

Z80-Assembly Language

Programming Manual

April 1980

Copyright 1980 by Zilog, Inc. All rights reserved. No part of this

publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than
circuitry embodied in a Zilog product. No other circuit patent licenses
are implied.

TABLE OF CONTENTS

PAGE

I. INTRODUCTION . eeeeoeosesovesososscsosaseosscacssoassosacs 1

II. SPECIFICATION OF 280 ASSEMBLY LANGUAGE
A. THE ASSEMBLY LANGUAGE.....eccceecccncccccccncans
B. OPERANDS....cccecceeccscscccccscccaceascscccscsane
C. RULES FOR WRITING ASSEMBLY STATEMENTS (SYNTAX)..
D. ASSEMBLY LANGUAGE CONVENTIONS...c.cceccccccccsess
E. ASSEMBLER COMMANDS..eeeeeecescceoasosassooocaass 1

WA B N

III. MACROS . . cceceeocsceeossosooscncacsoosaosscsssssccsossensss 15
Iv. SUBROUTINES e ccvececeacoeososocccssscecacscsacsnsess 18
V. Z8B0 CPU FLAGS.ueeeeesoeeasccoceansssccnccsnsananssss 20
VI. Z80 INSTRUCTION SET..eeeeeeseeccensccscncassacsnsees 24
INSTRUCTION INDEX.eeeeceesooesncoccosncscescsscsense 275

APPENDIX:
A. ERROR MESSAGES....tceeeeceeccsccsccocacscsossss 280

B. INSTRUCTION SORT LISTING (ALPHABETICAL)........ 284
C. INSTRUCTION SORT LISTING (NUMERICAL)....ce..e.. 290

280 ASSEMBLY LANGUAGE PROGRAMMING MANUAL

INTRODUCTION:

The assembly language provides a means for writing a
program without having to be concerned with actual
memory addresses or machine instruction formats. It
allows the use of symbolic addresses to identify memory
locations and mnemonic codes (opcodes and operands) to
represent the instructions themselves. Labels (symbols)
can be assigned to a particular instruction step in a
source program to identify that step as an entry point
for use in subsequent instructions. Operands following
each instruction represent storage locations, registers,
or constant values. The assembly language also includes
assembler directives that supplement the machine
instruction. A pseudo-op, for example, is a statement
which is not translated into a machine instruction, but
rather is interpreted as a directive that controls the
assembly process.

A program written in assembly language is called a
source program. It consists of symbolic commands called
statements. Each statement is written on a single line
and may consist of from one to four entries: A label
field, an operation field, an operand field and a
comment field. The source program is processed by the
assembler to obtain a machine language program (object
program) that can be executed directly by the Z80-CPU.

Zilog provides several different assemblers which differ
in the features offered. Both absolute and relocatable
assemblers are available with the Development and
Microcomputer Systems. The absolute assembler is
contained in base level software operating in a 16K
memory space while the relocating assembler is part of
the RIO environment operating in a 32K memory space.

II

SPECIFICATION OF THE Z80 ASSEMBLY LANGUAGE

THE_ASSEMBLY LANGUAGE

The assembly language of the Z80 is designed to
minimize the number of different opcodes
corresponding to the set of basic machine
operations and to provide for a consistent
description of instruction operands. The
nomenclature has been defined with special emphasis
on mnemonic value and readability.

The movement of data is indicated primarily by a
single opcode, LD for example, regardless of
whether the movement is between different registers
or between registers and memory locations.

The first operand of an LD instruction is the
destination of the operation, and the second
operand is the source of the operation. For
example:

LD A,B

indicates that the contents of the second operand,
register B, are to be transferred to the first
operand, register A. Similarly,

LD C,3FH

indicates that the constant 3FH is to be loaded
into the register C. In addition, enclosing an
operand wholly in parentheses indicates a memory
location addressed by the contents of the
parentheses. For example, :

LD HL, (1200)

indicates the contents of memory locations 1200 and
1201 are to be loaded into the 16-bit register pair
HL. Similarly,

LD (IX+6),C

indicates the contents of the register C are to be
stored in the memory location addressed by the
current value of the 16-bit index register IX plus
6.

The regular formation of assembly instructions
minimizes the number of mnemonics and format rules
that the user must learn and manipulate.
Additionally, the resulting programs are easier to
interpret which in turn reduces programming errors
and improves the maintainability of the software.

B.

OPERANDS
Operands
informati

designate

Certain s
the assen

1)

2)

3)

4)

FLAG

modify the opcodes and provide the
on needed by the assembler to perform the
d operation.

ymbolic names are reserved as key words in
bly language operand fields. They are:

The contents of 8-bit registers are
specified by the character corresponding
to the register names. The register names
are A,B,C,D,E,H,L,I,R.

The contents of 16-bit double registers
and register pairs consisting of two 8-bit
registers are specified by the two
characters corresponding to the register
name or register pair. The names of
double registers are IX,IY and SP. The
names of registers pairs are AF,BC,DE and
HL.

The contents of the auxiliary register
pairs consisting of two 8-bit registers
are specified by the two characters
corresponding to the register pair names
followed by an apostrophe. The auxiliary
register pair names are AF’,BC’,DE’ and
HL’. Only the pair AF’ is actually allowed
as an operand, and then only in the EX
AF,AF’ instruction.

The state of the four testable flags is
specified as follows:

ITION

COND
Carr
Zero
Sign
Pari

ON CONDITION FF
y c NC
Z NZ

M (minus) P (plus)

ty PE (even) PO (odd)

OPERAND NOTATION

The following notation is used in the description
of the assembly language:

1)

2)

3)

4)

3)

6)
7)

8)

9)
10)
11)
12)

13)
14)

15)

r specifies any one of the following
registers: A,B,C,D,E,H,L.

(HL) specifies the contents of memory at
the location addressed by the contents of
the register pair HL.

n specifies a one-byte expression in the
range (0 to 255) nn specifies a two-byte
expression in the range (0 to 65535).

d specifies a one-byte expression in the
range (-128,127).

(nn) specifies the contents of memory at
the location addressed by the two-byte
expression nn.

b specifies an expression in the range
(0,7).

e specifies a one-byte expression in the
range (-126,129).

cc specifies the state of the Flags for
conditional JR, JP, CALL and RET
instructions.

qq specifies any one of the register pairs
BC, DE, HL or AF.

ss specifies any one of the following
register pairs: BC,DE,HL,SP.

pp specifies any one of the following
register pairs: BC,DE,IX,SP.

rr specifies any one of the following
register pairs: BC,DE,IY,SP.

s specifies any of r,n, (HL), (IX+d),(IY+d).
dd specifies any one of the following
register pairs: BC,DE,HL,SP.

m specifies any of r,(HL), (IX+d),(I1Y+d).

C.

RULES FOR WRITING ASSEMBLY STATEMENTS (SYNTAX)

An assembly language program (source program)
consists of labels, opcodes, operands, comments and
pseudo-ops in a sequence which defines the user’s
program.

There are 74 generic opcodes (such as LD), 25
operand key words (such as A), and 694 legitimate
combinations of opcodes and operands in the Z80
instruction set.

ASSEMBLER STATEMENT FORMAT:

Statements are always written in a particular
format. A typical Assembler statement is shown
below:

LABEL OPCODE OPERANDS COMMENT
LOOP: LD HL,VALUE ;GET VALUE

In this example, the label, LOOP, provides a means
for assigning a specific name to the instruction
LOAD (LD), and is used to address the statement in
other statements. The operand field contains one
or two entries separated by one or more commas,
tabs or spaces. The comment field is used by the
programmer to quickly identify the action defined
by the statement. Comments must begin with a
semicolon and labels must be terminated by a colon,
unless the label starts in column No. 1.

ASSEUBLY LANGUAGE CONVENTIOHNS

LABELS

A label is a synbol representing up to 16 bits of
information and is used to specify an address or
data. DBy using labels ecffectively, the user can
write assenbly language programs more rapidly and
nake fewer errors, If the progranner attempts to
use a symbol that has been defined as greater than
8 bits for an 8-bit data constant, the assembler
will generate an error message.

A label is composed of a string of one or more
characters, of which the first six must be unique.
For example, the labels 'longname' and
'longnamealso' will be considered to be the same
label. "The first characters must be alphabetic,
or an uderbar (_), or a dollar sign ($). Any
following characters must be alphanumeric (A...Z or
0...9), or a question mark (?), a dollar sign (%),
or an underbar (_). Any other characters within a
label will cause an error. A label can start in any
column if immediately followed by a colon. It does
not require a colon if started in column one.

The assembler maintains a location counter to
provide addresses for the symbols in the label
field. When a symbol is found in the label field,
the assembler places the symbol and the
corresponding location counter value in a symbol
table.

The symbol table nornally resides in RAM, but it
will automatically overflow to disk, so there is no
limit to the number of labels that can be
processed.

EXPRESSIONS

An expression is an operand entry consisting of
either a single term (unary) or a combination of
terms (binary). It contains a valid series of
constants, variables and functions that can be
connected by operation symbols. The Z80 Assenmbler
will accept a wide range of expressions involving
arithmetic and logical operations., The assembler
will evaluate all expressions from left to right in
the order indicated in the table below:

OPERATOR FUNCTION PRIORITY
+ UNARY PLUS 1
- UNARY HIKRUS 1
LNOT, or \ LOGICAL NOT 1
.RES, RESULT 1
* % CEXPONEHTIATION 2
% HULTIPLICATION 3
/ DIVISION 3
L10D., HODULO 3
.SHR, LOGICAL SHIFT RIGHT 3
.SHL. LOGICAL SHIFT LEFT 3
+ ADDITION 4
- SUBTRACTION 4
LAND, or & LOGICAL AND 5
.OR, or 1 LOGICAL OR 6
JXOR, LOGICAL XOR 6
+EQ. or = EQUALS 7
LT, or > GREATER THAN 7
LT, or < LESS THAN 7
.UGT, UNSIGNED GREATER THAN 7
JLT, UNSIGNED LESS THAN 7

Parenthesis can be used to ensure correct
expression evaluation. Note, however, that
enclosing an expression wholly in parenthesis
indicates a memory address.

Delimiters such as spaces or commas are not allowed
within an expression since they serve to separate
the expression from other portions of the
statement.

l6-bit integer arithmetic is used throughout,

Note that the negative of an expression can be
formed by a preceding minus sign -, For example:

LD HL,-0OEA9H.

The five comparison operators (.EQ., .GT., .LT.,
+UGT. and.ULT,) will evaluate to a logical True (all
ones) if the comparison is true logical False
(zero) otherwise. The operators .GT. and .LT. deal
with signed numbers whereas ,UGT, and .ULT., assume
unsigned arguments,

The Result operator (,RES,) causes overflow to be

suppressed during evaluation of its argument, thus
overflow is not flagged with an ecrror message.

