
Undocumented Z80 Flags
Revision 1.0 – 21st August 2018

David Banks

Introduction

In developing and testing the Z80 Decoder, it's become apparent there are still a few

wrinkles in the way the Z80 sets the flags (where Zilog states they are undefined).

My starting point for the undocumented flags was Sean Riddle's excellent document

titled: The Undocumented Z80 Documented, specifically section 4.

In this page I'll summarise the new information I have discovered (or possibly

rediscovered)

I will use the following notation for the flags:

SF - Flag bit 7 - Sign Flag
ZF - Flag bit 6 - Zero Flag
YF - Flag bit 5 - Undocumented (also known as F5)
HF - Flag bit 4 - Half Carry Flag
XF - Flag bit 3 - Undocumented (also known as F3)
PF - Flag bit 2 - Parity Flag (also sometimes used for Overflow)
NF - Flag bit 1 - Negation Flag (last ALU op was subtract or compare)
CF - Flag bit 0 - Carry Flag

Also the function Parity() is defined to match the Z80 parity (i.e. returns 0 for odd

parity, 1 for even parity)

Interrupted block instructions

When an LDxR / CPxR / INxR / OTxR instruction completes normally, the flags are

exactly as described in the reference above. However, when they are interrupted, the

interrupt handler sees some flags in a different state.

It seems the extra 5 T-states and the end of a block instruction that decrements the

PC by two are also unexpectedly changing certain flags. Normally this would not be

visible, because when the instruction repeats these flags are updated again. But in

this case of an interrupt these values do become visible.

We now describe the additional flag changes that happen during these extra 5 T-

states.

http://www.z80.info/zip/z80-documented.pdf

LDxR / CPxR interrupted

When LDxR / CPxR is interrupted, the following flags are modified compared to the

non-interrupted LDx / CPx:

YF = PC.13
XF = PC.11

where PC is the address of the start of the instruction (i.e. the 0xED prefix)

INxR / OTxR interrupted

When INxR / OTxR is interrupted, the following flags are modified compared to the

non-interrupted INx / OUTx:

YF = PC.13
XF = PC.11
if (CF) {
 if (data & 0x80) {
 PF = PF ^ Parity((B - 1) & 0x7) ^ 1;
 HF = (B & 0x0F) == 0x00;
 } else {
 PF = PF ^ Parity((B + 1) & 0x7) ^ 1;
 HF = (B & 0x0F) == 0x0F;
 }
} else {
 PF = PF ^ Parity(B & 0x7) ^ 1;
}

where PC is the address of the start of the instruction (i.e. the 0xED prefix)

SCF/CCF

In 2012 Patrik Rak discovered that the values of XF and YF following an SCF or CCF

instruction depends on whether the preceding instruction modified the flags or not.

Specifically:

if <previous instruction modified the flags> then
 YF = A.5
 XF = A.3
else
 YF = YF | A.5
 XF = XF | A.3
endif

I verified this to be the case with the Zilog NMOS Z80 (and second sources).

https://www.worldofspectrum.org/forums/discussion/41704/scf-ccf-flags-new-discovery

As previously noted, POP AF is not treated as a flag modifying instruction.

But with the NEC NMOS Z80 it is always:

 YF = A.5
 XF = A.3

And with the ST CMOS Z80 it is:

XF = A.3
if <previous instruction modified the flags> then
 YF = A.5
else
 YF = YF | A.5
endif

