files
that make up a program, the make command creates the finished program
by recompiling only those portions directly or indirectly affected by the
change.

make performs these tasks:

• Finds the target in the description file.

• Ensures that all the files on which the target depends (the files needed
to generate the target) exist and are up-to-date.

• Creates the target file if any of the generators have been modified more
recently than the target.

Programming Tools Guide
1003-48614-00

make

prog :
-Im prog

x.o y.o :

6-2

y-°
x.o

6.2 Basic Features
The basic operation of make is to update a target file by ensuring that all of
the files on which the target file depends exist and are up-to-date. The target
file is regenerated if it has not been modified since the dependents were
modified. The make program searches the graph of dependencies; make
depends on its ability to find the date and time that a file was last modified.

The make program operates using three sources of information:

• A user-supplied description file {.makefile, Makefile, or s.[mM]akefile')

• Filenames and last-modified times from the filesystem

• Built-in rules to bridge some of the gaps

Consider a simple example in which a program named prog is made by
compiling and loading three C language files x.c, y.c, and z.c with the math
library. By convention, the output of the C language compilations is found in
files named x.o, y.o, and z.o. Assume that the files x.c and y.c share some
declarations in a file named defs.h, but that z.c does not. That is, x.c and y.c
have this line:

what its name, is conventionally referred to as "the makefile." In this
chapter, it is referred to as the makefile or the description file. Refer to
make(l) for information on running make in parallel.

Programming Tools Guide
1003-48614-00

x.o
CC

♦include "defs.h"

The following specification describes the relationships and operations:

defs.h

If this information were stored in a file named makefile, the make command
would use the makefile to perform the operations needed to regenerate prog
after any changes had been made to any of the four source files x.c, y.c, z.c, or
defs.h. In the example above, the first line states that prog depends on three
.o files. Once these object files are current, the second line describes how to
load them to create prog. The third line states that x.o and y.o depend on
the file defs.h. From the filesystem, make discovers that there are three .c
files corresponding to the needed .0 files and uses built-in rules on how to
generate an object from a C source file (that is, issue a cc -c command).

z. o
y.o z.o

make

prog :
-Imz. o prog

x.o

y.o :

z. o
z. c

6-3Programming Tools Guide
1003-48614-00

If make did not have the ability to determine automatically what needs to be
done, the following longer description file would be necessary:

x.o
cc

x. c
cc

y. c
cc

z. c
cc

If none of the source or object files have changed since the last time prog was
made, and all of the files are current, make announces this fact and stops.
If, however, defs.h has been edited, x.c andy.c (but not z.c) are recompiled;
prog is then created from the new x.o and y.o files and the existing z.o file. If
only the file y.c has changed, only it is recompiled. It is still necessary,
however, to reload prog. If no target name is given on the make command
line, the first target mentioned in the description is created; otherwise, the
specified targets are made. The following command would regenerate x.o if
x.c or defs.h had changed.

$ make x.o

A useful programming method is to include rules with mnemonic names and
commands that do not actually produce a file with that name. These entries
can take advantage of the ability of make to generate files and substitute
macros (For information about macros, refer to “Description Files and
Substitutions” later in this chapter.) Thus, an entry “save” might be included
to copy a certain set of files, or an entry “clean” might be used to throw away
unneeded intermediate files.

If a file exists after such commands are executed, the file’s time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further
decisions.

You can maintain a zero-length file purely to keep track of the time at which
certain actions were performed. This technique is useful for maintaining
remote archives and listings.

A simple macro mechanism for substitution in dependency lines and
command strings is used by make. Macros can either be defined by
command-line arguments or included in the description file. In either case, a
macro consists of a name followed by an equals sign followed by the macro
definition. A macro is invoked by preceding the name with a dollar sign.

y.o z.o
x.o y.o
defs.h
-c x.c
defs.h
-c y.c

make

$(LIBES) -o prog

$(OBJECTS)make:

6-4

(In operating system commands, arguments with embedded blanks must be
quoted.)

As an example of the use of make, the following is a description file that
might be used to maintain the make command itself. (The code for make is
spread over a number of C language source files and has yacc grammar.)
The description file contains the following:

Description file for the make command

Macro names longer than one character must be parenthesized. The
following are valid macro invocations:

The last two are equivalent.

$*, $@, $?, and $< are four special macros that change values during the
execution of the command. (These four macros are described later in this
chapter under “Description Files and Substitutions.”) The following
description file fragment shows the assignment and use of some macros:

The following command loads the three objects with both the lex (-11) and the
math (-Im) libraries, because macro definitions on the command line
override definitions in the description file.

$ make LIBES="-11-Im"

FILES = Makefile defs.h main.c doname.c misc.c
files.c dosys.c gram.y

OBJECTS = main.o doname.o misc.o files.o
dosys.o gram.o

LIBES= -lid
LINT = lint -p
CFLAGS = -O
LP = /usr/bin/lp

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

Programming Tools Guido
1003-48614-00

OBJECTS = x.o y.o z.o
LIBES = -Im
prog: S(OBJECTS)

cc $(OBJECTS)

make

$(OBJECTS): defs.h

. o gram.c

lint :

6-5

The string of digits results from the size make command. The printing of
the command line itself is suppressed by the at sign (@) in the makefile.

—O —c main.c
—O -c doname.c
-0 —c misc.c
-O —c files.c
-O —c dosys.c

gram.y

$(CC) $(CFLAGS) $ (OBJECTS) $ (LIBES) -o make
@size make

Programming Tools Guide
1003-48614-00

cleanup:
-rm
-du

print: $(FILES)
pr $? | $(LP)
touch print

The make program prints out each command before issuing it.

The following output results from typing make in a directory containing only
the source and description files:

cc
cc
cc
cc
cc
yacc
mv y.tab.c gram.c
cc
cc

install:
@size make /usr/bin/make
cp make /usr/bin/make && rm make

print files that are out-of-date
with respect to "print” file.

—O ~c gram.c
main.© doname.o misc.o files.o dosys.o
gram.o -lid -o make

13188 + 3348 + 3044 = 19580

dosys.c doname.c files.c main.c misc.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c \
gram.c

make

6.3.1 Comments

lint :

6.3.2 Continuation Lines

lint :

6.3.3 Macro Definitions

6-6

6.3 Description Files and Substitutions
The following section explains the elements of a description file.

print files that are out-of-date
with respect to "print" file.

A macro definition is an identifier (name) followed by an equals sign (=). The
identifier must not be preceded by a colon or a tab. The identifier (a string of
letters and digits) is the macro name to the left of the equals sign (trailing
blanks and tabs are stripped). The identifier is assigned the string of
characters following the equals sign (leading blanks and tabs are stripped).

The comment convention is that a pound sign (#) and all subsequent
characters on the same line are ignored. Blank lines and lines beginning
with a pound sign are totally ignored. For example, the fourth, fifth, and
sixth lines in the following description file fragment would be ignored:

dosys.c doname.c files.c main.c misc.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c \
gram.c

If a noncomment line is too long, the line can be continued by using a
backslash (\). If the last character of a line is a backslash, the backslash, the
new line, and all following blanks and tabs are replaced by a single blank.
For example, the second line in this description file fragment is continued to
the third line:

print files that are out-of-date
with respect to "print" file.

dosys.c doname.c files.c main.c misc.c gram.c
$ (LINT) dosys.c doname.c files.c main.c misc.c \
gram.c

Programming Tools Guide
1003-48614-00

make

6.3.4 General Form

6-7

Items inside brackets may be omitted, and targets and dependents are
strings of letters, digits, periods, and slashes. Shell metacharacters, such as
* and ?, are expanded when the line is evaluated. Commands may appear
either after a semicolon on a dependency line, or on lines beginning with a
tab immediately following a dependency line. A command is any string of
characters not including a pound sign (#), except when the pound sign is in
quotes.

The last definition assigns LEBES the null string. A macro that is never
explicitly defined has the null string as its value. Remember, however, that
some macros are explicitly defined in make’s own rules. (Refer to Figure 6-2
at the end of this chapter.)

Programming Tools Guide
1003-48614-00

The following lines are valid macro definitions:

2 = xyz
abc = -11 -ly -Im
LIBES =

6.3.5 Dependency Information
A dependency line may have either a single or a double colon. A target name
may appear on more than one dependency line, but all of those lines must be
of the same (single or double colon) type.

For the more common single-colon case, a command sequence may be
associated with, at most, one dependency line. If the target is out of date
with any of the dependents on any of the lines and a command sequence is
specified (even a null one following a semicolon or tab), it is executed;
otherwise, a default rule may be invoked.

In the double-colon case, a command sequence may be associated with more
than one dependency line. If the target is out of date with any of the files on
a particular line, the associated commands are executed. A built-in rule may
also be executed. The double-colon form is particularly useful in updating
archive-type files, where the target is the archive library itself. (An example
is included in “Archive Libraries” later in this chapter.)

The general form of an entry in a description file is as follows:

targetl [targec2 ...] :[:) [dependent! ...] I; commands] [# ...]
[\t commands] (# ...]

make

6-8

6.3.7 Extensions of $*, $@, and $<

The internally generated macros $*, $@, and $< are usefill generic terms for
current targets and out-of-date relatives. To this list have been added the
following related macros: $(@D), $(@F), $(*D), $(»F), $(<D), and $(<F). The
D refers to the directory part of the single-character macro. The F refers to
the filename part of the single-character macro. These additions are useful
when building hierarchical makefiles because they allow access to directory
names for purposes of using the cd command of the shell.

6.3.6 Executable Commands
If a target must be created, the sequence of commands is executed.
Normally, each command line is printed and then passed to a separate
invocation of the shell after substituting for macros. The printing is
suppressed in the silent mode (-s option of the make command) or if the
command line in the description file begins with an @ sign, make normally
stops if any command signals an error by returning a nonzero error code.
Errors are ignored if the -i option has been specified on the make command
line, if the fake target name .IGNORE appears in the description file, or if the
command string in the description file begins with a hyphen. If a program is
known to return a meaningless status, a hyphen in front of the command that
invokes it is appropriate. Because each command line is passed to a separate
invocation of the shell, care must be taken with certain commands (for
example, cd and shell control commands) that have meaning only within a
single shell process. These results are forgotten by the shell before the next
line is executed.

Before issuing any command, certain internally maintained macros are set.
The $@ macro is set to the full target name of the current target. The $@
macro is evaluated only for explicitly named dependencies. The $? macro is
set to the string of names that were found to be younger than the target. The
$? macro is evaluated when explicit rules from the makefile are evaluated.
If the command was generated by an implicit rule, the $< macro is the name
of the related file that caused the action; the $* macro is the prefix shared by
the current and the dependent filenames. If a file must be made but there
are no explicit commands or relevant built-in rules, the commands associated
with the name DEFAULT are used. If there is no such name, make prints a
message and stops.

In addition, a description file may also use the following related macros:
$(@D), $(@F), $(*D), $(*F), $(<D), and $(<F).

Programming Tools Guide
1003-48614-00

make

6-9

6.3.8 Output Translations
Macros in shell commands are translated when evaluated. The form is as
follows:

$(macro:stringl=string2)

The meaning of $(macro) is evaluated. For each appearance of stringl in
the evaluated macro, string2 is substituted. The meaning of finding stringl
in $(macro) is that the evaluated $(macro) is considered as a series of
strings each delimited by white space (blanks or tabs). Thus, the occurrence
of stringl in $(macro) means that a regular expression of the following form
has been found:

Consider the following example:

5 cd $(<D); $(MAKE) $(<F)

If the use of $< would produce the pathname string "dir/big/see", the
command above, when passed to the shell, would be as follows:

$ cd dir/big: make see

.*<stringl>[TAB I BLANK]

This particular form was chosen because make usually concerns itself with
suffixes. The usefulness of this type of translation becomes apparent when
you are maintaining archive libraries. Now, all that is necessary is to
accumulate the out-of-date members and write a shell script that can handle
all the C language programs (that is, those files ending in .c). Thus, the
following fragment optimizes the executions of make for maintaining an
archive library:

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)(c.o)
$(CC) -c $ (CFLAGS) $(?:.o=.c)
$ (AR) $(ARFLAGS) S (LIB) $?
rm $?

A dependency of the preceding form is necessary for each of the different
types of source files (suffixes) that define the archive library. These
translations are added in an effort to make more general use of the
information that make generates.

