
ESfpasmgle

$fpustackall
you

1003-48548-00

Shexin stop in '._SQRT'

Register Names
Invoking Pdbx

Processor
Register Type

11678038780386
Formats $fp2-$fp7

scratch
Snoframe

$fp8-$fp31
Type3Format Radix

user3
$nostrict

$st0-$st7 n/an/astack$octin

$whichreg other

dbx

IaA short word is 16 bits; a long word is 32 bits.
Pdbx is a trademark of Sequent Computer Systems, Inc.

quit

I

Printed in the United States of America.

!

IShexchars
Shexfloats

[-i] [-u] [-a J [-c file] [-I dir]...
[execfile [coredump]]

Shexints
$hexoffsets

machine instruction
short word
long word
short word
long word
short word
long word
byte
character
null-terminated string
single-precision real
double-precision real

n/a
decimal
decimal
octal
octal
hexadecimal
hexadecimal
octal
n/a
n/a
n/a
n/a

The following aliases are also supported: pc for eip,
sp for esp, and fp for ebp.

$eax
$ecx
$edx

$ebx
$edi
$esi

$eip
$esp
$eflags
$ebp

n/a
n/a
n/a

n/a
n/a
n/a

n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a

Exiting Pdbx
Enter the following command to exit Pdbx:

pdbx
dbx

Pdbx
Quick
Reference
Card

d
D
o
O
x
X
b
c
s
f
g

J -O execfile]... [-Q execfile]... [-C coredump]...

!■■■■■■
1003-48548-00

The following table lists the formats you can
use with the address! and address= commands.

Copyright © 1989 by Sequent Computer Systems, Inc. All rights
reserved. This document may not be copied or reproduced in any
form without permission from Sequent Computer Systems, Inc.
Information in this document is subject to change without notice.

aprogram variable declared with the register keyword

Predefined Debugger Variables

If set, Pdbx prints floating-point registers as
single-precision numbers.
If set, Pdbx prints nonzero floating-point stack
entries even if in empty state (80387 FPU
only).
If set, Pdbx prints characters in hexadecimal.
If set, Pdbx prints floating-point stack
registers in hexadecimal.
If set, Pdbx interprets integers in command
input as hexadecimal.
If set, Pdbx prints integers in hexadecimal.
If set, Pdbx prints offsets from registers in
hexadecimal.

Shexstrings If set, Pdbx prints character arrays in
hexadecimal.

$listwindow Default number of lines to display with the
list command. If not set, Pdbx prints 10 lines.
When used with list proc for listing a
procedure, Pdbx lists $listwindow lines
around the beginning of the procedure.
If set, Pdbx does not follow the chain of call
frames on the stack. This allows access to
global variables and register contents in code
that does not have conventional stack frames.
If set, Pdbx relaxes type checking rules for
call and assign commands.
If set, Pdbx interprets integers in command
input as octal. If Shexin is set, $octin is
ignored.
If set, Pdbx includes the register name with
the information displayed by the whatis
command for the specified variable. Your
program must declare the storage class for the
variable as type register. Valid for C
programs only.

If Pdbx prints the message incompatible
types or type mismatch after you enter a
command that includes type conversion, you
can use the set $nostrict command to relax
type-checking rules and then reenter the
command.

Type Conversion

To coerce the value of expression expr to type
typename , use the construct expr\typename.
To coerce the value of expression expr to a
pointer to type typename , use the construct
expr\&typename. If typename is a struct,
precede it with a double dollar sign ($$). ’

Identifiers Containing Special Characters

When entering an identifier that contains
special characters (such as a penodor
identifier that is also a Pdbx reserv

should enclose the identifier in
quotes. For example, entering the
command instructs Pdbx to stop in the routine
._SQRT:

Use one of the following syntax forms to invoke
Pdbx. Use the first form when debugging an
application that consists of a single program; use
the second form when debugging applications that
consist of multiple programs. Invoking Pdbx as
pdbx is useful when debugging a parallel program;
invoking Pdbx as dbx is useful when debugging a
program that creates child processes and only the
parent process is of interest.

■Tracing, Breakpoints, and Signals (cont.)
------ Examining and Altering the Current Context (cont.)