For example:

LD BC,7FFFH+1 would cause an error message,
whereas LD BC, .RES,(7FFFl+1) would not.

The !Modulo operator (.MOD,) is defined as:

X.MOD.Y. = X-Y*(X/Y) where the division (X/Y)
is integer division,

The Shift operator (.SUR.,.SHL.) shifts the first
argunent right or left by the number of positions
given in the second argument., Zeros are shifted
into the high-order or low-order bits,
respectively.

In specifying relative addressing with either the
JR (Jump Relative) or DJINZ (Decrement and Jump if
Not Zero) instructions, the Assembler automatically
subtracts the value of the next instruction’s
reference counter from the value given in the
operand field to form the relative address for the
jump instruction, For example:

JR C,LOOP

will jump relative to the instruction labeled LOOP
if the Carry flag is set., The limits on the range
of a relative address is 128 bytes in either
direction from the reference counter of the next
instruction, An error message will be generated if
this range is exceceded.

The symbol $ is used to represent the value of the
reference counter of the current instruction, and
can be used in general expressions. An expression
which evaluates to a displacement in the range
<-126,+129> can be added to the reference counter
to form a relative address., For example:

JR C,$+5

will junp relative to the instruction which is 5
bytes beyond the current instruction,

PSEUDO-OPS (ASSEMBLER DIRECTIVES)

There are several pseudo-ops which the various
Zilog assemblers will recognize. These assembler
directives, although written much like processor
instructions, are commands to the assembler instead
of to the processor. They direct the assembler to
perform specific tasks during the assembly process
but have no meaning to the Z80 processor. These
assembler pseudo-ops are:

ORG nn Sets address reference counter to
the value nn.

EQU nn Sets value of a label to nn in the
program: can occur only once for
any label.

DEFL nn Sets value of a label to nn and can

be repeated in the program with
different values for the same
label.

END Signifies the end of the source
program so that any following
statement will be ignored. If
there is no end statement, then the
end-of~-file mark in the last source
file will designate the end of the
source program.

DEFT Generates a sequence of bytes in the
object code that represents the T7-bit
ASCII code for each character in the
string.

EXTERNAL Used to declare that each of its //
operands are symbols defined in some
other module but referenced in this
module.

GLOBAL Used to declare that each of its
operands are symbols defined in the
module, and the name and value are
made available to other modules which
contain an EXTERNAL declaration for
that name.

DEFB n Defines the contents of a byte at
the current reference counter to be
n.

DEFB ‘s’ Defines the content of one byte of
memory to be the ASCII
representation of character s.

DEFW nn Defines the contents of a two-byte
word to be nn. The least
significant byte is located at the
current reference counter while the
most significant byte is located at
the reference counter plus one.

DEFS nn Reserves nn bytes of memory
starting at the current value of
the reference counter.

DEFIl ‘s Defines the content of n bytes of
nennory to -be the ASCII
representation of string s, where n
is the length of s and must be in
the range 0<=n<=63.

1IACRO #Po #P1...#Pn Declares the label
to be a macro name with formal
parameters Po through Pn,
Subsequent statements define the
body of the macro.

ENDII llarks the end of a macro
definition,

Pseudo-ops are assembled exactly like executable
instructions, and may be preceded by a label and
followed by a comment, (The label is required for
EQU, DEFL and MACR pseudo-ops.) 1In the above
pseudo-op definitions, the reference counter
corresponds to the program counter and is used to
assign and calculate machine-language addresses for
the object file.

CONDITIONAL PSEUDO-OPS

Conditional pseudo-ops provide the programmer with
the capability to conditionally include or not
include portions of his source code in the assembly
process, Conditional pseudo-ops are:

COND nn Evaluates expression nn. 1If the
expression is true (non-zero), the
COND pseudo-op is ignored. If the
expression is false (zero), the

11

assenbly of subsequent statements
is disabled. COND pseudo-ops
cannot be nested,

ENDC Re-enables assembly of subsequent
statements,

DELIHITERS

A delimiter is used to specify the bounds of a
certain related group of characters in a source
progranm., The delimiters recognized by the
assembler are commas or spaces, A delimiter cannot
occur within an expression,

COMMENTS

Comments are not a functional part of an assembly
program, but instead are used for program
documentation to add clarity, and to facilitate
software maintenance, A comment is defined as any
string following a semicolon in a line, and is
ignored by the assembler, Comments can begin in
any colunmn.

I1/0 BUFFERS

The 280 Assembler uses a buffered I/0 technique for
handling the assembly language source file, listing
file, object file and temporary files. The
assembler automatically determines the available
work space and allocates the buffer sizes
accordingly. Hence there are no constraints on the
size of the assembly language source file that can
be assembled.

UPPER/LOWER CASE

The assembler processes source text which contains
both upper and lower case alphabetic characters in
the following manner, All opcodes and keywords,
such as register names or condition codes, must be
either all capitals or all lower case. Label names
may consist of any permutation of upper and lower
case, however, two names which differ in case will
be treated as two different names. Thus, LABEL,
label and LaBel will be considered as three

12

different names, Notice that one could use a
mixture of case to allow definition of labels or
macros which look similar to opcodes, such as Push
or LdiR, without redefining the meaning of the
opcode, All assembler commands, such as *List or
*(nclude (see below) can be in either upper or
lower case, as can arithmetic operators such as
NOT.,.AND, or .EQ., and numbers can be any mixture
of case, such as 0ffffh, OAbCdH or 011001b.

NUMBER BASES

The Assembler will accept numbers in several
different bases: binary, octal, decimal and
hexadecimal, Numbers must always start with a
digit (leading zeros are sufficient), and may be
followed immediately by a single letter which
signifies the base of the number (°B° for binary,
‘07" or Q" for octal, ‘D’ for decimal and “H’ for
hexadecimal). If no base is specified decimal is
assumed, For example, the same number is
represented in each of the four bases:

10111008, 134Q, 1340, 92, 92D, O05CH

E. ASSEMBLER COMMANDS

The Z80 Assembler recognizes several commands to
modify the listing format, An assembler command is
a line of the source file beginning with an * in
colunn one., The character in column two identifies
the type of command., Arguments, if any, are
separated from the command by any number of blanks
or commas, The following commands are recognized
by the assembler:

*Eject Causes the listing to advance to a
new page starting with this line,

*Heading s Causes string s to be taken as a
heading to be printed at the top of
each new page. Strings s may be
any string of zero to 28
characters, not containing ledding
blanks. This command does an
automatic Eject,

*List OFF Causes listing and printing to be
suspended, starting with this line.

13

*List ON Causes listing and printing to
resume, starting with this line,

*ifaclist OFF Causes listing and printing of
nacro expansions to be suspended,
starting wvith this line,

*]{aclist ON Causes listing and printing of
nmacro expansions to resunc,
starting with this line.

*Include filenane Causes the source file filename to
be included in the source strean
following the comnmand statecment.

The expected use of *Include is for files of macro
definitions, lists of EQUates, or commonly used
subroutines, although it can be used anywhere in a
program that the other commands would be legal,
The filename must follow the normal convention for
specifying filenames, and furthermore only file
types ‘F° through ‘T’ are allowed. The default
type is “S°, The included file may also contain a
*Include command, up to a nested level of four.

*Include will always try to shoe-~horn the file in
inside a macro definition, and although the
*Include statement will appear in a macro
expansion, the file will not be included again at
the point of expansion, *Include works in the
expected manner in conjunction with conditional
assembly,

For example:
COND exp

¥Include FILE1
ENDC

sFILE1 is included only if the value of exp is
non-zero.

¥PAGESIZE N Sets length of listing pages
to N lines, where

N=0,...,58 and
N=0 Indicates no auto linefeed

ITITI. MACROS

Macros provide a means for the user to define his
own opcodes, or to redefine existing opcodes. A
macro defines a body of text which will be
automatically inserted in the source stream at each
occurrence of a macro call. In addition,
parameters provide a capability for making limited
changes in the macro at each call,

If a macro is used to redefine an existing opcode,
a warning message is generated to indicate that
future use of that opcode will always be processed
as a macro call, 1If a program uses macros, then
the asembly option M must be specified.

IHACRO DEFINITION

The body of text to be used as a macro is given in
the macro definition, Each definition begins with
a MACRO statement and end with an ENDM statement.
The general forms are:

<name> MACRO [#<PO>,#<Pl>,...,,#<Pn>]
[<label>] ENDM

The label <name> is required, dnd must obey all the
usual rules for forming labels, The quantity in
brackets is an optional set of parameters.,

There can be any number of parameters, each
starting with the symbol #., The rest of the
parameter name can be any string not containing a
delimiter (blank, comma, semicolon) or the symbol
#. However, parameters will be scanned left to
right for a match, so the user is cautioned not to
use parameter names which are prefix substrings of
later parameter names, Parameter names are not
entered in the symbol table.

The label on an ENDM is optional, but if one is
given it must obey all the usual rules for forming
labels,

Each statement between the HACRO and ENDHM
statements is entered into a temporary macro file,
The only restriction on these statements is that
they do not include another macro definition.
(Nested definitions are not allowed.) They may

15

include macro calls. (Recursion is allowed,)

The statements of the macro body are not assembled
at definition time, so they will not define labels,
generate code, or cause errors. Exceptions are the
assembler commands such as *List, which are
executed wherever they occur. Within the macro
body text, the formal parameter names may occur
anywhere that an expansion-time substitution is
desired, This includes comments and quoted
strings., The symbol # may not occur except as the
first symbol of a parameter name.

Hlacros nust be defined before they are called.

MACRO CALLS AND MACRO EXPANSION

A macro is called by using its name as an opcode at
any point after the definition. The general form
is:

[<label>] <name> [“<S0>',"<S1>",..., Sn>"]

The <label> is optional, and <name> must be a
previously defined macro. There may be any number
of argument strings, <Sn>, separated by any number
of blanks or commas., Commas do not serve as
parameter place holders, only as string delimeters.
If there are too few parameters, the missing ones
are assumed to be null, If there are too many, the
extras are ignored., The position of each string in
the list corresponds with the position of the macro
parameter name it is to replace. Thus, the third
string in a macro call statement will be
substituted for each occurrence of the third
parameter name.