Programming Tools Guide
1003-48614-00

make

6.4.1 Suffixes and Transformation Rules

6-10

6.4 Recursive Makefiles
Another feature of make concerns the environment and recursive
invocations. If the sequence $(MAKE) appears anywhere in a shell command
line, the line is executed even if the -n option is set. Since -n is exported
across invocations of make (through the MAKEFLAGS variable), only the
make command itself is executed. This feature is useful when a hierarchy of
makefiles describe a set of software subsystems. For testing purposes,
make -n ... can be executed and everything that would have been done is
printed, including output from lower-level invocations of make.

make uses an internal table of rules to learn how to transform a file with one
suffix into a file with another suffix. If the -r option is used on the make
command line, the internal table is not used.

The list of suffixes is actually the dependency list for the name .SUFFIXES,
make searches for a file with any of the suffixes on the list. If it finds one,
make transforms it into a file with another suffix. The transformation rule
names are the concatenation of the before and after suffixes. The name of the
rule to transform an .r file to an .o file is thus .r.o. If the rule is present and
no explicit command sequence has been given in the user’s description files,
the command sequence for the rule jr.o is used. If a command is generated
by using one of these suffixing rules, the macro $* is given the value of the
stem (everything but the suffix) of the name of the file to be made; and the
macro $< is the full name of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to
right. The first name formed that has both a file and a rule associated with it
is used. If new names are to be appended, the user can add an entry for
•SUFFIXES in the description file. The dependents are added to the usual
list. A .SUFFIXES line without any dependents deletes the current list. It is
necessary to clear the current list if the order of names is to be changed.

Programming Tools Guide
1003-48614-00

make

.o

.c

•f

•S

.h

.sh

Figure 6-1. Summary of default transformation path.

6-11

•y
.1

FORTRAN source file or SCCS FORTRAN source file

Assembler source file or SCCS Assembler source file

Object file

C source file or SCCS C source file

6.4.2 Implicit Rules
make uses a table of suffixes and a set of transformation rules to supply
default dependency information and implied commands. The default suffix
list is as follows:

yacc source grammar or SCCS yacc source grammar

lex source grammar or SCCS ex source grammar

Header file or SCCS header file

Shell file or SCCS shell file

.o

If the file x.o is needed and an x.c is found in the description or directory, the
x.o file would be compiled. If there is also an x.l, that source file would be run
through lex before compiling the result. However, if there is no x.c but there
is a 2.1, make would discard the intermediate C language file and use the
direct link as shown in Figure 6-1.

Figure 6-1 summarizes the default transformation paths. If there are two
paths connecting a pair of suffixes, the longer one is used only if the
intermediate file exists or is named in the description.

Programming Tools Guide
1003-48614-00

make

S make ”CFLAGS=-g"

6.4.3 Archive Libraries

6-12

By knowing the macro names used, it is possible to change the names of some
of the compilers used in the default or the options with which they are
invoked. The compiler names are the macros as, cc, fortran, yacc, and lex.
The following command causes the newcc command to be used instead of the
usual C language compiler.

$ make CC=newcc

The macros ASFLAGS, CFLAGS, F77FLAGS, YFLAGS, and LFLAGS may be
set to cause these commands to be issued with optional options. Thus, the
following command causes the cc command to include debugging
information.

Programming Tools Guide
1003-48614-00

The make program has an interface to archive libraries. A user can name a
member of a library in the following manner:

projlib(object. o)
or

projlib((encrypt))
The second method actually refers to an entry point of an object file within
the library, make looks through the library, locates the entry point, and
translates it to the correct object filename.

To use this procedure to maintain an archive library, the following type of
makefile is required:

projlib:: projlib(pfilel.o)
$(CC) -c -0 pfilel.c
$(AR) $(ARFLAGS) projlib pfilel.o
rm pfilel.o

projlib:: projlib(pfile2.o)
$(CC) -c —O pfile2.c
$ (AR) S(ARFLAGS) projlib pfile2.o
rm pfile2.o

. . . and so on for each object...

This is tedious and error prone. Obviously, the command sequences for
adding a C language file to a library are the same for each invocation; the
filename, in most cases, being the only difference.

make

.c.a:

projlib:

6-13

S(CC) —c $(CFLAGS) $<
$ (AR) $ (ARELAGS) $@ $».O
rm -f $* . o

Thus, the $@ macro is the .a target (projlib); the $< and $* macros are set to
the out-of-date C language file and to the filename minus the suffix (pfilel.c
and pfilel respectively). The $< macro (in the preceding rule) could have
been changed to $*.c.

The following paragraphs explain in detail what make does when it sees this
construction:

projlib(pfilel.o)
@echo projlib up-to-date

Assume that the object in the library is out of date with respect to pfilel.c.
Also, there is no pfilel.o file.

1. make projlib.

2. Before makeing projlib, check each dependent of projlib.

3. Generate projlib(p/iZeZ.o). It is a dependent of projlib.

4. Before generating projlib(p/iZeLo), check each dependent of
projlib(p/sZe7.o). (There are none.)

5. Use internal rules to try to create projlib(p/iZe7.o). (There is no explicit
rule.) Note that projlib(p/ZZeZ.o) has parentheses in the name to
identify the target suffix as .a. This is the key. There is no explicit .a at
the end of the projlib library name. The parentheses imply the .a

Programming Tools Guide
1003-48614-00

The make command also gives the user access to a rule for building libraries.
The rule is indicated by the .a suffix. Thus, a .C£ rule is the rule for
compiling a C language source file, adding it to the library, and removing the
.o file. Similarly, the .y.a, the .s.a, and the .l.a rules rebuild yacc,
assembler, and lex files, respectively. The archive rules defined internally
are .c.a, .c~.a, .f.a, .f .a, and .s".a. (The tilde syntax is described later in this
chapter.) The user may define other needed rules in the description file.

The two-member library in the previous makefile example is maintained with
the following shorter makefile:

projlib: projlib(pfilel.o) projlib (pfile2.o)
Secho projlib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The actual .c.a rule is as follows:

make

6-14

6.5 Source Code Control System Filenames: the Tilde
The syntax of make does not directly permit referencing of prefixes. For
most types of files, this is acceptable since nearly everyone uses a suffix to
distinguish different types of files. The SCCS files are the exception. Here, s.
precedes the filename part of the complete pathname.

To allow make easy access to the prefix s., the tilde O is used as an identifier
of SCCS files. Hence, .c~.o refers to the rule which transforms an SCCS C
language source file into an object file. Specifically, the internal rule is as
follows:

Programming Tools Guide
1003-48614-00

$(GET) $(GFLAGS) $<
$(CC) $ (CFLAGS) —c $*.c
-rm -f $*.c

Thus, the tilde appended to any suffix transforms the file search into an
SCCS filename search with the actual suffix named by the dot and all
characters up to (but not including) the tilde.

It should be noted that to let pfilel.o have dependencies, the following syntax
is required:

projlib(pfilel.o): $(INCDIR)/stdio.h pfilel.c

There is also a macro for referencing the archive member name when this
form is used. The $% macro is evaluated each time $@ is evaluated. If there
is no current archive member, $% is null. If an archive member exists, then
$% evaluates to the expression between the parentheses.

suffix. In this sense, the .a is hard-wired into make.

6. Break up the name projlib(p/iZe7.o) into projlib and pfilel.o. Define
two macros, $@ (=projlib) and $* l=pfilel).

7. Look for a rule JCa and a file $*.X. The first .X (in the .SUFFIXES list)
that fulfills these conditions is .c, so the rule is .c.a, and the file is
pfilel.c. Set $< to be pfilel.c and execute the rule. In fact, make must
then compile pfilel.c.

8. The library has been updated. Execute the command associated with
the projlib: dependency:

Secho projlib up-to-date

make

6-15

$(CC) $(CFLAGS) $< -O $@

In fact, this .c: rule is internally defined so that no makefile is necessary at
all. The user only needs to type the following:

$ make cat dd echo date

6.5.1 The Null Suffix
There are many programs that consist of a single source file, make handles
this case by the null suffix rule. Thus, to maintain the operating system
program cat, a rule in the makefile of the following form is needed:

The following SCCS suffixes are internally defined:

.c"
X
•y"
.1"
.s'
.sh"
Jh"

The following rules involving SCCS transformations are internally defined:

.F

.sh"

.c~.a:

.c".c:

.c".o:

.F.a:
XX.
.F.o:
.s'.a:
.s'.s:
.s".o:
•y".c:
.y".o:
.r.i:
.F.o:
•h'Jh:

The user can define other rules and suffixes. The tilde provides a handle on
the SCCS filename format so that this is possible.

Programming Tools Guide
1003-48614-00

make

6-16

(cat, dd, echo, and date are all operating system single-file programs.) All
four C language source files are passed through the preceding shell command
line associated with the .c: rule. The internally defined single suffix rules are
as follows:

6.5.2 include Files

The make program has a capability similar to the #include directive of the
C preprocessor. If the string include appears as the first seven letters of a
line in a makefile and is followed by a blank or a tab, the rest of the line is
assumed to be a filename, which the current invocation of make reads.
Macros may be used in filenames. The file descriptors are stacked for
reading include files so that no more than 16 levels of nested includes are
supported.

6.5.3 SCCS Makefiles

Makefiles under SCCS control are accessible to make. That is, if make is
typed and only a file named s.makefile or s.Makefile exists, make does a get
on the file, then reads and removes the file.

.c:

.c":
J:
J":
.sh:
.sh":

Others can be added in the makefile by the user.

6.5.4 Dynamic Dependency Parameters

The parameter has meaning only on the dependency line in a makefile. The
$$@ refers to the current item to the left of the colon (which is $@). The form
$$(@F) also exists, allowing access to the file part of $@. Thus, in the
following example, the dependency is translated at execution time to the
string cat.c.

cat: S$@.c

This is useful for building a large number of executable files, each of which
has only one source file. For instance, the operating system command
directory could have a makefile like this:

CMDS = cat dd echo date emp conun chown

Programming Tools Guide
1003-48614-00

make

INCDIR = /usr/include

6-17

This makefile would completely maintain the /usr/include directory
whenever one of the above files in / usr /src/head was updated.

INCLUDES = \
$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES): $$(@F)
cp $? $@
chmod 0444 $@

Programming Tools Guide
1003-48614-00

$(CMDS): $$@.c
$(CC) -O $? -o $@

Obviously, this is a subset of all the single-file programs. For multiple-file
programs, a directory is usually allocated and a separate makefile is made.
For any particular file that has a peculiar compilation procedure, a specific
entry must be made in the makefile.

The second useful form of the dependency parameter is $$(@F). It
represents the filename part of Again, it is evaluated at execution time.
Its usefulness becomes evident when you try to maintain the /usr/include
directory from a makefile in the / usr /src / head directory. Thus, the
/ usr/src/ head/makefile would look like this:

make

make [-f makefile] [-p] [—i] [-k] [—s] [—r] [-n] [-e] [-1] [-q] [names]

-f

-k

-s

6-18

6.6 Running make
To run make, use the following command syntax:

Refer to make(l) in the Reference Manual for more information on running
make and for running make in parallel. The make command takes macro
definitions, options, description filenames, and target filenames as arguments
in the form:

$ make [options] [macro definitions] [targets]

-P

Description filename. The next argument is assumed to be the name of
a description file. A filename of - denotes the standard input. If there
are no -f arguments, the file named makefile or Makefile or
s.fmMlakefile in the current directory is read. The contents of the
description files override the built-in rules if they are present.

Print out the complete set of macro definitions and target descriptions.

Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the description
file.

Abandon work on the current entry if it fails, but continue on other
branches that do not depend on that entry.

Silent mode. Do not print command lines before executing. This mode
is also entered if the fake target name .SELENT appears in the
description file.

Programming Tools Guide
1003-48614-00

All macro definition arguments (arguments with embedded equals signs) are
analyzed and the assignments made. Command-line macros override
corresponding definitions found in the description files. Next, the option
arguments are examined. The options are as follows:

make

Do not use the built-in rules.