Creating and Executing Proces: status [> filename] whereis identifier;ses
%n

which identifier

cont Resume process execution
Machine-Level Debugging

next

Accessing Source Fih address= [format]les
Stop all running processesstop all

ps [%procnum] /pattern[/]

?pattern[?]

release %procnum listi procedure
edit [sourcefile] Edit current source file

edit procedure
nexti

return [procedure]

list procedure

Trace program at machine level

changesExecute next source linestep

terminate

Examining and Altering the Current Context

down [nlevels]■Tracing, Breakpoints, and Signals
alias name "cmdstring"

a
catch Miscellaneous Commands

func [procedure] help

sh [commandline]

ignore
source filenameset [name

■signal sig
suspend

I

|

Print active breakpoints and

tracepoints

Stop execution on entry to
procedure

Stop before executing specified
source line

whatis identifier
where [%procnum]

dump [procedure]
[> filename]

print expression
[, expression] ...

print fpustack

event
.signal. Stop process when specified signal

or event occurs

Do not stop when specified signal
or event occurs

Send the signal specified by sig to
one or all processes

Print which procedure called
procedure and value of each
parameter passed to it

Evaluate and print expression
before executing code at the
specified source line

Print specified source line each
time it is encountered (before
executing it)

Stop when value of variable
changes

Stop when condition becomes true

I

i

■■

use. [iexecfile]
[directory.. .]

Change the current procedure
and current source file
designations to the specified
procedure

Change the current procedure
to the procedure nlevels up the
stack

Print declaration for identifier

Print traceback

Change the current procedure to
the procedure nlevels down the
stack

List specified procedure

Add directory to source file
directory search list

Print source lines in the current
source file

Edit current source file and
place cursor at beginning of
specified procedure

Use source file as current source
file

tracei [procid] variable
[at address]
[if condition]

tracei [procid] address
[if condition]

tracei [procid]
[in procedure]
[if condition]

stopi [procid]
[at] address
[if condition]

listi [linenumber
[, linenumber]]

address/ [count]
[format]

address, address /
[format]

Create new shell and pass it the
specified command line

Print synopsis of frequently used
Pdbx commands

Print value of variable before
execution of instruction at
specified address

Print instruction at specified
address before it executes

Stop before executing the
instruction at address

Execute next instruction or, if
next instruction calls a proce­
dure, execute entire procedure

Execute next instruction

Disassemble and print
instructions for specified
procedure

Disassemble and print
instructions

Print values in memory in
specified address range

Print count values in memory
starting at address

Print value of the number
specified by address in the
specified format

Print qualified names for all
instances of identifier

Print qualified name for
identifier in the current context

rerun [execfile] [args]
Kinfile] [>outfile]
[&]

%procnum
all

Print trace information as process
executes

Search backward for specified
pattern

Search forward for specified
pattern

Execute Pdbx commands in
filename

Suspend Pdbx and return to
shell; use csh’s fg to resume

Same as run except uses
arguments specified with last
run or create command when
no arguments are specified

Continue until current procedure
returns or until return to the
specified procedure

Create and execute a new
process; terminate old processes

F event
[.signal.

Terminate processes and remove
from process list

Examining and Altering Variables

assign variable=expression

Command Aliases and Debugger Variables

alias name cmdname

trace [procid]
[in procedure]
[if condition]

trace [procid]
procedure
[in procedure]
[if condition]

trace [procid]
sourceline
[if condition]

stop [procid]
at sourceline
[if condition]

stop [procid] variable
[if condition]

stop [procid]
if condition

stop [procid]
in procedure
[if condition]

list [linenumber
[, linenumber]]

file [[^execfile]
source file]

alias name (parameter
[.parameter] ...)
"cmdstring"

alias [name]

unalias name

stepi

Pdbx Command Summary

delete cmdnumber . . . Cancel the breakpoint or
tracepoint associated with
cmdnumber

Create new process; use cont
to execute the process

Execute next line or, if the next
line calls a procedure, execute
the entire procedure

Print processes and their
states; an asterisk (*) in the
resultant display marks the
current process

Release process from Pdbx
control

Assign value of expression to
variable

[s]
trace [procid]

expression
at sourceline
[if condition]

trace [procid] variable Print value of variable each time it
[in procedure]
[if condition]

Define an abbreviation for a
Pdbx command name

Define an abbreviation for
Pdbx command string

Define an abbreviation for a
Pdbx command string with
replaceable parameters

Print current aliases

Undefine name as an alias

[expression]] Set a debugger variable

unset name Delete the

variable

up [nlevels]

call procedure
[[parameters]}

%procnum \ F . ,1
. all J [signa/J

to source/ine j

create [execfile] [args]
Kinfile] [> out file]

Change the current process to n

Execute specified procedure

run [execfile] [args]
Kinfile] [> out file]
[&1

%procnum]
all J

Print names and values of
variables in current procedure

Print value of variable or
expression

Print contents of 80387 FPU
registers