The strings may be of any length and may contain
any characters, The outer level quotes around the
string are generally optional, but are required if
the string contains delimiters or the quote
character itself, The quote character is
represented by two successive quote marks at the
inner level, The outer level quotes, if present,
will not occur in the substitution, The null
string, represented by two successive quote marks
at the outer level, may be used in any parameter
position,

After processing the macro call statement, the
assenbler switches its input from the source file

to the macro file, Each statement of the macro
body is scanned for occurrences of parameter names,
and for each occurrence found, the corresponding
string from the macro call statement is
substituted, After substitution, the statement is
assembled normally.

SYIIBOL GENERATOR

Every macro definition has an implicit parameter
named #$YM,., This may be referenced by the user in
the macro body, but should not explicitly appear in
the !ACRO statement, At expansion time, each
occurrence of #$YM in the definition is replaced by
a string representing a 4-digit hexadecimal
constant,

This string is constant over a given level of macro
expansion, but increases by one for each nev macro
call, The most common use of #$YH{ is to provide
unigue labels for different expansion of the same
nacro, Otherwise, a macro containing a label would
cause nultiple definition errors if it were called
more than once,

LISTING FORIMAT

By default, each expanded statement is listed with
a blank STHMT field., 1If the llaclist flag is turned
off by the NOM option or *!f OFF, then only the
macro call is listed.

17

iv.

SUBROUTINES

Subroutines are blocks of instructions that can be
called during the execution of a sequence of
instructions. Subroutines can be called from main
programs or from other subroutines. A subroutine is
entered by the CALL opcode as in:

CALL REWIND

Parameters such as those used by the macros are not
used with subroutines., When a call instruction is
encountered during execution of a program, the PC
is changed to the first instruction of the
subroutine., The subsequent address of the invoking
program is pushed on the stack. Control will
return to this point when the subroutine is
finished. The processor continues to execute the
subroutine until it encounters a RET (return)
instruction, At this point the return address is
popped off the stack into the PC, and the processor
returns to the address of the instruction following
the CALL, to continue execution from that point,

Subroutines of any size can be invoked from
programs or other subroutines of any size, without
restriction. Care must be taken when nesting
subroutines (subroutines within subroutines) that
pushes and pops remain balanced at each level, If
the processor encounters a RET with an un-popped
push on the stack, the PC will be set to a
meaningless address rather than to the next
instruction following the CALL.

Tradeoffs must be considered between:

a) using a block of code repetitively in line,
and
b) calling the block repetitively as a

subroutine,

Program size can usually be saved by using the
subroutine. If the repetitive block contains N
bytes and it is repeated on ! occasions in the
progran,

a) MxN bytes would be used in direct
programnming, while
b) 34 (for CALLS)

+ N (for the block)

+ 1 (for the RET)

= 3M+N+l bytes would be required if using a
subroutine.

For example, for a block of 20 bytes used 5 times,
in-line programming would require 100 bytes while a
subroutine would require 36.

An added advantage of subroutines is that with
careful naming, program structures become clearer,
easier to read and easier to debug and maintain.
Subroutines written for one purpose can be employed
elsewhere in other programs requiring the same
function.

Subroutines differ from Macros in several ways:

a) Subroutine code is assembled into an object
program only once although it may be called
many times. Macro code is assembled in
line every place the macro is used.

b) Registers and pointers required by a
subroutine must be set up before the
CALL. No parameters are used and no
argument string can be issued. Macros,
through their use of parameters, can modify
the settings of registers on each
occurrence.

19

Z80 STATUS INDICATORS (FLAGS)

The flag register (F and F’) supplies information to the
user regarding the status of the 280 at any given time.
The bit positions for each flag is shown below:

7 6 5 4 3 2 1 O

[s]z]x][u]x]esv[n]c]

WHERE:

CARRY FLAG
ADD/SUBTRACT FLAG
PARITY/OVERFLOW FLAG
HALF-CARRY FLAG

ZERO FLAG

SIGN FLAG

NOT USED

-]

~
MO NTgZO
o

)

Each of the two Z-80 Flag Registers contains 6 bits of
status information which are set or reset by CPU
operations. (Bits 3 and 5 are not used.) Four of these
bits are testable (C,P/V,Z and S) for use with
conditional jump, call or return instructions. Two
flags are not testable (H,N) and are used for BCD
arithmetic.

CARRY FLAG (C)

The carry bit is set or reset depending on the operation
being performed. For “ADD’ instructions that generate a
carry and “SUBTRACT® instructions that generate a
borrow, the Carry Flag will be set. The Carry Flag is
reset by an ADD that does not generate a carry and a
“SUBTRACT’ that generates no borrow. This saved carry
facilitates software routines for extended precision
arithmetic. Also, the "DAA" instruction will set the
Carry Flag if the conditions for making the decimal
adjustment are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is
used as a link between the LSB and MSB for any register

or memory location. During instructions RLCA, RLC s and
SLA s, the carry contains the last value shifted out of

bit 7 of any register or memory location. During

20

instructions RRCA, RRC s, SRA s and SRL s the carry
contains the last value shifted out of bit 0 of any
register or memory location.

For the logical instructions AND s, OR s and XOR s,
the carry will be reset.

The Carry Flag can also be set (SCF) and complemented
(CCF).

ADD/SUBTRACT FLAG (N)

This flag is used by the decimal adjust accumulator
instruction (DAA) to distinguish between “ADD’ and
"SUBTRACT’ instructions. For all “ADD’ instructions, N
will be set to an “0°. For all °“SUBTRACT’ instructions,
N will be set to a “1°7.

PARITY/OVERFLOW FLAG

This flag is set to a particular state depending on the
operation being performed.

For arithmetic operations, this flag indicates an
overflow condition when the result in the Accumulator is
greater than the maximum possible number (+127) or is
less than the minimum possible number (-128). This
overflow condition can be determined by examining the
sign bits of the operands.

For addition, operands with different signs will never
cause overflow. When adding operands with like signs

and the result has a different sign, the overflow flag
is set. For example:

+120 0111 1000 ADDEND
+105 = 0110 1001 AUGEND
+225 1110 0001 (-95) SUM

The two numbers added together has resulted in a number
that exceeds +127 and the two positive operands has
resulted in a negative number (-95) which is incorrect.
The overflow flag is therefore set.

For subtraction, overflow can occur for operands of
unlike signs. Operands of like sign will never cause
overflow. For example:

+127 0111 1111 MINUEND
(-)_-64 1100 0000 SUBTRAHEND
+191 1011 1111 DIFFERENCE

21

The minuend sign has changed from a positive to a
negative, giving an incorrect difference. Overflow is
therefore set.

Another method for predicting an overflow is to observe
the carry into and out of the sign bit. If there is a
carry in and no carry out, or if there is no carry in
and a carry out, then overflow has occurred.

This flag is also used with logical operations and
rotate instructions to indicate the parity of the
result. The number of “1° bits in a byte are counted.
If the total is odd, “ODD’ parity (P=0) is flagged. If
the total is even, “EVEN’ parity is flagged (P=1).

During search instructions (CPI,CPIR,CPD,CPDR) and block
transfer instructions (LDI,LDIR, LDD,LDDR) the P/V flag
monitors the state of the byte count register (BC).

When decrementing, the byte counter results in a zero
value, the flag is reset to 0, otherwise the flag is a
Logic 1.

During LD A,I and LD A,R instructions, the P/V flag will
be set with the contents of the interrupt enable
flip~flop (IFF2) for storage or testing.

When inputting a byte from an I/0 device, IN r,(C), the
flag will be adjusted to indicate the parity of the
data.

THE HALF CARRY FLAG (H)

The Half Carry Flag (H) will be set or reset depending
on the carry and borrow status between bits 3 and 4 of
an 8-bit arithmetic operation. This flag is used by the
decimal adjust accumulator instruction (DAA) to correct
the result of a packed BCD add or subtract operation.
The H flag will be set (1) or reset (0) according to the
following table:

H ADD SUBTRACT
1 There is a carry from There 1is
Bit 3 to Bit 4 borrow from
bit 4
0 There is no carry There is no
from Bit 3 to Bit 4 borrow from
Bit 4

22

THE ZERO FLAG (Z)

The Zero Flag (Z) is set or reset if the result
generated by the execution of certain instructions

is a zero.

For 8-bit arithmetic and logical operations, the Z
flag will be set to a “1” if the resulting byte in
the Accumulator is zero. If the byte is not zero,
the Z flag is reset to “07.

For compare (search) instructions, the Z flag will
be set to a “1” if a comparison is found between
the value in the Accumulator and the memory
location pointed to by the contents of the register
pair HL.

When testing a bit in a register or memory
location, the Z flag will contain the complemented
state of the indicated bit (see Bit b,s).

When inputting or outputting a byte between a
memory location and an I/0 device (INI;IND;OUTI and
0UTD), if the result of B-1 is zero, the Z flag is
set, otherwise it 1s reset. Also for byte inputs
from I/0 devices using IN r,(C), the Z Flag is set
to indicate a zero byte input.

THE SIGN FLAG (S)

The Sign Flag (S) stores the state of the most
significant bit of the Accumulator (Bit 7). When
the Z80 performs arithmetic operations on signed
numbers, binary two’s complement notation is used
to represent and process numeric information. A
positive number is identified by a “0° in bit 7. A
negative number is identified by a “1°. The binary
equivalent of the magnitude of a positive number is
stored in bits O to 6 for a total range of from O
to 127. A negative number is represented by the
two’s complement of the equivalent positive number.
The total range for negative numbers is from -1 to
-128.

When inputting a byte from an I/0 device to a

register, IN r,(C), the S flag will indicate either
positive (85=0) or negative (S=1) data.

23

VI. 280 INSTRUCTION SET

HOTE: Execution time (E.T.) for each instruction is
given in nicroseconds for an assumed 4 MHZ clock, Total
machine cycles (M) are indicated with total clock
periods (T States), Also indicated are the number of T
States for each.lf cycle, For exanmple:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E,T.: 1,75

indicates that the instruction consists of 2 machine
cycles, The first cycle contains 4 clock periods (T
States)., The second cycle contains 3 clock periods for
a total of 7 clock periods or T States, The instruction
will execute in 1,75 microseconds,

Register format is shown for each instruction with the

most significant bit to the left and the least
significant bit to the right,

24

280 INSTRUCTION SET
TABLE OF CONTENTS

-8 BIT LOAD GROUP. .ttt onoenns
—16 BIT LOAD GROUP .« .ov vt veneernses

-EXCHANGE, BLOCK TRANSFER
AND SEARCH GROUP ..t vt etvesonsos

-8 BIT ARITHMETIC AND LOGICAL GROUP.

~GENERAL PURPOSE ARITHMETIC

AND CPU CONTROL GROUPS.......
-16 BIT ARITHMETIC GROUP......
~ROTATE AND SHIFT GROUP.......

~-BIT SET, RESET AND TEST GROUP.