-n

-q

The following arguments are evaluated in the same manner as options:

•DEFAULT

•PRECIOUS

•SELENT

•IGNORE

6.6.1 Environment Variables

6-19

Environment variables are read and added to the macro definitions each time
make executes. Precedence must be considered for this to work properly.
The following paragraphs describe make’s interaction with the environment.
A macro (environment variable), MAKEFLAGS, is maintained by make. The
macro is defined as the collection of all input option arguments into a string
(without minus signs). The macro is exported and thus accessible to further
invocations of make. Command line options and assignments in the makefile
update MAKEFLAGS. Thus, to describe how the environment interacts with
make, the MAKEFLAGS macro must be considered.

No execute mode. Print commands, but do not execute them. Even
lines beginning with an @ sign are printed.

Environmental variables override assignments within makefiles.

Touch the target files (causing them to be up-to-date) rather than issue
the usual commands.

Question. The make command returns a zero or nonzero status code,
depending on whether the target file is or is not up-to-date.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used if it exists.

Dependents on this target are not removed when a quit or
interrupt key is pressed.

Same effect as the -s option.

Same effect as the -i option.

Finally, the remaining arguments are assumed to be the names of targets to
be made and are done in left-to-right order. If there are no such arguments,
the first name in the description file that does not begin with a period is
made.

Programming Tools Guide
1003-48614-00

make

1.

2.

3.

4.

1.

Environment2.

3.

4.

1.

2.

3.

Command line4.

6-20

makefilets)

Command line

makefile's)

Environment

Read the environment. The environment variables are treated as
macro definitions and marked as exported (in the shell sense).

Read the makefilets). The assignments in the makefilets) override the
environment. This order is chosen so that when a makefile is read and
executed, you know what to expect. That is, you get what is seen unless
the -e option is used. The command line option -e tells make to have
the environment override the makefile assignments. Thus, if make-e
... is typed, the variables in the environment override the definitions in
the makefile. Also, MAKEFLAGS overrides the environment if assigned.
This is useful for further invocations of make from the current
makefile.

Programming Tools Guide
1003-48614-00

The -e option has the effect of rearranging the order:

Internal definitions

In summary, the precedence of assignments, in order from least binding to
most binding, is as follows:

Internal definitions

When executed, make assigns macro definitions in the following order:

Read the MAKEFLAGS environment variable. If it is not present or
null, the internal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input option
argument and is processed as such. (The only exceptions are the -f, -p,
and -r options.)

Read the internal list of macro definitions.

This order is general enough to allow a programmer to define a makefile or
set of makefiles whose parameters are dynamically definable.

make

NOTE

SUFFIXES RECOGNIZED BY MAKE

.SUFFIXES: . s

PREDEFINED MACROS

6-21

6.8 Internal Rules
The standard set of internal rules used by make are reproduced below:

#
#
#

6.7 Suggestions and Warnings
The most common difficulties arise from make’s specific meaning of
dependency. If file x.c has a line like this:

#include "defs.h"

then the object file x.o depends on defs.h-, the source file x.c does not. If defs.h
is changed, nothing is done to the file x.c while file x.o must be recreated.

The -n option is useful in discovering what make would do. The following
command orders make to print out the commands that make would issue
without actually taking the time to execute them.

$ make-n

If a change to a file is certain to be small in character (for example, adding a
comment to an include file), the -t (touch) option can save a lot of time.
Instead of issuing a large number of superfluous recompilations, make
updates the modification times on the affected file. Thus, the following
command (touch silently) causes the relevant files to appear up-to-date.

$ make -ts

#
#
#

Care is necessary because this mode of operation subverts the
intention of make and destroys all memory of the previous
relationships.

.o .c

Programming Tools Guide
1003-48614-00

,c“ .y .y“ .1 .1“ .s' .h .h' .sh ,sh' .f .f'

make

SINGLE SUFFIX RULES

$(F77) $(F77FLAGS) $(LDFLAGS) $< -O $0

6-22

MAKE=make
AR=ar
ARFLAGS=-rv
AS=as
ASFLAGS=
CC=CC
CFLAGS=-0
F77=f77
F77FLAGS=
GET=get
GFLAGS=
LEX=lex
LFLAGS=
LD=ld
LDFLAGS=
YACC=yaoc
YFLAGS=

#

. sh' :
$(GET) $(GFLAGS) $<
cp $*.sh $*; chmod 0777 $0
-rm -f $*.sh

Programming Tools Guide
1003-48614-00

. c*:
$(GET) $(GFLAGS) $<
$(CC) S(CFLAGS) $(LDFLAGS) $*.C -O $*
-rm -f $*.c

• f:
$(GET) $(GFLAGS) $<
$(F77) $(F77FLAGS) $(LDFLAGS) S< -O $*
-rm -f $*.f

. sh:
cp $< chmod 0777 $@

$(CC) $(CFLAGS) $(LDFLAGS) $< -O $0

make

DOUBLE SUFFIX RULES

.1.1 .h.h:• y.y

6-23

#
#

.c'.a:
$(GET) $(GFLAGS) $<
$(CC) -c $(CFLAGS) $*.c
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[co]

. f. o:
$(F77) $(F77FLAGS) $(LDFLAGS) -C $*.f

. f. a:
$(F77) $(F77FLAGS) $(LDFLAGS) -c $*.f
$ (AR) $ (ARFLAGS) $@ $*.o
-rm -f $*.o

.f*.o:
$(GET) $(GFLAGS) $<
$(F77) $(F77FLAGS) $(LDFLAGS) -c $*.f
-rm -f $*.f

.f'.a:
$(GET) $(GFLAGS) 5<
$(F77) $(F77FLAGS) $(LDFLAGS) -c $*.f
$ (AR) $ (ARFLAGS) $@ $*.o
-rm -f $*.[fo]

.c~.o:
$(GET) $(GFLAGS) S<
$(CC) $(CFLAGS) —c $*.c
-m -f $*.c

.c.o:
$(CC) S (CFLAGS) —c $<

Programming Tools Guide
1003-48614-00

. c. a:
$(CC) -c $(CFLAGS) $<
$ (AR) $ (ARFLAGS) $@ $*.o
rm -f $* . o

.c'.c .f.f .s.s .sh.sh
$(GET) $(GFLAGS) $<

make

-o $@ $<

$<

6-24

$<
$*.l

Programming Tools Guide
1003-48614-00

.1-.c:
$(GET) $(GFLAGS)
$(LEX) $(LFLAGS)
mv lex.yy.c $@

.l.o:
$(LEX) $(LFLAGS)

• y.c :
$(YACC) S(YFLAGS) $<
mv y.tab.c $@

.s'.a:
$(GET) S(GFLAGS)
$(AS) $ (ASFLAGS)
$ (AR) $(ARFLAGS)
-rm -f $*.[so]

.y'.c :
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $*.c
-rm -f $*.y

. 1. c :
$(LEX) $(LFLAGS)
mv lex.yy.c $@

$<
$(CC) S(CFLAGS) —c lex.yy.c
rm lex.yy.c
mv lex.yy.o $@
-rm -f $*.l

. s'. o:
$(GET) $(GFLAGS)
$(AS) $(ASFLAGS)
-rm -f $*.s

$<
—o $*.o $*.s
$@ $*.o

. 1'.o:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) S*.l
$(CC) $(CFLAGS) —c lex.yy.c
rm -f lex.yy.c $*.l
mv lex.yy.o $*.o

$<
—o $*.o $*.s

. s. o:
$ (AS) $ (ASFLAGS)

make

6-25

$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) —c y.tab.c
rm -f y.tab.c $*.y
mv y.tab.o $*.o

. y. o:
$(YACC) $(YFLAGS) $<
$(CC) $ (CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.c $@

Programming Tools Guide
1003-48614-00

Index

A-B

C

D

Index-1

Archive libraries
Backslash line continuation character
Blank lines ...

Commands
executable
in makefiles
make
processing
size make
suppressing printing

Comment character
Comments, in makefiles
Continuation character

.. 6-6

.. 6-6
6-5,8
6-19
6-19
6-10
6-19
6-19
6-10

Date of last modification
Dependencies

.SUFFIXES
Dependencies, in makefiles
Description file
Directories, using in makefiles.

6-9,12,14
 6-6
 6-6

... 6-3
6-9,21
.. 6-10
.... 6-7
.... 6-1
.... 6-8

.. 6-8

.. 6-7
6-18

.. 6-8

.. 6-5
6-5,8

.. 6-6

.. 6-6

.. 6-6

sign ..
= sign ..
@ sign
DEFAULT
IGNORE
MAKEFLAGS environment variable
PRECIOUS
SILENT ...
SUFFIXES ..

Programming Tools Guide
1003-48614-00

E

F

G-H-I-J-K-L

M

Index-2

Hyphens, in makefile command strings
include files ...
Internal makefile rules
Line continuation character

Files
description
entries
include
makefile example
multiple program
single program
Source Code Control System
target
zero-length

6-19,20
.... 6-10

 6-6
 6-8
 6-8

. 6-8

. 6-2
6-21

. 6-6

6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-7
6-3

Environment variables
MAKEFLAGS

Equals sign
Errors
Executable command

Programming Tools Guide
1003-48614-00

6-1,7
.. 6-7
.. 6-2
.. 6-4
6-17
6-17
6-14

6-1,2
.. 6-3

Macros
$(<D) ..
$(<F) ...
$(@D) ..
$(@F) ..
$(*D) ...
$(*F) ...
$<
$?
$@
built-in
defining

N-0

P-Q

R

Index-3

definitions
evaluation
extensions
for targets
invoking
translation

make command
make, running
makefile

dependencies
example
internal rules
parameters
recursive
relationships
testing

Mnemonic names, using
Multiple-file programs

Names, mnemonic
Null suffixes
Overview

Parallel make
Parameters in makefiles
Pound sign

Recursive makefiles
Rules

for suffixes
for transformation ...
SCCS transformation

Running make

.... 6-3
6-15,16
... 6-1,2

... 6-10

... 6-21
6-10,12
6-10,12
... 6-15
... 6-18

. 6-6

. 6-9

. 6-8

. 6-8

. 6-3

. 6-9
6-18
6-18

. 6-1

. 6-2

. 6-4
6-21
6-16
6-10

. 6-2
6-10

. 6-3
6-17

. 6-2
6-16

. 6-6

Programming Tools Guide
1003-48614-00

s

T-U-V-W-X-Y-Z

Index-4

6-15,16
6-10,12
.... 6-15

6-15
6-14
6-15

. 6-9

. 6-7
6-17

. 6-5

Targets
•IGNORE
default
fake
macros for

Testing makefiles
Tilde, for SCCS files
Transformation rules
Zero-length files

SCCS. See Source Code Control System
Shell metacharacters
Single-file programs
size make command
Source Code Control System

file suffixes
filenames
transformation rules

Strings, in macro evaluations
Suffixes

null
rules
SCCS ..

Programming Tools Guide
1003-48614-00

... 6-1,2
. 6-8
 6-8
 6-8
 6-8

.... 6-10
... 6-14
6-10,12

 6-3

co o o
(J)

o o
GO

7-1Introduction7.1

72

7-673

7.4

7.5 7-11
7-12
7-13
7-13
7-15
7-16
7-16
7-17
7-20
7-20
7-22
7-24
7-25
7-25
7-26
7-27
7-28
7-29
7-29
7-30
7-31

7-1
7-2
7-2
7-3
7-4
7-5
7-6

SCCS For Beginners..
Terminology ..
Using admin to Create an SCCS File...................................
Using get to Retrieve a File...
Using delta to Record Changes...
Additional Information about get...
The help Command...

Delta Numbering...

SCCS Command Conventions..
x.files and z.files...
Error Messages..

SCCS Commands...
The get Command ...

Identification Keywords...
Retrieval of Different Versions..
Retrieval with Intent to Make a Delta...............................
Undoing a get -e..
Additional get Options..
Concurrent Edits of Different Deltas.................................
Concurrent Edits of Same SID..
Command Options that Affect Output...............................

The delta Command...
The admin Command...
Creation of SCCS files...

Inserting Commentary for the Initial Delta......................
Initialization and Modification of SCCS File Parameters

The prs Command...
The sact Command..
The help Command..
The rmdel Command...
The cdc Command...—........
The what Command...

Chapter 7
SCCS

..7-9
7-10
7-11

Programming Tools Guide
1003-48614-00

sees

Tables

Determination of New SID 7-187-1

The sccsdiff Command
The comb Command ...
The val Command........
The vc Command.........

7-32
7-32
7-33
7-33

7-34
7-34
7-35
7-36

7-7
7-8
7-9

7.6 SCCS Files
Protection ...
Formatting
Auditing....

Programming Tools Guide
1003-48614-00

Figures

7-1 Evolution of an SCCS file.............
7-2 Tree structure with branch deltas
7-3 Extended branching concept........

7-1Programming Tools Guide
1003-48614-00

7.1 Introduction
The Source Code Control System (SCCS) is a maintenance and revision
tracking tool that runs under the operating system. SCCS takes custody of a
file and, when changes are made, identifies and stores them in the file with
the original source code and documentation.

The original file or any set of changes can be retrieved. Any version of the
file as it develops can be reconstructed for inspection or additional
modification. History data can be stored with each version: why the changes
were made, who made them, when they were made.

This chapter covers the following topics:

• SCCS for Beginners: how to make, retrieve, and update an SCCS file

• Delta Numbering: how versions of an SCCS file are named

• SCCS Command Conventions: what rules apply to SCCS commands

• SCCS Commands: the SCCS commands and their more useful
arguments

• SCCS Files: how to protect, format, and audit SCCS files

7.2 SCCS For Beginners
Several terminal session fragments are presented in this section. Try them
all. The best way to learn SCCS is to use it.

Chapter 7
SCCS

sees

7-2

7.2.2 Using admin to Create an SCCS File

Suppose, for example, you have a file called lang that is simply a list of five
programming language names. Use a text editor to create file lang
containing the following list:

C
PL/1
FORTRAN
COBOL
ALGOL

Custody of your lang file can be given to SCCS using the admin (.administer
SCCS file) command. The following command creates an SCCS file from the
lang file:

$ admin -ilang s.Iang

7.2.1 Terminology
A delta is a set of changes made to a file under SCCS custody. To identify
and keep track of a delta, it is automatically assigned an SID (SCCS
IDentification) number. The SID for any original file turned over to SCCS is
composed of release number 1 and level number 1, stated as 1.1. The SID for
the first set of changes made to that file (that is, its first delta) is release 1
version 2, or 1.2. The next delta would be 1.3, the next 1.4, and so on.

A tree represents the entire SCCS structure for a file, including the trunk
and all branches.

A node is any location on a tree where a delta or branching occurs.

A trunk of an SCCS tree is the main stem of an SCCS tree not including any
branches that is, release numbers are in a straight progression with each
delta dependent on the preceding deltas.

A. trunk delta is a change dependent on all previous deltas. Trunk delta
names contain a release number and a level number.

A branch delta is a change to a delta that is not dependent on all previous
deltas. Branch delta names have four SID components: the same release
number and level number as the trunk delta, plus a branch number and
sequence number.

A leaf delta is the last delta on a branch, that is, it has the highest sequence
number.

Programming Tools Guide
1003-48614-00

sees

7-3

All SCCS files must have names that begin with s., hence s.lang. The -i
option, together with its value lang, tells admin to create an SCCS file and
initialize it with the contents of the file lang.

The admin command replies:

No id keywords (cm7)

This is a warning message that may also be issued by other SCCS commands.
Its significance is described with the get command under “SCCS Commands”
later in this chapter.

Remove the lang file. It is no longer needed because it exists now under
SCCS as s.lang.

S rm lang

7.2.3 Using get to Retrieve a File
Enter the get command as follows:

$ get s.lang

This retrieves s.lang and prints this message:

1.1
5 lines

The message tells you that get retrieved version 1.1 of the file, which
contains five lines of text.

The retrieved text is placed in a new file known as ag./iZe. SCCS forms the
g.file name by deleting the prefix s. from the name of the SCCS file and
recreating the original file lang.

If you list the contents of your directory, you see both lang and s.lang. SCCS
retains s.lang for use by other users. The get s.lang command creates lang
as a read-only file and keeps no information regarding its creation.

The following get command informs SCCS that you are going to make
changes to the file:

$ get -e s.lang
get -e causes SCCS to create lang for both reading and writing (editing). It
also places certain information about lang in another new file, called the
p.file (p.lang in this case), which is needed later by the delta command.

Programming Tools Guide
1003-48614-00

sees

1.2

7-4

get -e prints the same messages as get, except that now the SID for the first
delta you create is issued:

1.1
new delta
5 lines

Change lang by adding two more programming languages:

SNOBOL
ADA

Programming Tools Guide
1003-48614-00

7.2.4 Using delta to Record Changes

Now use the delta command as follows:

$ delta s.lang

delta prompts with this message:

comments?

Your response should be an explanation of why the changes were made. For
example, you could type this line:

added more languages

delta now reads the p.file, p.lang, and determines what changes you made to
lang. It does this by doing its own get to retrieve the original version and
applying the diff(l) command to the original version and the edited version.
Next, delta stores the changes in s.lang and destroys the no longer needed
p.lang and lang files.

When this process is complete, delta outputs these messages:

1.2
2 inserted
0 deleted
5 unchanged

The number 1.2 is the SID of the delta you just created, and the next three
lines summarize what was done to s.lang.

sees

7-5

$ get s.lang
$ get -rl s.lang
$ get -rl.2 s.lang

The numbers following -r are SIDs. When you omit the level number of the
SID (as in get -rl s.lang), the default is the highest level number that exists
within the specified release. Thus, the second command requests the
retrieval of the latest version in release 1, namely 1.2. The third command
specifically requests the retrieval of a particular version, in this case also 1.2.

Whenever a major change is made to a file, you may want to signify it by
changing the release number, the first number of the SID. This, too, is done
with the get command:

$ get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before
release 2. get also interprets this as a request to change the release number
of the new delta to 2, thereby naming it 2.1 rather than 1.3. The output
means that version 1.2 has been retrieved, and that 2.1 is the version delta
creates:

7.2.5 Additional Information about get
The following command retrieves the latest version of the file s.lang, now 1.2:

$ get s.lang

SCCS does this by starting with the original version of the file and applying
the delta you made. If you use the get command now, any of the following
commands retrieve version 1.2:

1.2
new delta 2.1
7 lines

If the file is now edited, for example, by deleting COBOL from the list of
languages, and delta is executed:

delta slang
comments? deleted COBOL from list of languages

You will see by delta’s output that version 2.1 is indeed created:

2.1
0 inserted
1 deleted
6 unchanged

Programming Tools Guide
1003-48614-00

sees

7-6

Deltas can now be created in release 2 (deltas 2.2, 2.3, and so on), or another
new release can be created in a similar manner.

Programming Tools Guide
1003-48614-00

7.3 Delta Numbering
Deltas are like the nodes of a tree in which the root node is the original
version of the file. The root is normally named 1.1 and deltas (nodes) are
named 1.2, 1.3, and so on. The first number (1 in this case) is called the
release number. The numbers after the decimal point (1, 2, and 3 in this
case) are called the level numbers. Thus, normal naming of new deltas
proceeds by incrementing the level number. This is done automatically by
SCCS whenever a delta is made.

Because you can change the release number to indicate a major change, the
release number then applies to all new deltas unless specifically changed
again. Thus, the evolution of a particular file could be represented by Figure
7-1.

7.2.6 The help Command
If the following command is executed, a message in output;

$ get lang

The message is as follows:

ERROR [lang]: not an SCCS file (col)

The error message code, col, can be used with help to get an explanation of
the message:

help col
This gives the following explanation of why get lang produced an error
message:

col:
"not an SCCS file"
A file that you think is an SCCS file
does not begin with the characters "s."

help is useful whenever there is doubt about the meaning of almost any
SCCS message.

sees

7-7

This is the normal sequential development of an SCCS file, with each delta
dependent on the preceding deltas. Such a structure is called the trunk of an
SCCS tree.

Some situations require branching an SCCS tree. That is, changes are
planned to a given delta that are not dependent on all previous deltas. For
example, consider a program in production use at version 1.3 and for which
development work on release 2 is already in progress. Release 2 may already
have a delta in progress as shown in Figure 7-1. Assume that a production
user reports a problem in version 1.3 that cannot wait to be repaired in
release 2. The changes necessary to repair the trouble are applied as a delta
to version 1.3 (the version in production use). This creates a new version that
is then released to the user but does not affect the changes being applied for
release 2 (deltas 1.4, 2.1, 2.2, and so on). This new delta is the first node of a
new branch of the tree.

Branch delta names always have four SID components: the same release
number and level number as the trunk delta, plus a branch number and
sequence number. The format is as follows:

release.leuel.branch.sequence

The branch number of the first delta branching off any trunk delta is always
1, and its sequence number is also 1. For example, the full SID for a delta
branching off trunk delta 1.3 is 1.3.1.1. As other deltas on that same branch
are created, only the sequence number changes: 1.3.1.2, 1.3.1.3, and so on.
This is shown in Figure 7-2.

Figure 7-1. Evolution of an SCCS file. Note that a major change is
indicated by a new release number (2) and that all subsequent deltas apply
to that new number"

Programming Tools Guide
1003-48614-00

2.21.3

sees

Figure 7-2. Tree structure with branch deltas.

7-8

The branch number is incremented only when a delta is created that starts a
new branch off of an existing branch, as shown in Figure 7-3. As this
secondary branch develops, the sequence numbers of its deltas are
incremented (1.3.2.1, 1.3.2.2, and so on), but the secondary branch number
remains the same.

Programming Tools Guide
1003-48614-00

1.3 2.2

sees

1.3.1.2

1.3.1.1

1.3

Figure 7-3. Extended branching concept.

7-9Programming Tools Guide
1003-48614-00

1A SCCS Command Conventions
SCCS commands accept two types of arguments: command options and
filenames. Command options begin with a minus sign (-) followed by a
lowercase letter and, in some cases, a value.

Filenames or directory names specify the files that the command is to
process. Naming a directory is equivalent to naming all the SCCS files
within the directory. Non-SCCS files and unreadable files in the named
directories are silently ignored (because of permission modes using
chmod(l)).
In general, filename arguments may not begin with a minus sign. If a
filename of - (a minus sign) is specified, the command reads the standard
input for lines and takes each line as the name of an SCCS file to be
processed. The standard input is read until end-of-file. This feature is often
used in pipelines with the commands find(l) or ls(1), for example.

The concept of branching may be extended to any delta in the tree, and the
numbering of the resulting deltas proceeds as shown above. SCCS allows the
generation of complex tree structures. Although this capability has been
provided for certain specialized uses, the SCCS tree should be kept as simple
as possible. Comprehension of its structure becomes difficult as the tree
becomes complex.

1.3.2.2

2.2

sees

7-10

Command options are processed before filenames; therefore, options may be
interspersed with filenames. Filenames are processed left to right.
Somewhat different conventions apply to help(l), what(l), sccsdiff(l), and
val(l), detailed later in this chapter under “SCCS Commands.”

Certain actions of various SCCS commands are controlled by flags appearing
in SCCS files. Some of the flags are discussed in this chapter; for a complete
description, refer to admin(l) in the Reference Manual.

The distinction between real user (passwd(l)) and effective user is of
concern in discussing various actions of SCCS commands. For this
discussion, assume that the real user and the effective users are the same—
the person logged into the operating system (refer to “Protection” later in this
chapter).

Programming Tools Guide
1003-48614-00

7.4.1 x.files and z.files

All SCCS commands that modify an SCCS file do so by writing a copy called
the x.file. This ensures that the SCCS file is not damaged if processing
terminates abnormally. SCCS names the x.file by replacing the s. of the
SCCS filename with a x. prefix. The x.file is created in the same directory as
the SCCS file, given the same mode (see chmod(l)), and is owned by the
effective user. When processing is complete, the old SCCS file is destroyed
and the modified x.file is renamed (x. is relaced by s.); it becomes the new
SCCS file.

To prevent simultaneous updates to an SCCS file, the same modifying
commands also create a lock-file called the z.file. SCCS forms its name by
replacing the s. of the SCCS filename with a z. prefix. The z.file contains the
process number of the command that creates it, and its existence prevents
other commands from processing the SCCS file. The z.file is created with
access permission mode 444 (read only) in the same directory as the SCCS
file and is owned by the effective user. It exists only for the duration of the
execution of the command that creates it.

In general, you can ignore x.files and z.files. They are useful only in the event
of system crashes or similar situations.

sees

7-11

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses can be used as an argument to the help command to
obtain a further explanation of the message. Detection of a fatal error during
the processing of a file causes the SCCS command to stop processing that file
and proceed with the next file specified.

prs

sact

help

nndel

cdc

what

7.5 SCCS Commands
This section describes the major features of the SCCS commands and their
most common arguments. Full descriptions of each command are in the
Reference Manual.