—JUMP GROUP..vveveenvenn

-CALL AND RETURN GROUP..

-INPUT AND OUTPUT GROUP.

~-INSTRUCTION INDEX......

.

25

PAGE

26

52

76

99

131

146

163

202

219

275

8 BIT LOAD GROUP

26

Operation: r<r
Format:

Opcode Operands

Description:

The contents of any register r’° are loaded into any
other register r. Note: r,r” identifies any of the
registers A, B, C, D, E, H, or L, assembled as follows
in the object code:

Register r,r’
A =111
B = 000
cC = 001
D =010
E = 011
H = 100
L = 101
M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1,0

Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E
register contains 10H, the instruction

LD H, E

would result in both registers containing 10H.

27

Operation: r<n

Format:
Opcode Operands
LD r, n

Description:

The eight-bit integer n is loaded into any register r,
where r identifies register A, B, C, D, E, H or L,
assembled as follows in the object code:

Register

HEEEO O W

M CYCLES:

r

111

000

001
010
011
100
101

2 T STATES:

Condition Bits Affected:

Example:

After the execution of

LD

E,

A5H

7(4,3)

None

the contents of register E will be A5H,

28

4 MHZ E.T.:

1.75

D

r, (HL)

Operation: r < (HL)

Format:
Opcode Operands
LD r, (HL)
1 T I i i I
0 1<=—r—1 1 0
1 | | - | | —

Description:

The eight-bit contents of memory location (HL) are
loaded into register r, where r identifies register A,
B, C, D, E, H or L, assembled as follows in the object
code:

Register r
A =111 .
B = 000 |
cC = 001
D = 010
E = 011
H = 100
L =101
M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T,: 1,75

Condition Bits Affected: HNone

Example:

If register pair HL contains the number 75A1H, and
nemory address 75A1H contains the byte 58H, the
execution of

LD C, (HL)

will result in 58H in register C.

29

LD r, (X+d)

Operation: r < (IX+d)

Format:
Opcode Operands
LD r, (IX+d)
I T I L I LI

1
110111001 DD
L 1 1 1 1

Description:

The operand (IX+d) (the contents of the Index Register
IX summed with a two’s complement displacement integer
d) is loaded into register r, where r identifies
register A, B, C, D, E, H or L, assembled as follows in
the object code:

Register r

= 111

000
001
010
011
100
101

HOomO O W

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the
instruction

30

LD B, (IX+19H)

will cause the calculation of the sum 25AFH + 19H, which
points to memory location 25C8H. 1If this address
contains byte 39H, the instruction will result in
register B also containing 39H.

31

LD r, (Y +d)

Operation: r < (1Y+d)

Format:
Opcode Operands

LD r, (IY+d)

1111110 1| FD

Description:

The operand (IY+d) (the contents of the Index Register
IY summed with a two’s complement displacement integer
d) is loaded into register r, where r identifies
register A, B, C, D, E, H or L, assembled as follows in
the object code:

Register r

= 111
000
001
010
011
100
101

nonon

RO W
I

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

32

Example:

If the Index Register IY contains the number 25AFH, the
instruction

LD B, (IY+19H)
will cause the calculation of the sum 25AFH + 19H, which
points to memory location 25C8H. If this address

contains byte 39H, the instruction will result in
register B also containing 39H.

33

Operation:

Format:

(HL) «<r

Opcode

LD

Operands

(HL), r

T T T
() -—yp—>
{ 1 1

Description:

(HL),

The contents of register r are loaded into the memory
location specified by the contents of the HL register

pair, The symbol r identifies register A, B,
or L, assembled as follows in the object code:

Register

I EO O W

M CYCLES:

r

111
000

= 001

010
011
100
101

2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

4 MHZ E,.T,:

c, D, E, H

1.75

If the contents of register pair HL specifies memory

location 2146H,

29H, after the execution of

LD (HL), B

memory address 2146H will also contain 29H,

34

and the B register contains the byte

r.‘

D 0X+d), r

Operation: (IX+d)<r
Format:
Opcode Operands

LD (IX+4d), r

1101110 1| oD

Description:

The contents of register r are loaded into the memory
address specified by the contents of Index Register IX
summed with d, a two’s complement displacement integer.
The symbol r identifies register A, B, C, D, E, H or L,
assembled as follows in the object code:

Register r

111
000
001
010
011
100
101

r‘chow:x»
tonowononwn

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: ©None

35

Exanmple:

If the C register contains the byte 1CH, and the Index
Register IX contains 3100H, then the instruction

LD (IX+6H), C

will perform the sum 3100H + 6H and will load ICH into
memory location 3106H.

36

D Y+d), r

Operation: (IY+d) «r

Format:
Opcode Operands
LD (IY+d), r
1] 1 I 1 I]
11111101 FD
1 1 1 1 1 1 1
I 1 1] 1 I I
0111 0=—r—
1 1 1 1 1 1 1
1 1 1) T 1 |
d
1 1 L 1 1 1 1
Description:

The contents of register r are loaded into the memory
address specified by the sum of the contents of the
Index Register IY and d, a two’s complement displacement
integer, The symbol r is specified according to the

following table,
Register r

111
000
001
010
011
100
101

HEEEmoaOw k>
LU S '}

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.:

Condition Bits Affected: None

37

4,75

Example:

If the C register contains the byte 48H, and the Index
Register 1Y contains 2A11H, then the instruction

LD (IY+4H), C

will perform the sum 2A11H + 4H, and will load 48H into
memory location 2AlS5.,

38

D (HL), n

Operation: (HL)<n
Format:

Opcode Operand

LD (HL) ,n

Description:

Integer n is loaded into the memory address specified by
the contents of the HL register pair.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: ©None

Example:
If the HL register pair contains 4444H, the instruction
LD (HL), 28H

will result in the memory location 4444H containing the
byte 28H,

39

LD (1X+d),

Operation: (IX+d)<n

Format:

Opcode Operands

LD (IX+d), n

—
11011101 DD
!
T
0
!
1

| | 1 {11
T T T T T
d
1 | | | 1 J I
T T T T T 1
n

Description:
The n operand is loaded into the memory address
specified by the sum of the contents of the Index

Register IX and the two’s complement displacement
operand d.,

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E,T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the
instruction

LD (IX+5H), 5AH

would result in the byte 5AH in the memory address
219FH,

40

M

LD Y+d), n

Operation: (lY+d)<n
Format:
Opcode Operands

LD (IY+d),n

1111110 1} FD

Description:

Integer n is loaded into the memory location specified
by the contents of the Index Register summed with the
two’s complement displacement integer d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: NONE

Example:

If the Index Register IY contains the number A940H, the
instruction

LD (IY+10H), 97H

would result in byte 97 in memory location A950H.

41

Operation: A <« (BC)
Format:
Opcode Operands

LD A, (BC)

1 i 1 1 T 1 Ll
000O0O1O0T16O0 0A
IS N N N N B

Description:

The contents of the memory location specified by the
contents of the BC register pair are loaded into the
Accunulator, .

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E,.T.: 1.75

Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and
menory address 47470 contains the byte 12H, then the
instruction

LD A, (BC)

will result in byte 12H in register A,

42

BC)

A, (DE

Operation: A < (DE)
Format:
Opcode Operands

LD A, (DE)

00011010 1A
| | 1

The contents of the memory location specified by the
register pair DE are loaded into the Accunmulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1,75

Condition Bits Affected: None

Example:

If the DE register pair contains the number 30A2H and
memory address 30A2H contains the byte 22H, then the
instruction

LD A, (DE)

will result in byte 22H in register A,

43

LD A, (hn)

Operation: A < (nn)
Format:
Opcode Operands

LD A, (nn)

Descript:on:
The contunts of the memory location specified by the
operands nn are loaded into the Accumulator. The first

n operand after the op code is the low ordder byte of a
two-byte memory address.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4 MHZ E.T.: 3.25

Condition Bits Affected: None

Example:

If the contents of nn is number 8832H, and the content
of memory address 8832H is byte 04H, after the
instruction

LD A, (nn)

byte 04H will be in the Accumulator.

44

(BC), A

Operation: (BC)< A
Format:
Opcode Operands

LD (BC) , A

1 1 1) T 1 1
0 00O O0O0T1020 02

J 1 ! 1 1 | |

Description:

The contents of the Accumulator are loaded into the
memory location specified by the contents of the
register pair BC.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1,75

Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair
contains 1212H the instruction

LD (BC),A

will result in 7AH being in memory location 1212iI,.

45

Operation: (DE)<«A
Format:
Opcode Operands

LD (DE) , A

i f L] 1))
0o O0O1O0O0T1FQ0 12

Description:

The contents of the Accumulator are loaded into the
memory location specified by the contents of the DE
register pair.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the
Accumulator contains byte AOH, the instruction

LD (DE),A

will result in AOH being in memory location 1128H.

46

LD (nn), A

Operation: (nn}< A

Format:
Opcode : Operands
LD (nn),A
T ¥ T 1 L

Description:

The contents of the Accumulator are loaded into the
memory address specified by the operand nn. The first n
operand after the op code is the low order byte of nn.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4 MHZ E.T.: 3.25

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H,
the execution of

LD (3141H),A

D70 will be in memory location 3141H.

47

after

Operation: A <
Format:
Opcode Operands

LD A, I

Description:
The contents of the Interrupt Vector Register I are
loaded into the Accumulator.

M CYCLES:2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected:

S: Set if I-Reg. is negative;
reset otherwise
Z: Set if I-Reg. is zero;
reset otherwise
: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Note:

If an interrupt occurs during execution of this
instruction, the Parity flag will contain a O.

48

A R

Operation: A<«R
Format:

Opcode Operands

11101101 ED

01011111 5F

Description:
The contents of Memory Refresh Register R are loaded

into the Accumulator.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative;
reset otherwise

Z: Set if R-Reg. is zero;
reset otherwise

H: Reset

P/V: Contains contents of IFF2
N: Reset
C: Not affected

49

Operation: | <A

Format:
Opcode Operands
LD I,A

11101101 ED

T T T
0100 0111 47
[T H N B

Description:
The contents of the Accumulator are loaded into the

Interrupt Control Vector Register, I.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected: None

50

R, A

Operation: R<A
Format:
Opcode Operands

LD R,A

111011601 ED

n 1001111 4F

Description:
The contents of the Accumulator are loaded into the
Memory Refresh register R.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected: None

51

-16 BIT LOAD GROUP-

52

) dd, nn

Operation: dd<«nn
Format:
Opcode Operands

LD dd, nn

Description:

The two-byte integer nn is loaded into the dd register
pair, where dd defines the BC, DE, HL, or SP register
pairs, assembled as follows in the object code:

Pair gg
BC 00
DE 01
HL 10
SP 11

The first n operand after the op code is the low order

byte.
M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50
Condition Bits Affected: None

Example:
After the execution of
LD HL, 5000H

the contents of the HL register pair will be 5000H.