Here is a quick-reference overview of the commands:

7.4.2 Error Messages

SCCS commands produce error messages on the diagnostic output in this
format:

get

unget

delta

admin

Programming Tools Guide
1003-48614-00

Retrieves versions of SCCS files

Undoes the effect of a get -e prior to the file being deltaed

Applies deltas (changes) to SCCS files and creates new versions

Initializes SCCS files, manipulates their descriptive text, and
controls delta creation rights

Prints portions of an SCCS file in user-specified format

Prints information about files that are currently out for edit

Gives explanations of error messages

Removes a delta from an SCCS file, allowing removal of deltas
created by mistake

Changes the commentary associated with a delta

Searches any operating system file(s) for all occurrences of a
special pattern and prints out what follows it (useful for
identifying information inserted by the get command)

sccsdiff Shows differences between any two versions of an SCCS file

sees

comb

val Validates an SCCS file

Specifies a filter for version controlvc

7-12

7.5.1 The get Command

The get(l) command creates a file that contains a specified version of an
SCCS file. The version is retrieved by beginning with the initial version and
then applying deltas, in order, until the desired version is obtained. The
resulting file is called the g.file. It is created in the current directory and is
owned by the real user. The mode assigned to the g.file depends on how the
get command is used.

The most common use of get is as follows:

S get s.abc

This command retrieves the latest version of file abc from the SCCS file tree
trunk and produces output like the following on the standard output:

1.3
67 lines
No id keywords (cm7)

The output shows that version 1.3 of file s.abc was retrieved (assuming 1.3 is
the latest trunk delta), it has 67 lines of text, and no ID keywords were
substituted in the file.

$ get smbe s.xyz

produces the following output:

s.abc:
1.3
67 lines
No id keywords (cm7)

Combines consecutive deltas into one to reduce the size of an
SCCS file

Programming Tools Guido
1003-48614-00

The generated g.file (file abc) is given access permission mode 444 (read
only). This particular way of using get is intended to produce g.files only for
inspection, compilation, and so on. It is not intended for editing.

When several files are specified, the same information is output for each one.
The command

sees

VAR

7-13Programming Tools Guide
1003-48614-00

s.xyz:
1.7
85 lines
No id keywords (cm7)

Identification Keywords

In generating a g.file for compilation, it is useful to record the date and time
of creation, the version retrieved, the module’s name, and so forth, within the
g.file. This information appears in a load module when one is eventually
created. SCCS provides a convenient mechanism for doing this
automatically. Identification (ID) keywords appearing anywhere in the
generated file are replaced by appropriate values according to the definitions
of those ID keywords. The format of an ID keyword is an uppercase letter
enclosed by percent signs (%). For example, %1% is the ID keyword replaced
by the SID of the retrieved version of a file. Similarly, %H% and %M% are
the current date and name of the g.file. Consider the following PL/I language
declaration:

No id keywords (cm7)

This message is normally treated as a warning by get, although the presence
of the i flag in the SCCS file causes it to be treated as an error. For a
complete list of the ID keywords, refer to get(l) in the Reference Manual.
Retrieval of Different Versions

By default, get retrieves the most recently created delta of the highest-
numbered trunk release of an SCCS file. Any other version can be retrieved
with get —r by specifying the version’s SID. The following command retrieves
version 1.3 of file s.abc.

$ get -rl.3 s.abc

The following message is displayed on the standard output:

1.3
64 lines

A branch delta may be retrieved similarly, as follows:

DCL ID CHAR(IOO) VAR INIT('%M% %I%

Executing get on an SCCS file containing this declaration gives (for example)
the following output:

DCL ID CHAR(IOO) VAR INIT ('MODNAME 2.3 07/18/85');

When no ID keywords are substituted by get, the following message is
issued:

sees

7-14 Programming Tools Guide
1003-48614-00

$ get -rl.5.2.3 s-abc

It produces a message like this on the standard output:

1.5.2.3
234 lines

When an SID is specified and the particular version does not exist in the
SCCS file, an error message results.

Omitting the level number, as in the following command, causes retrieval of
the trunk delta with the highest-level number within the given release.

$ get -r3 smbe

Thus, the above command might produce this output:

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the
highest level number within the highest-numbered existing release that is
lower than the given release. For example, assume that release 9 does not
exist in file s.abc and release 7 is the highest-numbered release below 9.
Executing the following command produces output indicating that trunk
delta 7.6 is the latest version of file s.abc below release 9, as follows:

$ get -r9 smbe
7.6
420 lines

Similarly, omitting the sequence number, as in the following command,
results in the retrieval of the branch delta with the highest sequence number
on the given branch. Consider this command:

$ get -r4.3.2 s.abc

This might result in the following output:

4.3.2.8
89 lines

If the branch does not exist, an error message results.

get -t retrieves the latest (top) version of a particular release when no -r is
used or when its value is simply a release number. The latest version is the
delta produced most recently, independent of its location on the SCCS file
tree. Thus, if the most recent delta in release 3 is 3.5, the following command
might produce this output:

sees

7-15

Retrieval with Intent to Make a Delta

Invoking get with the -e option indicates an intent to make a delta. First,
get checks the user list to determine if the login name or group ID of the
person executing get is present. The login name or group ID must be present
for the user to be allowed to make deltas. (Refer to “The admin Command”,
later in this chapter, for a discussion of making user lists.) Second, get
checks to make sure that the release number (R) of the version being
retrieved satisfies the following relation:

floor is less than or equal to R, which is
less than or equal to ceiling

By checking this relation, get determines if the release being accessed is a
protected release. The floor and ceiling are flags in the SCCS file
representing start and end of range. Third, get checks to see that the R is
not locked against editing. The lock is a flag in the SCCS file. Last, get
checks to see whether multiple concurrent edits are allowed for the SCCS file
by the j flag in the SCCS file.

A failure of any of the first three conditions causes the processing of the
corresponding SCCS file to terminate.

If the checks succeed, get -e causes the creation of a g.file in the current
directory with mode 644 (readable by everyone, writable only by the owner)
owned by the real user. If a writable g.file already exists, get terminates
with an error. This prevents inadvertent destruction of a. g.file being edited
for the purpose of making a delta.

Any ID keywords appearing in the g.file are not substituted by get -e
because the generated g.file is subsequently used to create another delta.
Replacement of ID keywords causes them to be permanently changed in the
SCCS file. Because of this, get does not need to check for their presence in
the g.file. Thus, the following message is never output when get -e is used.

No id keywords (cm7)

S get -r3 -t s.abc
3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta
3.5), the same command might produce this output:

3.2.1.5
46 lines

Programming Tools Guide
1003-48614-00

sees

NOTE

Use get -i and get -x with extreme care.

7-16

Undoing a get -e

There may be times when a file is retrieved for editing in error; there is
really no editing that needs to be done at this time. In such cases, the unget
command can be used to cancel the delta reservation that was set up.

get -k is used either to regenerate a g.file that may have been accidentally
removed or ruined after get -e, or simply to generate a g.file in which the
replacement of ID keywords has been suppressed. A g.file generated by get
-k is identical to one produced by get -e, but no processing related to the
p.file takes place.

Whenever deltas are included or excluded, get checks for possible
interference with other deltas. For example, two deltas can interfere when
each one changes the same line of the retrieved g.file. A warning shows the
range of lines within the retrieved g.file where the problem may exist. You
should examine the g.file to determine what the problem is and what action
to take, for example, editing the file.

Programming Tools Guide
1003-48614-00

In addition, get -e causes the creation (or updating) of a p.file that is used to
pass information to the delta command.

The following command produces a message like this on the standard output:

S get -e s.abc
1.3
new delta 1.4
67 lines

Additional get Options

If get -r or get -t are used with -e, the version retrieved for editing is the
one specified by -r or -t.

get -i and -x are used to specify a list of deltas to be included and excluded,
respectively. Including a delta means forcing its changes to be included in
the retrieved version. This is useful in applying the same changes to more
than one version of the SCCS file. Excluding a delta means forcing it not to
be applied. This may be used to undo the effects of a previous delta in the
version to be created.

sees

7-17

Note that concurrent executions of get must be done from different
directories. Subsequent executions from the same directory attempt to
overwrite the g. file, which is an SCCS error condition. In practice, this
problem does not arise since each user normally has a different working
directory. Refer to “Protection”, later in this chapter, for a discussion of how
different users are permitted to use SCCS commands on the same files.

Table 7-1 shows the possible SID components a user can specify with get, the
version that is then retrieved by get, and the resulting SID for the delta that
delta creates.

The first execution of get -e causes the creation of a p.file for the
corresponding SCCS file. Subsequent executions only update the p.file with a
line containing the above information. Before updating, however, get checks
to assure that no entry already in the p.file specifies that the SID of the
version to be retrieved is already retrieved (unless multiple concurrent edits
are allowed). If the check succeeds, you are informed that other deltas are in
progress and processing continues. If the check fails, an error message
results.

Concurrent Edits of Different Deltas

The ability to retrieve different versions of an SCCS file allows several deltas
to be in progress at any given time. This means that several get -e
commands may be executed on the same file as long as no two executions
retrieve the same version (unless multiple concurrent edits are allowed).

The p.file created by get -e is named by automatic replacement of the SCCS
filename’s prefix s. with a p. prefix. It is created in the same directory as the
SCCS file, given mode 644 (readable by everyone, writable only by the
owner), and owned by the effective user. The p.file contains the following
information for each delta that is still in progress:

• The SID of the retrieved version

• The SID given to the new delta when it is created

• The login name of the real user executing get

Programming Tools Guide
1003-48614-00

sees

mR.(mL+l)R defaults to mR mR.mLnonet no

mR.mL.(inB+l)R defaults to mR mR.mLnonet yes

R.l§mR.mLR > mRR no

mR.(mL+l)mR.mLR = mRR no

mR.mL.(mB+l).lmR.mLR > mRR yes

mR.mL.(mB+l).lmR.mLmRRR yes

hR.mL.(mB+l).lhR.mL**R

R.mL.(mB+l).lR.mLR

t

t

7-18

R< mR and R
does not exist

Trunk successor
number in
release > R
and R exists

Other
Conditions

SID
Specified
in get*

-b Key-
Letter
Usedt

Programming Tools Guide
1003-48614-00

SID of Delta
To be Created

by delta

Table 7-1
Determination of New SID

SID
Retrieved

by get

§

R, L, B, and S mean release, level, branch, and sequence numbers in the SID; m means
maximum. Thus, for example, R.mL means the maximum level number within release R.
R.L.(mB+l).l means the first sequence number on the new branch (i.e., maximum branch
number plus 1) of level L within release R. Note that if the SID specified is R.L, R.L.B, or
R.L.B.S, each of these specified SID numbers must exist.
The -b option is effective only if the b flag (see adminfll) is present in the file. An entry
of - means irrelevant.
This case applies if the d (default SID) flag is not present. If the d flag is present in the
file, the SID is interpreted as if specified on the command line. Thus, one of the other
cases in this table applies.
This is used to force the creation of the first delta in a new release.
hR is the highest existing release that is lower than the specified, nonexistent release R.

sees

R.L. R.L R.(L+1)no

R.L.(mB+l).lR.L. R.Lyes

R.L R.L.(mS+l).lR.L

R.L.B R.L.B.mS R.L.B.(mS+l)no

R.L.B R.L.B.mS R.L.(mB+l).lyes

R.L.B.S R.L.B.S R.L.B. (S+l)no

R.L.B.S R.L.B.S R.L.(mB+l).lyes

R.L.B.S Branch successor R.L.B.S R.L.(mB+l).l

+

7-19

The -b option ia effective only if the b flag (aee admin(l)) is present in the file. An entry
of - means irrelevant.

Other
Condition

No trunk
successor

No trunk
successor

Trunk successor
in release > R

No branch
successor

No branch
successor

No branch
successor

No branch
successor

SID
Specified
in get*

-b Key-
Letter
Usedf

SID
Retrieved

by get

SID of Delta
to be Created

by delta

Table 7-1
Determination of New SID (cont.)