53

Operation:

Format:

LD X, Nnn

IX <nn
Opcode Operands
LD IX,nn
1 LI 1 L L T
11011101 DD

L 1 1 1

1

T T T T T
001 0 00 01 21

Description:

Integer nn is loaded into
first n operand after the

M CYCLES:

Condition

4 T STATES:

Bits Affected:

Example:

After the

the Index

instruction

LD IX,45A2H

the Index Register IX. The
op code is the low order byte.

14(4,4,3,3) 4 MHZ E.T.: 3.50

None

Register will contain integer 45A2H.

54

D) Y,

Operation:

Format:

ale

Y < nn

Opcode Operands

LD IY,nn

11111101 FD

I 1 I t 1 1 1
001 0O0O0O0C1 21

1 1 1 1 1 l 1

1 T J I 1 I L

1 1 1 1 1 1]

Description:

Integer nn is loaded into the Index Register IY. The
first n operand after the op code is the low order byte.

M CYCLES:

Condition

4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Bits Affected: None

Example:

After the

the Index

instruction:
LD 1IY,7733H

Register IY will contain the integer 7733H.

55

LD HL, (hn)

Operation: H <« (nn+1), L< (nn)
Format:

Opcode Operands

LD HL, (nn)

0001010 1 0| 2A

1 [l 1 1 1 !]

1 1 1 L 1 1 1

Descrigtion:

The contents of memory address (nn) are loaded into the
low order portion of register pair HL (register L), and
the contents of the next highest memory address (nn+l)
are loaded into the high order portion of HL (register
H). The first n operand after the op code is the low
order byte of nn.

M CYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains
AlH after the instruction

LD HL, (4545H)

the HL register pair will contain Al37H.

56

) dd, (nhnN)

Operation: ddy <« (nn+1) ddy < (nn)

Format:

Opcode Operands

LD dd, (nn)
1'1'10 110 1| €D
1 { { 1 L L 1L
001 dd101 1
11 1 1 1 1 1
| LD] 1] | 1

n

1 L1 1 1 L 1
L) 1 LI T i
1 1 L1 1 1 1

Description:

The contents of address (nn) are loaded into the low
order portion of register pair dd, and the contents of
the next highest memory address (nn+l) are loaded into
the high order portion of dd. Register pair dd defines
BC, DE, HL, or SP register pairs, assembled as follows
in the object code:

Pair Ei
BC 00
DE 01
HL 10
SP 11

The first n operand after the op code is the low order
byte of (nn).

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

57

Example:

If Address 2130H contains 65H and address 2131M contains
78 after the instruction

LD BC, (2130H)

the BC register pair will contain 7865H.

58

D) 12X, (nhn)

Operation: IXyH < (nn+1), IX « (nn)

Format:
Opcode Operands
LD IX, (nn)

1'1'0 1 110 1] DD

00 1010 1 0| 2A
S |

RS NN DU B SR | -

RARKR

Description:

The contents of the address (nn) are loaded into the low
order portion of Index Register IX, and the contents of
the next highest memory address (nn+l) are loaded into
the high order portion of IX. The first n operand after
thé op code is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Copdition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains
DAH, after the instruction

LD IX,(6666H)

the Index Register IX will contain DA92H.

59

LD 1Y, (hn)

Operation: IYQH <« (nn+1), 1Y < (nn)

Format:
Opcode Operands
LD IY,(nn)
] T T I 1] 1
11111101 FD
S T S T N T B
T T T 1T T T 1
001010160 2A
I R N N T
] 1 1 I 1 1 1
n
N N NS NN SN SO |
1] I 1 T T 1
n
B NN SN SN S NS U |
Description:

The contents of address (nn) are loaded into the low
order portion of Index Register IY, and the contents of
the next highest memory address (nn+l) are loaded into
the high order portion of IY. The first n operand after
the op code is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains
DAH, after the instruction

LD IY,(6666H)

the Index Register IY will contain DA92H.

60

) (nn), HL

Operation: (nn+1)«H_, (nn) <L

Format:
Opcode Operands
LD (nn) ,HL

4 L L[} L] 1 1 1
001 0O00O0T10 22
1

I 1 1 1 Ll 1 ¥

B I 1 1 I 1 T

1 1 1 | 1) |

Description:

The contents of the low order portion of register pair
HL (register L) are loaded into memory address (nn), and
the contents of the high order portion of HL (register
H) are loaded into the next highest memory address
(nn+l). The first n operand after the op code is the
low order byte of nn.

M CYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If the content of register pair HL is 483AH, after the
instruction

LD (B229H),HL

address B229H) will contain 3AH, and address B22AH will
contain 48H.

61

LO (nhnN],

Operation: (nn+1)<«<ddy. (nn)<ddp

Format:

Opcode Operands
LD (nn),dd
¥ I 1 I 1) 1

11101101 ED
B | 1 1 1 1 1
I I 1 LWL ¥ L]
01 ddoo0 11
| N N WO N N N B
I I I J 1 1 ¥
n
| | I L1l 1
1 L L)] 1 T
n
L !] Il 1 1

Description:

The low order byte of register pair dd is loaded into
memory address (nn); the upper byte is loaded into
memory address (nn+l). Register pair dd defines either
BC, DE, HL, or SP, assembled as follows in the object
code:

Pair dd
BC 00
DE o1
HL 10
SP 11

The first n operand after the op code is the low order
byte of a two byte memory address.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

62

dd

Example:

If register pair BC contains the number 4644H, the
instruction

LD (1000H),BC

will result in 44H in memory location 1000H, and 46H in
memory location 1001H.

63

LD (Nnn),

Operation: (nn+1) «IXpy, (nn) <X

Format:
Opcode Operands
LD (nn),IX

1) 1 LI I t
11011101 DD

L] 1 1 1 L 1

] 1 I 1 1 1 T
0 01 00010 22

] 1 1 1 1 1]

1 1 I 1 t 1 T

1 ! L ! j —) 1

Description:

The low order byte in Index Register IX is loaded into
memory address (nn); the upper order byte is loaded into
the next highest address (nn+l). The first n operand
after the op code is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A30H, after the
instruction

LD (4392H),IX

memory location 4392H will contain number 30H and
location 4393H will contain 5AH.

64

| X

D (Nnn), Y

Operation: (nn+1) < 1YY, (nn)<1Yy

Format:
Opcode Operands
LD (nn),IY
T [] I 1 T] T
11111101 FD
S T TR NN SR N B |
1 { 1 1 LWL T
001 0 0O0 10 22
SR TR PR NN TR N B |
] T] 1 1 |
n >
A I TN (N I N |
1 1 1 T 1] L]
- n
B R PR IO NN RS N I

Description:

The low order byte in Index Register IY is loaded into
memory address (nn); the upper order byte is loaded into
memory location (nn+l). The first n operand after the
op code is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IY contains 4174H after the
instruction

LD (8838H),IY

memory location 8838H will contain number 74H and memory
location 8839H will contain 41H.

65

Operation: SP <« HL

Format:
Opcode Operands
LD SP,HL
I I 1 I L) 1 1
11111001 F9
I I T N N SR
Description:

The contents of the register pair HL are loaded into the
Stack Pointer SP,

M CYCLES: 1 T STATES: 6 4 MHZ E.T.: 1.50

Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the
instruction

LD SP,HL

the Stack Pointer will also contain 442EH.

66

SP, IX

Operation: SP<«IX
Format:

Opcode Operands

LD SP,IX

T T T
1| 1011101 DD
|

1111100 1] Fo
| 1 | 1

Description:

The two byte contents of Index Register IX are loaded
into the Stack Pointer SP,

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH,
after the instruction

LD SP,IX

the contents of the Stack Pointer will also be 98DAH.

67

Operation: SP<«1Y

Format:
Opcode Operands
LD SpP,IY
1 1 1)]] 1
11111101 FD
S Y NN S N B
) I 1 1 1 1 L)
11111001 F9
| EDE N N N N B |
Description:

The two byte contents of Index Register IY are loaded
into the Stack Pointer SP,

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:
If Index Register IY contains the integer A227H, after
the instruction

LD SP,IY

the Stack Pointer will also contain A227H,

68

Y

PUSH qgg

PUSH qq

Operation: (SP-2) <aqqp , (SP-1) < qqy
Format:

Opcode Operands

PUSH qq

1 1 | | 1 1 '
11 qqg0101
1 1 1 1 I] 1

Description:

The contents of the register pair qq are pushed into the
external memory LIFO (last-in, first-out) Stack. The
Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack. This
instruction first decrements the SP and loads the high
order byte of register pair qq into the memory address
now specified by the SP; then decrements the SP again
and loads the low order byte of qq into the memory
location corresponding to this new address in the SP.
The operand qq identifies register pair BC, DE, HL, or
AF, assembled as follows in the object code:

Pair qq
BC 00
DE ol
HL 10
AF 11

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack
Pointer contains 1007H, after the instruction

PUSH AF
memory address 1006H will contain 22H, memory address

1005H will contain 33H, and the Stack Pointer will
contain 1005H.

69

PUSH

Operation: (SP-2) «<IX, (SP-1) «IXy
Format:

Opcode Operands

PUSH IX

I 1 i 1 I 1 1
11011101 DD

1 1 LR 1 1 I
11100101 ES
L1 !

1 1 I

Description:

The contents of the Index Register IX are pushed into
the external memory LIFO (last-in, first-out) Stack,

The Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack, This
instruction first decrements the SP and loads the high
order byte of IX into the memory address now specified
by the SP; then decrements the SP again and loads the
low order byte into the memory location corresponding to
this new address in the SP,.

M CYCLES: 3 T STATES: 15(4,5,3,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack
Pointer contains 1007H, after the instruction

PUSH IX
memory address 1006H will contain 22H, memory address

1005H will contain 33H, and the Stack Pointer will
contain 1005H,

70

| X

PUSH IY

Operation: (SP-2) < 1Yy, (SP-1) < 1Yy
Format:

Opcode Operands

PUSH 1Y

11111101 FD

T I I 1))
111001001 E5
L1

Description:

The contents of the Index Register IY are pushed into
the external memory LIFO (last-in, first-out) Stack.