R, L, B, and S mean release, level, branch, and sequence numbers in the SID; m means
maximum. Thus, for example, R.mL means the maximum level number within release R.
R.L.(mB+l).l means the first sequence number on the new branch (i.e., maximum branch
number plus 1) of level L within release R. Note that if the SID specified is R.L, R.L.B, or
R.L.B.S, each of these specified SID numbers must exist.

Programming Tools Guide
1003-48614-00

sees

7-20 Programming Tools Guide
1003-48614-00

Concurrent Edits of Same SID

Under normal conditions, more than one get -e for the same SID is not
permitted. That is, delta must be executed before a subsequent get -e is
executed on the same SID.

Multiple concurrent edits are allowed if the j flag is set in the SCCS file.
Thus, the second get command below can immediately follow the first
without an intervening delta command:

$ get -e s.abc
1.1
new delta 1.2
5 lines

$ get -e s.abc
1.1
new delta 1.1.1.1
5 lines

In this case, a delta command after the first get produces delta 1.2
(assuming 1.1 is the most recent trunk delta), and a delta after the second
get produces delta 1.1.1.1.

Command Options that Affect Output

get -p causes the retrieved text to be written to the standard output rather
than to ag.file. In addition, all output normally directed to the standard
output (such as the SID of the version retrieved and the number of lines
retrieved) is directed instead to the diagnostic output. For example, get -p is
used to create a g.file with an arbitrary name:

$ get -p s.abc > arbitrary-file-name

get -s suppresses output normally directed to the standard output, such as
the SID of the retrieved version and the number of lines retrieved, but it does
not affect messages normally directed to the diagnostic output, get -s is used
to prevent nondiagnostic messages from appearing on the your terminal and
is often used with -p to pipe the output, as follows:

$ get -p -s s.abc I pg

get -g suppresses the retrieval of the text of an SCCS file. This is useful in
several ways. For example, to verify a particular SID in an SCCS file, the
following command outputs the SID 4.3, if it exists, in the SCCS file s.abc or
an error message if it does not:

sees

7-21

$ get -g -r4.3 s.abc

Another use of get -g is in regenerating a p.file that may have been
accidentally destroyed, as follows:

? get -e -g suibc

get -I causes SCCS to create an l.file. It is named by replacing the s. of the
SCCS filename with I., created in the current directory with mode 444 (read
only) and owned by the real user. The l.file contains a table (whose format is
described under get(l). showing the deltas used in constructing a particular
version of the SCCS file. For example, the following command generates an
l.file showing the deltas applied to retrieve version 2.3 of file s.abc:

S get -r2.3 -1 surbe

Specifying p with -1 causes the output to be written to the standard output
rather than to the l.file, as follows:

$ get -Ip -r2.3 s.abc

get -g can be used with -1 to suppress the retrieval of the text.

get -m identifies the changes applied to an SCCS file. Each line of the g. file
is preceded by the SID of the delta that caused the line to be inserted. The
SID is separated from the text of the line by a tab character.

get -n causes each line of ag.file to be preceded by the value of the ID
keyword and a tab character. This is most often used in a pipeline with
grep(l). For example, the following commands find all lines that match a
given pattern in the latest version of each SCCS file in a directory:

$ get -p -n —s directory I grep pattern

If both -m and -n are specified, each line of the generated g.file is preceded
by the value of the %M% ID keyword and a tab (this is the effect of -n) and is
followed by the line in the format produced by -m. Because use of -m and/or
-n causes the contents of the g.file to be modified, such a g.file must not be
used for creating a delta. Therefore, neither -m nor -n may be specified
together with get -e.

Refer to get(l) for a full description of additional command options.

Programming Tools Guide
1003-48614-00

sees

7-22

7.5.2 The delta Command
The delta(l) command is used to incorporate changes made to a. g.file into
the corresponding SCCS file—that is, to create a delta and, therefore, a new
version of the file.

The delta command requires the existence of a p.file (created via get -e). It
examines the p.file to verify the presence of an entry containing the user’s
login name. If none is found, an error message results.

The delta command performs the same permission checks that get -e
performs. If all checks are successful, delta determines what has been
changed in the g./iZe by using difffl) to compare it with its own temporary
copy of the g.file as it was before editing. This temporary copy of the g.file is
called the d.file and is obtained by performing an internal get on the SID
specified in the p.file entry.

The required p.file entry is the one containing the login name of the user
executing delta, because the user who retrieved the g.file must be the one
who creates the delta. However, if the login name of the user appears in
more than one entry, the same user has executed get -e more than once on
the same SCCS file. Then, delta -r must be used to specify the SID that
uniquely identifies the p.file entry. This entry is then the one used to obtain
the SID of the delta to be created.

In practice, the most common use of delta is as follows:

$ delta s.abc

The delta command prompts for comments:

comments?

You reply with a description of why the delta is being made, ending the reply
with a newline character. Your response may be up to 512 characters long
with newlines, not intended to terminate the response, escaped by
backslashes (\).

If the SCCS file has a v flag, delta first prompts with the Modification
Requests (MRs) prompt on the standard output:

MRS?

The standard input is read for MR numbers, separated by blanks or tabs, and
ended with a newline character. A Modification Request is a formal way of
asking for a correction or enhancement to the file. In some controlled
environments where changes to source files are tracked, deltas are permitted
only when initiated by a trouble report. Recording MR numbers within

Programming Tools Guide
1003-48614-00

sees

NOTE

delta -m is allowed only if the SCCS file has a v flag.

7-23

deltas is a way of enforcing the rules of the change management process,

delta -y or delta -m can be used to enter comments and MR numbers on the
command line rather than through the standard input, as follows:

$ delta -^'descriptive comment" -m"mrnuml mrnum2" s.abc

In this case, the prompts for comments and MRs are not printed, and the
standard input is not read. These two options are useful when delta is
executed from within a shell procedure.

No matter how comments and MR numbers are entered with delta, they are
recorded as part of the entry for the delta being created. Also, they apply to
all SCCS files specified with the delta.

If delta is used with more than one file argument and the first file named has
a v flag, all files named must have this flag. Similarly, if the first file named
does not have the flag, none of the files named may have it.

When delta processing is complete, the standard output displays the SID of
the new delta (from the p.file) and the number of lines inserted, deleted, and
left unchanged, for example:

1.4
14 inserted
7 deleted
345 unchanged

If line counts do not agree with the your perception of the changes made to a
3g.file, it may be because there are various ways to describe a set of changes,
especially if lines are moved around in the g./iZe. However, the total number
of lines of the new delta (the number inserted plus the number left
unchanged) should always agree with the number of lines in the edited g.file.

If you are in the process of making a delta and the delta command finds no
ID keywords in the edited g.file, the following message is issued after the
prompts for commentary but before any other output:

No id keywords (cm7)

This means that any ID keywords that may have existed in the SCCS file

Programming Tools Guide
1003-48614-00

sees

7-24

have been replaced by their values or deleted during the editing process.
This could be caused by making a delta from a g.file that was created by a
get without -e (ID keywords are replaced by get in such a case). It could
also be caused by accidentally deleting or changing ID keywords while editing
the g.file. Or, it is possible that the file had no ID keywords. In any case, the
delta is created unless there is an i flag in the SCCS file (meaning the error
should be treated as fatal), in which case the delta is not created.

After the processing of an SCCS file is complete, the corresponding p.file
entry is removed from the p.file. All updates to the p.file are made to a
temporary copy, the q.file, whose use is similar to the use of the x.file
described earlier under “SCCS Command Conventions.” If there is only one
entry in the p.file, then the p.file itself is removed.

In addition, delta removes the edited g.file unless -n is specified. For
example, the following command keeps the g.file after processing:

$ delta -n s^ibc

delta -s suppresses all output normally directed to the standard output,
other than comments? and MRs?. Thus, use of-s with-y (and-m) keeps
delta from reading standard input or writing standard output.

The differences between theg.file and the d.file constitute the delta and may
be printed on the standard output by using delta -p. The format of this
output is similar to that produced by diffd).

7.5.3 The admin Command

The admin(l) command is used to administer SCCS files—that is, to create
new SCCS files and change the parameters of existing ones. When an SCCS
file is created, its parameters are initialized by use of options with admin or
are assigned default values if no options are supplied. The same options are
used to change the parameters of existing SCCS files.

Two command options are used in detecting and correcting corrupted SCCS
files. (Refer to “Auditing” later in this chapter.)

Newly created SCCS files are given access permission mode 444 (read-only)
and are owned by the effective user. Only a user with write permission in the
directory containing the SCCS file may use the admin command on that file.

Programming Tools Guide
1003-48614-00

sees

7.5.4 Creation of SCCS files

time created

7-25

An SCCS file can be created by executing a command in this form:

$ admin -ifirst s.abc

The value first with -i is the name of a file from which the text of the initial
delta of the SCCS file s.abc is to be taken. Omission of a value with -i means
admin is to read the standard input for the text of the initial delta.

The following command is equivalent to the previous example:

$ admin -i s.abc < first

If the text of the initial delta does not contain ID keywords, the following
message is issued by admin as a warning:

No id keywords (cm7)

However, if the command also sets the i flag (not to be confused with the -i
option), the message is treated as an error and the SCCS file is not created.
Only one SCCS file may be created at a time using admin -i.

admin -r is used to specify a release number for the first delta. Thus, the
following command means that the first delta should be named 3.1 rather
than the normal 1.1.

$ admin -ifirst -r3 s.abc

Because -r has meaning only when creating the first delta, its use is
permitted only with -i.

Programming Tools Guide
1003-48614-00

Inserting Commentary for the Initial Delta

When you create an SCCS file, you may want to record why you did it.
Comments (admin -y) and MR numbers (-m) can be entered in exactly the
same way as a delta.

If -y is omitted, a comment line in the following form is automatically
generated:

date and time created YY/MM/DD HH:MM:SS by logname

If you want to supply MR numbers (admin -m), the v flag must be set via -f.
The v flag simply determines whether MR numbers must be supplied when
using any SCCS command that modifies a delta commentary in the SCCS file
(refer to sccsfile(4) in the Reference Manual):

S admin -ifirst -mmrnuml -fv s.abc

sees

Note that -y and -m are effective only if a new SCCS file is being created.

7-26 Programming Tools Guide
1003-48614-00

Initialization and Modification of SCCS File Parameters

Part of an SCCS file is reserved for descriptive text, usually a summary of the
file’s contents and purpose. It can be initialized or changed by using
admin -t.

When an SCCS file is first being created and -t is used, it must be followed by
the name of a file from which the descriptive text is to be taken. For
example, the following command specifies that the descriptive text is to be
taken from file desc:

$ admin -ifirst -tdesc s.abc

When processing an existing SCCS file, -t specifies that the descriptive text
(if any) currently in the file is to be replaced with the text in the named file.
Thus, the following command specifies that the descriptive text of the SCCS
file is to be replaced by the contents of desc.

? admin -tdesc s.abc

Omission of the filename after the -t option, as in the following command,
causes the removal of the descriptive text from the SCCS file:

$ admin -t s.abc

The flags of an SCCS file may be initialized or changed by admin -f, or
deleted with -d.

SCCS file flags are used to direct certain actions of the various commands.
Refer to admin(l) for a description of all the flags. For example, the i flag
specifies that a warning message (stating that there are no ID keywords
contained in the SCCS file) should be treated as an error. The d (default
SID) flag specifies the default version of the SCCS file to be retrieved by the
get command.

admin -f is used to set flags and, if desired, their values. For example, the
following command sets the i and m (module name) flags:

S admin -ifirst -fi -fmmodname s.abc

The value modname specified for the m flag is the value that the get
command uses to replace the %M% ID keyword. (In the absence of the m
flag, the name of the g.file is used as the replacement for the %M% ID
keyword.) Several -f options may be supplied on a single admin command
line, and they may be used whether the command is creating a new SCCS file
or processing an existing one.

sees

7-27

admin -d is used to delete a flag from an existing SCCS file. As an example,
the following command removes the m flag from the SCCS file:

$ admin -dm s.abc

Several -d options may be used on an admin command line and may be
intermixed with -f.

SCCS files contain a list of login names and/or group IDs of users who are
allowed to create deltas. This list is empty by default, allowing anyone to
create deltas. To create a user list (or add to an existing one), admin -a is
used. For example, the following command adds the login names xyz and
wql and the group ID 1234 to the list:

$ admin -axyz -awql -al234 s.abc

admin -a (add) may be used whether creating a new SCCS file or processing
an existing one.

admin -e (erase) is used to remove login names or group IDs from the list.

Programming Tools Guide
1003-48614-00

7.5.5 The prs Command

The prs(l) command prints all or part of an SCCS file on the standard
output. If prs -d is used, the output is in a format called data specification.
Data specification is a string of SCCS file data keywords (not to be confused
with get ID keywords) interspersed with optional user text.

Data keywords are replaced by appropriate values according to their
definitions. The following example is defined as the data keyword replaced
by the SID of a specified delta:

:I:

Similarly, :F: is the data keyword for the SCCS filename currently being
processed, and :C: is the comment line associated with a specified delta. All
parts of an SCCS file have an associated data keyword. For a complete list of
keywords, refer to prs(l) in the Reference Manual.

There is no limit to the number of times a data keyword may appear in a
data specification. For example, this prs command might produce the
following output:

$ prs this is the top delta for :F:s.abc
2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying its SID using
prs -r. For example, this prs command might produce the following output:

sees

7-28

7.5.6 The sact Command

sact(l) is a special form of the prs command that produces a report about
files that are out for edit. The command takes only one argument: a list of
file or directory names. The report shows the SID of any file in the list that is
out for edit, the SID of the impending delta, the login of the user who
executed the get -e command, and the date and time the get -e was
executed. It is a useful command for an administrator.

$ prs -d'hF:: :I: comment line is: :C:" -rl.4 s.abc
s.abc: 1.4comment line is: this is a comment

If -r is not specified, the value of the SID defaults to the most recently
created delta.

In addition, information from a range of deltas may be obtained with prs -I
or prs -e. The use of prs -e substitutes data keywords for the SID
designated with -r and all deltas created earlier, while prs -1 substitutes
data keywords for the SID designated with -r and all deltas created later.
Thus, the following command might produce the following output:

$ prs -d:I: -rl.4 -e s-abc
1.4
1.3
1.2.1.1
1.2
1.1

And this command might produce this output:

$ prs -d:I: -rl.4 -1 smbe
3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the SCCS file may be obtained
by specifying both -e and -1.

Programming Tools Guide
1003-48614-00

sees

NOTE

7-29

7.5.8 The rmdel Command

The rmdel(l) command allows removal of a delta from an SCCS file. Its use
should be reserved for deltas in which incorrect global changes were made.
The delta to be removed must be a leaf delta. That is, it must be the most
recently created delta on its branch or on the trunk of the SCCS file tree. In
Figure 7-3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed. Only after
they are removed can deltas 1.3.2.1 and 2.1 be removed.

7.5.7 The help Command

The help(l) command prints the syntax of SCCS commands and of messages
that appear on your terminal. Arguments to help are either SCCS
commands or the code numbers that appear in parentheses after SCCS
messages. If no argument is given, help prompts for one. Explanatory
information is printed on the standard output. If no information is found, an
error message is printed. When more than one argument is used, each is
processed independently, and an error resulting from one does not stop the
processing of the others.

rmdel:
rmdel -rSID name ...

There is no conflict between the help command of SCCS and the
operating system help(l) utilities. The installation procedure
for each package checks for the prior existence of the other.

Explanatory information related to a command is a synopsis of the command.
For example, consider the following command and its output:

$ help ge5 rmdel
ge5:
"nonexistent sid”
The specified sid does not exist in the
given file.
Check for typos.

Programming Tools Guide
1003-48614-00

sees

7-30

To be allowed to remove a delta, the effective user must have write
permission in the directory containing the SCCS file. In addition, the real
user must be either the one who created the delta being removed or the
owner of the SCCS file and its directory.

The -r option is mandatory with rmdel. It is used to specify the complete
SID of the delta to be removed. Thus, the following command specifies the
removal of trunk delta 2.3:

$ rmdel -r2.3 s.abc

Before removing the delta, rmdel checks that the release number (R) of the
given SID satisfies this relation:

floor less than or equal to R less than or equal to ceiling

The rmdel command also checks the SID to make sure it is not for a version
on which a get for editing has been executed and whose associated delta has
not yet been made. In addition, the login name or group ID of the user must
appear in the file’s user list, or the user list must be empty. Also, the release
specified cannot be locked against editing; if the 1 flag is set, the release must
not be contained in the list (refer to admin(l)). If these conditions are not
satisfied, processing is terminated, and the delta is not removed.

Once a specified delta has been removed, its type indicator in the delta table
of the SCCS file is changed from D (delta) to R (removed).

7.5.9 The cdc Command

The cdc(l) command is used to change the commentary made when the delta
was created. It is similar to the rmdel command (that is, -r and full SID are
necessary), although the delta need not be a leaf delta. For example, the
following command specifies that the commentary of delta 3.4 is to be
changed:

$ cdc -r3.4 sjibc

New commentary is then prompted for as with delta.

The old commentary is kept, but it is preceded by a comment line indicating
that it has been superseded, and the new commentary is entered ahead of the
comment line. The inserted comment line records the login name of the user
executing cdc and the time of its execution.

Programming Tools Guide
1003-48614-00

sees

7-31

The cdc command also allows for the insertion of new and deletion of old ("!"
prefix) MR numbers. Thus, the following command inserts mrnum3 and
deletes mrnuml for delta 1.4:

$ cdc -rl.4 s.abc
MRs? mmum3 Imrnuml
comments? deleted wrong MR number, inserted correct MR number

The MRs? prompt appears only if the v flag has been set. Modification
Requests are described earlier in this chapter.

7.5.10 The what Command

The what(l) command is used to find identifying information within any file
whose name is given as an argument. No command options are accepted.
The what command searches the given file(s) for all occurrences of the string
@(#), which is the replacement for the %Z% ID keyword (refer to get(l)).
what prints, on standard output, whatever follows the string until the first
double quote ("), greater-than sign (>), backslash (\), newline, or nonprinting
NULL character.

For example, consider an SCCS file called s.prog.c containing the following
line:

char id [] = "%W%";

The following command results in a g.file that is is used to produce prog.o
and a.out:

$ get -r3.4 s.prog.c
Then, this what command produces the following output:

$ what prog.c prog.o a.out
prog.c:

prog.c: 3.4
prog.o:

prog.c: 3.4
a.out:

prog.c: 3.4
The string searched for by what need not be inserted with an ID keyword of
get; it can be inserted in any convenient manner.

Procramming Tools Guide
1003-48614-00

sees

comb -s

7-32

comb -p

comb -c

7.5.11 The sccsdiff Command

The sccsdiff command prints, on standard output, differences between any
two versions of an SCCS file. The versions to be compared are specified with
sccsdiff-r in the same way as with get -r. SID numbers must be specified
as the first two arguments. Any following options are interpreted as
arguments to the prfl) command (which prints the differences) and must
appear before any filenames. The SCCS files to be processed are named last.
Directory names and a name of - (a minus sign) are not acceptable to
sccsdiff.

The following is an example of the the sccsdiff command:

$ sccsdiff -r3.4 -r5.6 suibc

The differences are printed in the same format as diff(l).

Generates a shell procedure that produces a report of the
percentage of space (if any) that would be saved. This is often
useful as an advance step.

Allows you to specify the oldest delta you want preserved.

Allows you to specify a list of deltas you want preserved. All
other deltas are discarded. (Refer to get(l) for the delta list
syntax.)

Programming Tools Guide
1003-48614-00

7.5.12 The comb Command

The comb(l) command lets you try to reduce the size of an SCCS file. It
generates a shell procedure on standard output, which reconstructs the file
by discarding unwanted deltas and combining other specified deltas. (It is
not recommended that comb be used as a matter of routine.)

In the absence of any command options, comb preserves only leaf deltas and
the minimum number of ancestor deltas necessary to preserve the shape of
an SCCS tree. The effect of this is to eliminate middle deltas on the trunk
and on all branches of the tree. Thus, in Figure 7-3, deltas 1.2, 1.3.2.1, 1.4,
and 2.1 would be eliminated.

The following are some of the options you can use with this command:

The shell procedure generated by comb is not guaranteed to save space. A
reconstructed file may even be larger than the original. Note, too, that the
shape of an SCCS file tree may be altered by the reconstruction process.

sees

7-33

7.5.13 The val Command
The val(l) command is used to determine whether a file is an SCCS file
meeting the characteristics specified by certain command options. It checks
for the existence of a particular delta when the SID for that delta is specified
with -r.

The string following-y or -m is used to check the value set by the t or m
flag, respectively. Refer to admin(l) for a description of these flags.

The val command treats the special argument - (minus sign) differently from
other SCCS commands. It allows val to read the argument list from the
standard input instead of from the command line, and the standard input is
read until a|Ctrl-D| (end-of-file) is entered. This permits one val command
with different values for command options and file arguments. For example,
the following command line first checks if file s.abc has a value c for its type
flag and value abc for the module name flag:

$ val -
-yc -mabc s.abc
-mxyz -ypll s.xyz

Once this is done, val processes the remaining file, in this case s.xyz.

The val command returns an 8-bit code. Each bit set shows a specific error.
In addition, an appropriate diagnostic is printed unless suppressed by -s.
(Refer to val(l) for a description of errors and codes.) A return code of 0
means all files met the characteristics specified.

7.5.14 The vc Command
The vc(l) command is an awk-like tool used for version control of sets of
files. While it is distributed as part of the SCCS package, it does not require
the files it operates on to be under SCCS control. A complete description of
vc may be found in the Reference Manual.

Is GuideProgramming Tools.
1003-48614-00

sees

7-34

7.6.1 Protection
SCCS relies on the capabilities of the operating system for most of the
protection mechanisms required to prevent unauthorized changes to SCCS
files—that is, changes by non-SCCS commands. Protection features provided
directly by SCCS are the release lock flag, the release floor and ceiling flags,
and the user list.

Files created by the admin command are given access permission mode 444
(read only). This mode should remain unchanged because it prevents
modification of SCCS files by non-SCCS commands. Directories containing
SCCS files should be given mode 755, which allows only the owner of the
directory to modify it.

SCCS files should be kept in directories that contain only SCCS files and any
temporary files created by SCCS commands. This simplifies their protection
and auditing. The contents of directories should be logical groupings—
subsystems of the same large project, for example.

SCCS files should have only one link (name) because commands that modify
them do so by creating a copy of the file (the x.fi.le\ refer to “SCCS Command
Conventions”). When processing is done, the old file is automatically
removed and the x.file renamed (s. prefix). If the old file had additional links,
this breaks them. Then, rather than process such files, SCCS commands
produce an error message.

When only one person uses SCCS, the real and effective user IDs are the
same; and the user ID owns the directories containing SCCS files. Therefore,
SCCS may be used directly without any preliminary preparation.

When several users with unique user IDs are assigned SCCS responsibilities
(for example, on large development projects), one user—that is, one user ID—
must be chosen as the owner of the SCCS files. This person administers the
files (that is, uses the admin command) and is SCCS administrator for the
project. Because other users do not have the same privileges and permissions
as the SCCS administrator, they are not able to execute directly those
commands that require write permission in the directory containing the
SCCS files. Therefore, a project-dependent program is required to provide an
interface to the get, delta, and, if desired, rmdel and cdc commands.

7.6 SCCS Files
This section covers protection mechanisms used by SCCS, the format of
SCCS files, and the recommended procedures for auditing SCCS files.

Programming Tools Guide
1003-48614-00

sees

Checksum

Delta Table

User Names

7-35

The interface program must be owned by the SCCS administrator and must
have the “set user ID on execution” bit on (refer to chmod(l) in the Reference
Manual). This assures that the effective user ID is the user ID of the SCCS
administrator. With the privileges of the interface program during command
execution, the owner of an SCCS file can modify it at will. Other users whose
login names or group IDs are in the user list for that file (but are not the
owner) are given the necessary permissions only for the duration of the
execution of the interface program. Thus, they may modify SCCS only with
delta and, possibly, rmdel and cdc. A project-dependent interface program
could be custom-built for each project.

Details on these file sections may be found in sccsfile(4). The checksum is
discussed under “Auditing,” following.

Since SCCS files are ASCII files, they can be processed by non-SCCS
commands like ed(l), grep(l), and cat(l). This is convenient when an SCCS
file must be modified manually (for example, a delta’s time and date were
recorded incorrectly because the system clock was set incorrectly), or when
you simply want to look at the file.