The Stack Pointer (SP) register pair holds the 16-bit
address of the current '"top" of the Stack. This
instruction first decrements the SP and loads the high
order byte of IY into the memory address now specified
by the SP; then decrements the SP again and loads the
low order byte into the memory location corresponding to
this new address in the SP,

M CYCLES: 4 T STATES: 15(4,5,3,3) 4 MHZ E,T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 2233H and the Stack
Pointer contains 1007H, after the instruction

PUSH 1Y
memory address 1006H will contain 22H, memory address

1005H will contain 33H, and the Stack Pointer will
contain 1005H,

71

Operation: qu*‘(SP+1), qu‘—(SP)
Format:
Opcode Operands

POP qq

llllqlq IOlOIOll
| | | | I]

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into register pair qq. The
Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack. This
instruction first loads into the low order portion of
qq, the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents
of the corresponding adjacent memory location are loaded
into the high order portion of qq and the SP is now
incremented again. The operand qq identifies register
pair BC, DE, HL, or AF, assembled as follows in the
object code:

Pair r
BC 00
DE 0l
HL 10
AF 11

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

72

Example:

If the Stack Pointer contains 1000H, memory location
1000H contains 55H,

and location 1001H contains 33H, the
instruction

POP HL

will result in register pair HL containing 3355H, and
the Stack Pointer containing 1002H.

73

Operation: IXy < (SP+1), IX| < (SP)

Format:
Opcode Operands
POP IX
1’10111 01| oo
| I T N N I B |
1 1 Ll I I 1 1
11100001 El
N R N N N B
Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into Index Register IX. The
Stack Pointer (SP) register pair holds the 16-bit
address of the current '"top" of the Stack, This
instruction first loads into the low order portion of IX
the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents
of the corresponding adjacent memory location are loaded
into the high order portion of IX, The SP is now
incremented again,

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E,T.: 3,50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location
1000H contains 55H, and location 1001H contains 33H, the
instruction

POP IX

will result in Index Register IX containing 3355H, and
the Stack Pointer containing 1002H.

74

1Y

Operation: IYQ <« (SP+1), 1Y «(SP)

Format:
Opcode Operands
POP 1Y
1 1 I I J L 1 1
1
] |1 1111 |1|O 11 FD
1 { 1 1 I 1 1 1
;1 11 10 JJIO 10 11 El
Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into Index Register IY. The
Stack Pointer (SP) register pair holds the 16-bit
address of the current '"top" of the Stack., This
instruction first loads into the low order portion of IY
the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents
of the corresponding adjacent memory location are loaded
into the high order portion of IY, The SP is now
incremented again,

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location
1000H contains 55H, and location 100lH contains 33H, the
instruction

POP IY

will result in Index Register IY containing 3355H, and
the Stack Pointer containing 1002H,

75

-EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP-

76

DE, HL

Operation: DE <« HL

Format:
Opcode Operands
EX DE,HL
1 L] I 1 I i J
11101011 EB
1 1 1 | 1 1 1
Description:

The two-byte contents of register pairs DE and HL are
exchanged,

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair DE is the number 2822H,
and the content of the register pair HL is number 499AH,
after the instruction

EX DE,HL

the content of register pair DE will be 499AH and the
content of register pair HL will be 2822H,

77

EX AF,

Operation: AF < AF

Format:
Opcode Operands
EX AF,AF”
I i 1 1 I 1 ||
0 00 01O0O0TO 08
1 1 ! [| 1 1
Description:

The two-byte contents of the register pairs AF and AF’
are exchanged., (Note: register pair AF’ consists of
registers A° and F’.)

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and
the content of register pair AF’ is number 5944H, after
the instruction

EX AF,AF’

the contents of AF will be 5944H, and the contents of
AF” will be 9900H,

78

AF’

EXX

Operation: (BC)< (BC’), (DE) < (DE’), (HL) < (HL)
Format:

Opcode Operands

11011001 D9

Description:

ELach two-byte value in register pairs BC, DE, and HL is
exchanged with the two-byte value in BC’, DE°, and HL",
respectively,

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the contents of register pairs BC, DE, and HL are the
numbers 445AH, 3DA2H, and 8859H, respectively, and the
contents of register pairs BC°, DE", and HL® are 0988H,
9300H, and OOE7H, respectively, after the instruction

EXX
the contents of the register pairs will be as follows:

BC: 0988H; DE: 9300H; HL: OOE7H; BC“: 445AH; DE’: 3DA2H;
and HL": 8859H,

79

EX (SP),

Operation: H < (SP+1), L < (SP)
Format:
Opcode Operands

EX (SP) ,HL

T T T T T 1
1 11 0]0 |O|1 1 E3
1

Description:

The low order byte contained in register pair HL is
exchanged with the contents of the memory address
specified by the contents of register pair SP (Stack
Pointer), and the high order byte of HL is exchanged
with the next highest memory address (SP+1),

M CYCLES: 5 T STATES: 19(4,3,4,3,5) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the HL register pair contains 7012H, the SP register
pair contains 8856H, the memory location 8856H contains
the byte 11H, and the memory location 8857H contains the
byte 22H, then the instruction

EX (Sp),HL
will result in the HL register pair containing number
2211H, memory location 8856H containing the byte 12H,

the memory location 8857H containing the byte 70H and
the Stack Pointer containing 8856H.

80

EX (SP), IX

Operation: IXy <« (SP+1], I1X| « (SP)

Format:
Opcode Operands
EX (SsP),1X
) T L) L 1 1
11011101 DD
[l 1 | I 1 1

T T T T
11100011 E3
P S S S R B §

Description:

The low order byte in Index Register IX is exchanged
with the contents of the memory address specified by the
contents of register pair SP (Stack Pointer), and the
high order byte of IX is exchanged with the next highest
memory address (SP+1).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5) 4 MHZ E,T.: 5,75

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register
pair contains 0100H, the memory location O0l00H contains
the byte 90H, and memory location 0101H contains byte
48H, then the instruction

EX (Sp),IX
will result-in the IX register pair containing number
4890H, memory location 0100H containing 88H, memory

location 0101H containing 39H and the Stack Pointer
containing 0100H,

81

EX (SP),

Operation: IYQ <« (SP+1), 1Y © (SP)

Format:
Opcode Operands
EX (sP),IY
i LIS L] 1 I 1
11111101 FD

I T I 1 T
11100011 E3
1

Description:

The low order byte in Index Register IY is exchanged
with the contents of the memory address specified by the
contents of register pair SP (Stack Pointer), and the
high order byte of 1Y is exchanged with the next highest
memory address (SP+1).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5) 4 MHZ E,T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 3988H, the SP register
pair contains 0100, the memory location 0l0OH contains
the byte 90, and memory location 010lH contains byte
48H, then the instruction

EX (SP),IY
will result in the IY register pair containing number
4890H, memory location 0100H containing 88H, memory

location 010lH containing 39H, and the Stack Pointer
containing 0100H,

82

Operation: (DE)<« (HL), DE < DE+1, HL <« HL+1, BC < BC-1
ngmat:

Opcode Operands

LDI

1110110 1] ED

T T T 1
10 00 00 AO

Description:
A byte of data is transferred from the memory location
addressed by the contents of the HL register pair to the
memory location addressed by the contents of the DE
register pair. Then both these register pairs are
incremented and the BC (Byte Counter) register pair is
decremented,

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Mot affected
Z: Mot affected
H: Reset

P/V: Set if BC-1#0;
reset otherwise
e Reset
C: Not affected

83

Example:

If the HL register pair contains 1111lH, memory location
I1111H contains contains the byte 88H, the DE register
pair contains 2222H, the memory location 2222H contains
byte 66H, and the BC register pair contains 7H, then the
instruction

LDI
will result in the following contents in register pairs
and memory addresses:

HL : 1112H
(1111H) : 88H

DE ¢ 2223H
(2222H) 881

BC H 6H

84

LDIR

Operation: (DE} < (HL), DE < DE+1, HL < HL+1, BC «< BC-1

Format:

Opcode Operands

111011 01 ED

L
10110000 BO

Description:

This two byte instruction transfers a byte of data from
the memory location addressed by the contents of the HL
register pair to the memory location addressed by the DE
register pair. Then both these register pairs are
incremented and the BC (Byte Counter) register pair 1is
decremented. If decrementing causes the BC to go to
zero, the instruction is terminated. If BC is not zero
the program counter is decremented by 2 and the
instruction is repeated. Interrupts will be recognized
and two refresh cycless will be executed after each data
transfer. Note that if BC is set to zero prior to
instruction execution, the instruction will loop through
64K bytes.

For BC #0:

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25
For BC=0:

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

85

Condition Bits Affected:

S: Not affected
Z: Not affected

H: Reset
P/V: Reset
H Reset

H Not affected

Example:

If the HL register pair contains 1111H, the DE register
pair contains 2222H, the BC register pair contains
0003H, and memory locations have these contents:

(1111H) : 88H (2222H) : 66H
(1112H) : 36H (2223H) : 59H
(1113H) : A5H (2224H) : C5H

then after the execution of
LDIR

the contents of register pairs and memory locations will
be:

HL : 1114H
DE : 2225H
BC : 0000H
(1111H) : 88H (2222H) : 88H
(1112H) : 36H (2223H) : 36H
(1113H) : A5H (2224H) : AS5H

86

Operation: (DE)<« (HL), DE < DE-1, HL <« HL-1, BC < BC-1
Format:

Opcode Operands

LDD

1110110 1f €ED

101010 00 A8

Descripttion:

This two byte instruction transfers a byte of data from
the memory location addressed by the contents of the HL
register pair to the memory location addressed by the
contents of the DE register pair, Then both of these
register pairs including the BC (Byte Counter) register
pair are decremented,

M CYCLES: & T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Set if BC-1#0;
reset otherwise
N: Reset
C: Not affected

87

Example:

If the HL register pair contains 1111H, memory location
1111H contains the byte 88H, the DE register pair
contains 2222H, memory location 2222H contains byte 66H,
and the BC register pair contains 7H, then the
instruction

LDD

will result in the following contents in register pairs
and memory addresses:

HL : 1110H

(1111H) : 88H
DE : 2221H
(2222H) 88H
BC : 6H

88

Operation: (DE)«<(HL), DE < DE-1, HL « HL-1, BC < BC-1

Format:
Opcode Operands
LDDR
T 1 | L) i) I
11101101 ED
1 1 L1 1 |

1011100 0] B8

Description:

This two byte instruction transfers a byte of data from
the memory location addressed by the contents of the HL
register pair to the memory location addressed by the
contents of the DE register pair. Then both of these
registers as well as the BC (Byte Counter) are
decremented. If decrementing causes the BC to go to
zero, the instruction is terminated. If BC is not zero,
the program counter is decremented by 2 and the
instruction is repeated. Interrupts will be recognized

and two refresh cycless will be executed after each data
transfer. Note that if BC is set to zero prior to

instruction execution, the instruction will loop through
64K bytes.

For BC#£0:

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25
For BC=0

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00
c ion B ffected:

Not affected

Not affected

Reset

Reset
Reset

Z<<TNW

89

Example:

If the HL register pair contains 1114H, the DE register
pair contains 2225H, the BC register pair contains
0003H, and memory locations have these contents:

(1114H) : A5H (2225H) : C5H
(1113H) : 36H (2224H) : 59H
(1112H) : 88H (2223H) : 66H

then after the execution of

LDDR

the contents of register pairs and memory locations will
be:

HL : 1111H
DE : 2222H
BC : 0000H
(1114H) : AS5H (2225H) : ASH
(1113H) : 36H (2224H) : 36H
(1112H) : 88H (2223H) : 88H

90

P |

Operation: A-(HL), HL < HL+1, BC < BC-1
Format:

Opcode Operands

11101101 ED

T T T T T T T
1 0100001 Al

1 1 1 l Il 1 Il

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit
is set. Then HL is incremented and the Byte Counter
(register pair BC) is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if A=(HL);
reset otherwise
H: Set if borrow from
Bit 4; reset otherwise
P/V: Set if BC-1£0;
reset otherwise
N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, memory location
1111H contains 3BH, the Accumulator contains 3BH, and
the Byte Counter contains 000l1H, then after the
execution of

91

CPIL

the Byte Counter will contain 000OQOH, the HL register
pair will contain 1112H, the Z flag in the F register
will be set, and the P/V flag in the F register will be
reset, There will be no effect on the contents of the
Accunulator or address 1111H,

92

P

Operation: A-(HL), HL <HL+1, BC <« BC-1
Format:

Opcode Operands

11101101 ED

| S B B B B BN |
1 0110001 Bl
L)

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. 1In case of a true compare, a condition bit
is set. The HL is incremented and the Byte Counter
(register pair BC) is decremented. If decrementing
causes the BC to go to zero or 1if A=(HL), the
instruction is terminated. If BC is not zero and
A=(HL), the program counter is decremented by 2 and the
instruction is repeated. Interrupts will be recognized
and two refresh cycles will be executed after each data
transfer. Note that if BC is set to zero before
instruction execution, the instruction will loop through
64K bytes, if no match is found.

For BC#0 and A#(HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25
For BC=0 or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

93

Condition Bits Affected:

Set if result is negative;

S:
reset otherwise
Z: Set 1if A=(HL);
reset otherwise
H: Set if borrow from
Bit 4; reset otherwise
P/V: Set if BC-1#0;
reset otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 1111H,

contains F3H,

the Accunmulator

(l111H) : 52H
(1112H) : OOH
(1113H) : F3H

then after the execution of

the Byte Counter contains 0007H, and
memory locations have these contents:

CPIR

" the contents of register pair HL will be 1114H, the
contents of the Byte Counter will be 0004H,
in the F register will be set and the Z flag in the F
register will be set.

94

the P/V flag

Operation: A-{(HL), HL < HL-1, BC < BC-1
Format:

Opcode Operands

CPD

T 1 I

LA B B
11101101 ED
1 1 1 i 1 |]

1 ¥ f] 1 1] T
10101001 A9
TS W B Tl B SR

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit
is set. The HL and the Byte Counter (register pair BC)
are decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if A=(HL);
reset otherwise
H: Set if borrow from
Bit 4; reset otherwise
P/V: Set if BC-1#£0;
reset otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 1111H, memory location
1111H contains 3BH, the Accumulator contains 3BH, and
the Byte Counter contains 000lH, then after the
execution of

95

CPD

the Byte Counter will contain O0OOH, the HL register
pair will contain 1110H, the Z flag in the F register
will be set, and the P/V flag in the F register will be
reset. There will be no effect on the contents of the

Accumulator or address 1111H.

96

R

Operation: A -(HL)., HL < HL-1, BC <« BC-1

Format:
Opcode , Operands
CPDR

T ¥ 1 T 1

T T
1110 1 01 ED
J W W W SR WO N |

| B e B N
10111001 B9
Ly

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit
is set. The HL and BC (Byte Counter) register pairs are
decremented. If decrementing causes the BC to go to
zero or if A=(HL), the instruction is terminated. If BC
is not zero and A=(HL), the program counter 1is
decremented by 2 and the instruction is repeated.
Interrupts will be recognized and two refresh cycless
will be executed after each data transfer. Note that if
BC is set to zero prior to instruction execution, the
instruction will loop through 64K bytes, 1if no match is
found.

for BC#0 and A#(HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5,) 4 MHZ E.T.: 5.25
For BC=0 or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

97

Condition Bits Affected:

S:

Example:

If the HL register pair contains 1118H,

Set 1f result is negative;
reset otherwise

Set if A=(HL);

reset otherwise

Set if borrow from

Bit 4; reset otherwise

Set if BC-1£0;

reset otherwise

Set

Not affected

the Accumulator

contains F3H,

the Byte Counter contains 0007H,

and

memory locations have these contents:

(1118H) 52H
(1117H) 00H
(1116H) F3H

then after the execution of

CPDR

the contents of register pair HL will be 1115H,

contents of the Byte Counter will be 0004H,

in the F register will be set,

register will be set.

98

the
the P/V flag

and the Z flag in the F

-3 BIT ARITHMETIC AND LOGICAL GROUP-

29

Operation: A< A+r

Format:
Opcode Operands
ADD A,r

T T T T T 1
1 000 0=-—r—
[S TR NN N

Description:

The contents of register r are added to the contents of
the Accumulator, and the result is stored in the
Accumulator, The symbol r identifies the registers
A,B,C,D,E,H or L assembled as follows in the object
code:

Register r

111
000
001
010
011
100
101

HEEEHOOW>

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1,00

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result 1s zero;
reset otherwise

H: Set if carry from
Bit 3; reset otherwise

P/V: Set if overflow;

reset otherwise

N: Reset

C: Set if carry from
Bit 7; reset otherwise

100

Example:

If the contents of the Accumulator are 44H, and the
contents of register C are 11H, after the execution of

ADD A,C

the contents of the Accumulator will be 55H.

101

) A, n

Operation: A< A+n
Format:
Opcode Operands

ADD A,n

T T T T T
11000110 C6
T RN NN R R N

Description:
The integer n is added to the contents of the
Accumulator and the results are stored in the
Accunulator,

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected:

S: Set i1if result is negatives
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from
Bit 3; reset otherwise

P/V: Set if overflow;

reset otherwise

N: Reset

C: Set if carry from
Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 23H, after the
execution of

ADD A,33H

the contents of the Accumulator will be 56H,

102

ADD A, (HL)

Operation: A< A+ (HL)
Format:
Opcode Operands

ADD A, (HL)

T I I 1 T
1 0000110 86
[l]

Description:

The byte at the memory address specified by the contents
of the HL register pair is added to the contents of the
Accumulator and the result is stored in the Accumulator,

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if result is zero;

reset otherwise
H: Set if carry from
Bit 3; reset otherwise
P/V: Set if overflow;
reset otherwise
N: Reset
C: Set if carry from
Bit 7; reset otherwise

Example:

If the contents of the Accumulator are AOH, and the

content of the register pair HL is 2323H, and memory

location 2323H contains byte 08H, after the execution of
ADD A, (HL)

the Accumulator will contain A8H,

103

ADD A, (X+d)

Operation: A < A+ (IX+d)

Format:
Opcode Operands

ADD A, (IX+d)

1101110 1| DD

LA
1 0000110 86
- L1

Description:

The contents of the Index Register (register pair IX) is
added to a two’s complement displacement d to point to
an address in memory. The contents of this address 1is
then added to the contents of the Accumulator and the
result is stored in the Accumulator.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from

Bit 3; reset otherwise
P/V: Set if overflow;
reset otherwise
N: Reset
C: Set if carry from
Bit 7; reset otherwise

Example:

If the Accumulator contents are l1l1H, the Index Register
IX contains 1000H, and if the content of memory location

104

1005H is 22H, after the execution of
ADD A, (IX+5H)

the contents of the Accumulator will be 33H.

105

) A, 0Y+d)

Operation: A < A+(lY+d)
Format:
Opcode Operands

ADD A, (IY+d)

11111101 FD

1 1 1 I 1 T 1
l1 ooo0oo0o110 86
1] | I | 1 1

Description:

The contents of the Index Register (register pair 1Y) is
added to a two’s complement displacement d to point to
an address in memory. The contents of this address 1is
then added to the contents of the Accumulator and the
result is stored in the Accumulator.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) & MHZ E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero}
reset otherwise

H: Set if carry from

Bit 3; reset otherwise
P/V: Set if overflow;
reset otherwise
N: Reset
C: Set if carry from bit 7;
reset otherwise

Example:

If the Accumulator contents are 1lH, the Index Register
pair IY contains 1000H, and if the content of memory

106

location 1005H is 22H, after the execution of
ADD A, (IY+5H)

the contents of the Accumulator will be 33H.

107

DC A, s

Operation: A< A+s+CY
Format:

Opcode Operands

ADC A,s

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as
defined for the analogous ADD instruction, These
various possible opcode-operand combinations are
assembled as follows in the object code:

1] 1
ADC A,r 1 0 0 0 1 <-—r*x—o
1] 1 [1 1 1
1 1 1] 1 1 T
ADC A,n 1 1001110 CE
1 1] | 1 1 1
]] 1 1 1] T
n —
1 1 1] 1 1 1
'I 1] 1 1 1 L
ADC A, (HL) 1 00 01110 8E
1 1 1 1 L 1 1
1 1 1 T 1 1 1
ADC A, (IX+d) 11011101 DD
1 1 1

1] 1 1

—T T T T T T
10001110 8E
P S S SN T S

T T 1 T 1 1 T
ADC A, (IY+d) 11111101 FD
1 1 1 1 L 1

V 1 Ll 1) i)
1 0001110 8E
1 |] 1 1 1 1

T T T T T L
d —_—

1 | | 1 1 i |

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code field above:

108

Register r

000
001
010
011
100
101
111

Ll ==l NN el

Description:

The s operand, along with the Carry Flag ('"C" in the F
register) is added to the contents of the Accunmulator,
and the result is stored in the Accumulator.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
ADC A,r 1 4 1.00
ADC A,n 2 7(4,3) 1.75
ADC A, (HL) 2 7(4,3) 1.75
ADC A,(IX+d) 5 19(4,4,3,5,3) 4,75
ADC A, (IY+d) 5 19(4,4,3,5,3) 4,75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if result is zero;

reset otherwise
H: Set if carry from
Bit 3; reset otherwise
P/V: Set if overflow;
reset otherwise
N: Reset
C: Set if carry from
Bit 7; reset otherwise