A line containing the logical sum of all the characters of
the file (not including the checksum itself)

Information about each delta, such as type, SID, date and
time of creation, and commentary

List of login names and/or group IDs of users who are
allowed to modify the file by adding or removing deltas

Indicators that control certain actions of SCCS commandsFlags

Descriptive Text Usually a summary of the contents and purpose of the file

Body The text administered by SCCS, intermixed with internal
SCCS control lines

7.6.2 Formatting

SCCS files are composed of lines of ASCII text arranged in six parts as
follows:

Programming Tools Guide
1003-48614-00

sees

CAUTION

7-36

7.6.3 Auditing

When a system or hardware malfunction destroys an SCCS file, any
command issues an error message. Commands also use the checksum stored
in an SCCS file to determine whether the file has been corrupted since it was
last accessed (possibly by having lost one or more blocks or by having been
modified with ed(D). No SCCS command processes a corrupted SCCS file
except the admin command with -h or -z, as described below.

SCCS files should be audited for possible corruptions on a regular basis. The
simplest and fastest way to do an audit is to use admin -h and specify all
SCCS files:

$ admin -h s.filel s.file2 ...
or

$ admin -h directoryl directory2 ...

If the new checksum of any file is not equal to the checksum in the first line
of that file, the following message is produced for that file:

corrupted file (co6)

The process continues until all specified files have been examined. When
examining directories (as in the second example above), the checksum
process does not detect missing files. A simple way to learn whether files are
missing from a directory is to execute the ls(l) command periodically and
compare the outputs. Any file whose name appeared in a previous output but
not in the current one no longer exists.

When a file has been corrupted, the way to restore it depends on the extent of
the corruption. If damage is extensive, the best solution is to contact the
local operations group and request that the file be restored from a backup
copy. If the damage is minor, repair through editing may be possible. After
such a repair, the admin command must be executed:

$ admin -z s.file

Use extreme care when modifying SCCS files with non-SCCS
commands. Using non-SCCS commands may damage the
SCCS tree structure or SCCS files.

Programming Tools Guide
1003-48614-00

sees

7.37

The purpose of this is to recompute the checksum and bring it into agreement
with the contents of the file. After this command is executed, any corruption
that existed in the file is no longer detectable.

Programming Tools Guide
1003-48614-00

Index

7-22

A

B

C

Index-1

delta command
description of file changes

cdc command
Changing an SCCS file
Checksum
comb command
Commands

admin
affecting output
cdc
comb
conventions
delta
filename arguments
get
help
options
overview
prs
rmdel
sact
sccsdiff
unget

Access permission .
admin command ..
Auditing SCCS files

Branch delta ...
Branch number
Branching

.. 7-34,35
7-2,24,27

 7-36

7-30,31
 7-4

7-35,36
... 7-32

7-2
7-7
7-7

................. 7-2,24,27
 7-20

.................... 7-30,31
 7-32

...................... 7-9,10

................. 7-4,22,24
 7-9,10

7-3,5,12,13,16,20,21
...................... 7-6,29
...................... 7-9,10

 7-11
.................... 7-27,28
.................... 7-29,30

 7-28
 7-32
 7-16

Programming Tools Guide
1003-48614-00

D

E

F

Index-2

val ...
vc ..
what ..

Comments, in SCCS files
Correcting corrupted SCCS files
Creating an SCCS file

Editing files concurrently
Error messages
Errors, SCCS messages .

7-17,19,20
.... 7-11,29
.......... 7-6

7-15,34,35
... 7-34,35
... 7-12,15
....... 7-21
........ 7-24
.......... 7-9

 7-17
........ 7-10

Programming Tools Guide
1003-48614-00

File permissions
created by admin
S-file
l.file
new SCCS files ...
non-SCCS files
p.file
z.file

Data keywords
Date of creation in SCCS files
Deleting a delta
Deleting SCCS files
Delta ...
delta command
Delta table
Deltas

creating a
excluding
including
listing
numbering
removal

Diagnostic output
Differences between SCCS file

 7-33
 7-33
 7-31

7-4,25,30
 7-24

7-2,24,25

 7-27
 7-13

.. 7-29,30
 7-24
 7-2

7-4,22,24
 7-35

.... 7-15
... 7-16
.... 7-16
.... 7-21
... 7-6,9
7-29,30
.... 7-20
... 7-32

Index-3Programming Tools Guide
1003-48614-00

Files
auditing ...
changing ...
checksum ..
comments in new files
concurrent editing ...
concurrent editing of same SID
correcting ..
creating new SCCS files
creating with admin ..
deleting flags in ...
deleting SCCS files ...
delta table ..
deltas applied to ...
describing delta changes
detecting differences in SCCS files
flags ...
format ...
formatting ..
g-file ...
l.file ...
listing files out for edit
lockfile ..
modifying flags in ...
MR number in new files
naming conventions
p.file ..
parameters ...
permissions ...
protection ..
reducing file size ..
regenerating lost or damaged files
release number for a new file
retrieving a specific version
retrieving from SCCS
text
tracking changes with Modification Requests
user name
version control
version numbers
writing to standard output
x.file

.... links
 7-36
 7-4

. 7-35,36
 7-25

. 7-17,19
 7-20
 7-24

... 7-2,25
 7-24
 7-27
 7-24
 7-35
 7-21

..... 7-22
 7-32
 7-35
 7-34

.. 7-35,36
7-3,12,13

 7-21
 7-28
 7-10
 7-26
 7-25

..... 7-2,3
 7-3
 7-26
 7-22

.. 7-34,35
 7-32

.. 7-16,21
 7-25

.. 7-13,15

.... 7-3,15

...... 7-35
 7-22

...... 7-35

...... 7-33

..... 7-2,5

...... 7-20

...... 7-10

G-H

I

J-K-L

M

Index-4

g-file
get command .

undoing
help command
Help messages

z.file
Flags

deleting file .
modifying file

Formatting files

ID keywords
Identification keywords
Initializing SCCS file flags
Initializing SCCS file parameters

Messages, error
Messages, errors
Modification Request

changing in a file
numbers in new files

Modifying SCCS file flags
Modifying SCCS file parameters
Module names in SCCS files
MR. See Modification Request

7-10
7-35
7-27
7-26
7-35

7-23
7-13
7-26
7-26

7-13
7-21

. 7-2

. 7-6
7-28

7-11
. 7-6
7-22
7-31
7-25
7-26
7-26
7-13

Keywords
l.file
Leaf delta
Level number
Listing files out for edit

 7-3,12,13
7-3,5,12,13,16,20,21

 7-16
 7-6,29
 7-29

Programming Tools Guide
1003-48614-00

N

O

P-Q

7-3

R

S

Index-5

p.file
Parameters

modifying file
specifying file

Permissions, file
prs command ...

Naming conventions for SCCS files
Node ..
Number

branch ...
level ..
release ..
sequence

Numbering deltas
Numbering, version

Output ..
changes applied to an SCCS file
deltas applied to a file
redirecting to standard output
regenerating lost files

Reducing the size of a file
Regenerating lost files
Release number
Retrieving a specific file version
Retrieving an SCCS file
rmdel command

 7-26
 7-26

7-9,10,12,15,17,21,22,24,34,35
..................................... 7-27,28

... 7-32

... 7-21
. 7-6,25
7-13,15

. 7-3,15
7-29,30

7-28
7-34

sact command
SCCS directories

.... 7-20
... 7-21
... 7-21
7-21,27
.... 7-21

7-2,3
. 7-2

.. 7-7

.. 7-6

.. 7-6

.. 7-7
7-6,9
7-2,5

Programming Tools Guide
1003-48614-00

T

U

V

W-X-Y-Z

Index-6

Tracking changes to source
Tree
Trunk
Trunk delta

val command
Validating SCCS files
vc command
Version control
Version numbers of SCCS files

what command
x.file
z.file

unget command
User list, creating
User name in an SCCS file

 7-25
7-20,21,27

7-34
7-34

. 7-2
, 7-6
7-32

, 7-7

7-16
7-27
7-35

7-31
7-10
7-10

7-22
7-2,6
7-2,7

.. 7-2

SCCS file links
SCCS files
SCCS identification number
SCCS tree ..
sccsdiff command
Sequence numbers
SID. See SCCS identification number
Specifying a release number
Standard output, writing a file to

 7-33
 7-33
 7-33
 7-33

7-2,5,13

Programming Tools Guide
1003-48614-00

iliii

b

llilBB
■

IISiBliSBW#j1 4 F " uaaj
■ <

If
:

' - ■ i
\ ■’! 4'-“ |g£

B ■

■ s^sho H-’W
'•’l'1 O„_ 1 “ ■ •"
,; ” > f * >1’ '■'„ - 1 r ’ K1 ?

I i # - i
-J,! -i ’ _■' k^-B

..

’-•,> I": ■; >.....

tIBiSItil
; ^1-.“^=4. J;

s e»a «.■Sfgga

Hlltafasi
'. ■. • ■ \ \:-:' " "■ ■ ■ • ■•

.. , (’ . '•• ' ’ ’ '

IMHilfBaiH
Maas

j

BS
:::f 7-

mw“ 5^jp Sg;
s ’ tL- “ O r -

i (......

3

•'w-

hM

? I

-.S''

g

'{'‘Jl'icrif<;V‘‘

i'&siip1
SSgiii

kiiKH v_»*% ->««SG»

<P,f HK:i
“■"'“““"ssO

5®MS
1 • ■•/■'

: ■<'

i-lils

■ . • '•.

fffeffEi
wllSr

ip ..T?'^ -A

Pplfl

, 'J-frb- r^k’.vhsj-l^-'

A~7<^a]£fe^S

ihf. ~t'i* -•»«• !

e- r.\Y ’ ,

fllll
life-

SirS9S:fcsSji?^i

' ■' .' ■ '■ '.'

-^--- jj.“fe?&*gs ,!

' * ■\ ; ■'

«» fp
p fiifli?

s'-- ■'■■'<■: 1

isHBR

rihscj

ifp

fllfflS
’- ’.«’ 4 -j''

■ ' ■' .

:;’‘.r*4";‘

MS

'■"■"■ ■ - -■<■..-■

gs
^^.snsMEW

Hffl®

Mill®

IS s>n
'' - iPS'S

Ms® !',. vJ • -:.<
__ .<7 r-.-.u’ . >. .: .

-■ .

H '.'■ -,?.v" -S
WSaagOgSWaW ^•5«lr '

.
- - ■. ■

IIP' .7 1
WlB;

. • • ' •.

p’ _■ -p '

is ?”\ 4 r*"~ I*- ’
ti’I'i'LlSt’ir-!.*.- : ■!•!«!.■/ !:.• -•:

•ri't ■" • '■ ’

’-*T?;\:-i“-

BfiB

KS8®<®II

fill

g • .
PBffiif.
ifefii®

sill

if Pi
ftl
-. , MSHffOiiiffl
, iii'i’X? «n ‘PrPpijI

i/:'<■■■■■''"■:• i

-?-ii i. /:

KfPPlf fBf
iliilii

.....
fP’Pf. ijf f

■■

-.,■ -r.i.’.P-uS..
.•-•■— 'p;;

>■ 'll, .jfip’hi

':i '.'r4imJ.»*> >ii
.Hip-fipiP'p'g

ii-wi

■IBM
?{'?!!•& Hrkli

; “ .

■ ’ ’ ' . .

is®
is
•'■'.••■ • r.“i' ■:•■.'

,;i‘ ’’jt. &-:i?

- i. ?:
fciafciiMh'r

i :r'- i;

'llSISSsIBiiH
-

■ "i 1 :<-■■.

ifc® 1
Slip®! I'i1

j?’,‘ ff f if b 'f fFf•

.ffiipOBSaSBK

"„r -,£*!•• “P‘, f’5

7- 7
.--sr :>xh rr.

.■.;:-'-®.;i /::'’:ii; -?'i;\i
taiisisiiiSffi ' ‘

■|Mi|

..

.......e—c--------------....,______

, ,v - 'P“’'«'er ’p > -;1
7:77-: /;7'::;;:7..,: .,.. 7'7; 77-*

:H-.if. . T-asjr r *

il®ss hfsHiH3SB4?SffilWII

illill»■■■■
i! ■ ?''Sf

*•«■■" 1

<0

*s
ihiiijjiiibKi

EffiHii
BS

r^gPS

•ill - .i--