Example:

If the Accunmulator contains 16H, the Carry Flag is set,
the HL register pair contains 6666H, and address 6666H
contains 10H, after the execution of

ADC A, (HL)

the Accumulator will contain 27H,

109

SU

Operation: A< A-s
Format:
Opcode Operands
SUB s
The s operand is any of r,n,(HL),(IX+d) or (IY+d) as
defined for the analogous ADD instruction., These

various possible opcode-operand combinations are
assembled as follows in the object code:

1 1 I L)

F 0
SUB ¢ 100 1 0~—r—
L 1 1 1 1.1
T 17 T 1T 1
SUB n 1101071 10| D6
L J 1 1 1 1 1
r 1 1T "1 7T 1T 1
n
! . ¢ ! 1 1 1
SUB (HL) 100101 10| 9
r .+ 1 1 1 1 1
1 « 1T T ¥ 71
SUB (IX+d) 1101110 1| o
L1 1 1 1 1.1

T T T T T T T
10010110 96
1 1 1 1 1 1 1

SUB (I1Y+d) 1111110 1|
| 1 1 { | |

T T T T T T
10010110 96
1 | 1 | 1 1 1

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code field above:

~110

Register r v
B 000
C 001
D 010
E 0l1
H 100)
L 101
A 111

Description:

The s operand is subtracted from the contents of the
Accumulator, and the result is stored in the
Accumulator.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
SUB r 1 4 1.00
SUB n 2 7(4,3) 1.75
SUB (HL) 2 7(4,3) 1.75
SUB (IX+d) 5 19(4,4,3,5,3) 4.75
SUB (IY+d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:
S: Set if result is negative;
reset otherwise
Z: Set if result is zero;
reset otherwise
H: Set if borrow from

Bit 4; reset otherwise
P/V: Set if overflow;
reset otherwise
N: Set
C: Set if borrow;
reset otherwise

Example:

If the Accunmulator contains 29H and register D contains
11H, after the execution of

SUB D

the Accumulator will contain 18H.

m

BC A, s

Operation: A< A-s-CY
Format:

Opcode Operands

SBC A,s

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as
defined for the analogous ADD instructions., These
various possible opcode-operand combinations are
assembled as follows in the object code:

I | I I T

SBC A,r 100 1 1-a—r—
| 1 ! 1 [|]
1 | T 1 | 1 1
SBC A,n 110111 10| be
1 | | L] | 1
T | T |] 1]
n
] | 1 1 1 1 |
T T T | | i 1
SBC A, (HL) 100 11 11 0] 9
] 1 ! 1] 1 |
T T I 1 1 1] I
SBC A, (IX+d) 1101 110 1| o0

10011110 9E

SBC A, (1Y+d) 11111101 FD

1 00011 110 SE

*r jidentifies registers B8,C,D,E,lI,L or A asscecmbled as
follows in the object code field above:

112

Register r

Description:

The s operand,

PO IOmooOw

along with the Carry Flag ("C"

000
001
010
011
100
101
111

register) is subtracted from the contents of

Accumulator,
Accumulator.

and the result is stored in the

INSTRUCTION M CYCLES T STATES
SBC A,r 1 4
SBC A,n 2 7(4,3)
SBC A, (HL) 2 7(4,3)
SBC A, (IX+d) 5 19(4,4,3,5,3)
SBC A, (1Y+d) 5 19(4,4,3,5,3)
Condition Bits Affected:
S: Set if result is negative;
reset otherwise
Z: Set if result is zero;
reset otherwise
H: Set if borrow from
Bit 43 reset otherwise
P/V: Set if overflow;
reset otherwise
N: Set
C: Set if borrow;

Example:

If the Accumulator contains 16H,
the HL register pair contains 34334,
after the execution of

contains 05H,

reset otherwise

the

SBC A, (HL)

the Accumulator will contain LlOH.

113

in the F
the

4 MHZ E.T.

1.00
1.75
1.75
4.75
4.75

carry flag is set,
and address 3433H

AN

S

Operation: A< AAs
Format:
Opcode Operands
AND s
The s operand is any of r,n,(HL),(IX+d) or (IY+d), as
defined for the analogous ADD instructions, These

various possible opcode-operand combinations are
assembled as follows in the object code:

T T T T i I T

P B T S R T
S e e e
AND n 11100110 E6
P H T S T T
T T T T T T
n
I T S NS S B |
T T T T
AND (HL) 10100 1 10 A6
I RN N S B B
e e L
AND (IX+d) 1101 1 1 01 DD

AND (IY+d) 111 1 1 1 0 1 FD

1 i LI i 1 T

*r identifies registers B,C,D,E,ll,L or A assembled as
follows in the object code field above:

114

Register

PO EN MO0

Description:

| a1

000
001
010
011
100
101
111

A logical AND operation is performed between the byte
specified by the s operand and the byte contained in the
Accumulator; the result is stored in the Accumulator.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
AND r 1 4 1.00
AND n 2 7(4,3) 1.75
AND (HL) 2 7(4,3) 1.75
AND (IX+d) 5 19(4,4,3,5,3) 4.75
AND (IX+d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:
S: Set if result is negative;
reset otherwise
Z: Set if result is zero;
reset otherwise
H: Set
P/V: Set if parity even;
reset otherwise
N: Reset
C: Reset

Example:

If the B register contains 7BH (0111 1011) and the
Accumulator contains C3H (1100 0011) after the execution

of

AND B

the Accumulator will contain 43H (01000011).

115

S

Operation: A< A Vs
Format:
Opcode Operands
OR s
The s operand is any of r,n,(HL),(IX+d) or (IY+d), as
defined for the analogous ADD instructions. These

various possible opcode-operand combinations -are
assembled as follows in the object code:

OR r 1 01 1 0Q=—r—
P R N S S S
T T T T T
OR n 111 10110 F6
P S T S S B
T T T T T
n
T R S R B S
T T T T T T
OR (HL) 10110110 B6
TR R T S B B
T T T T T T
OR (IX+d) 11011101 DD

OR (IY+d) 11111101 FD

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code field above:

116

Register

BOmmUow

Description:

"1

000
001
010
01l
100
101
111

A logical OR operation is performed between the byte
specified by the s operand and the byte contained in the
Accumulator; the result is stored in the Accumulator.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
OR r 1 4 1.00
OR n 2 7(4,3) 1.75
OR (HL) 2 7(4,3) 1.75
OR (IX+d) 5 19(4,4,3,5,3) 4.75
OR (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits

Affected:

Example:

Set if result is negative;
reset otherwise

Set if result is zero;
reset otherwise

Reset

Set if parity even;

reset otherwise

Reset

Reset

If the H register contains 48H (010001000) and the
Accumulator contains 12H (00010010) after the execution

of

OR H

the Accumulator will contain 5AH (01011010).

117

X0O

Operation: A<A®s
Format:
Opcode
XOR

The s operand is any of r,n,
defined for the analogous ADD instructions,

Operands

S

(HL) , (IX+d) or (IY+d),

These

various possible opcode-operand combinations are
assembled as follows in the object code:

XOR r

XOR n

XOR (HL)

XOR (IX+d)

XOR (IY+d)

I 1 I 1 1

1 010 le—r—
| I T I N N S |
L L L L
11101110
.t ¢ & -t 1
1 T 1T 17T "t 1
n
Ll 4+t oy 1
1T 1T 1T 1T "1 1
10101110
I I N NN SN N R |
T L L L L)
11011101
| S I S I AN S |
| AN DA D AR AR BN |
10101110
N R D S N B N |
7 17 1T 1T & 1
d -
| I U I S I N
L L L L L
11111101
4 111
| L L L L L
10101110
1 .t 1 1 1 1
L L L L L
d
| I I N B IS BN

EE

AE

DD

AE

FD

AE

as

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code field above:

118

Register

ksl

B 000
c 001
D 010
E 011
H 100
L 101
A 111

Description:

A logical exclusive-OR operation is performed between
the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in
the Accunmulator.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
XOR r 1 4 1.00
XOR n 2 7(4,3) 1.75
XOR (HL) 2 7(4,3) 1.75
XOR (IX+d) 5 19(4,4,3,5,3) 4.75
XOR (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if result is zero;

reset otherwise
H: Reset
P/V: Set if parity even;
reset otherwise
N: Reset
C: Reset

Example:

If the Accumulator contains 96H (10010110), after the
execution of

XOR 5DH (Note: 5DH = 01011101)

the Accumulator will contain CBH (11001011).

119

S

Operation: A-s

Format:

Opcode

cp

Operands

S

The s operand is any of r,n,(HL),(IX+d) or (IY+d),

defined for the analogous ADD instructions,

These

various possible opcode~-operand combinations are
assembled as follows in the object code:

CP r

CP n

CP (HL)

CP (IX+d)

CP (IY+d)

1 01 1 1=e—yr-—
[W N N N
LI 1 1 T I 1

11111110
1 1 | | 1 1 1
1 1 1 | N L 1

n
1 1] 1 1 1]

1 1 1) L) 1 L)
1 0111110
11 1 1] L 1
LI L)]] 1 1
11011101
1 L 1 1 1]

[] | L i 1
1 0111110
[SO U NN N B |
L L]]] 1 1
-— d -
TR N NN N N T |
1 1] i 1 1]
11111101
1 1 1 L 1 1 L
L L] T 1 T
1 01 11110
1 1 1 1 1 1 1
1 1 1 | 1 ! 1

-— d
L 1 1 1 1 L]

FE

BE

DD

BE

FD

BE

as

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code field above:

120

Register r
B 000
C 001
D 010
E oll
H 100
L 101
A 111

Description:

The contents of the s operand are compared with the
contents of the Accumulator. If there is a true
compare, the Z flag is set. The execution of this
instruction does not affect the contents of the
Accumulator.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
CP r 1 4 1.00
CP n 2 7(4,3) 1.75
CP (HL) 2 7(4,3) 1.75
CP (IX+d) 5 19(4,4,3,5,3) 4.75
CP (IY+d) 5 19¢4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set 1f result is negative;
reset otherwise

Z: Set 1f result is zero;
reset otherwise

H: Set if borrow from

Bit 4; reset otherwise
P/V: Set if overflow;
reset otherwise
N: Set
C: Set if borrow;
reset otherwise

Example:

If the Accumulator contains 63H, the HL register pair
contains 6000H and memory location 6000H contains 60H,
the instruction

CP (HL)

will result in the P/V flag in the F register being
reset.

121

INC r

Operation: r<r+1

Format:
Opcode Operands
INC r
) I) 1 i)
0 0+—r—=1 0 0
1 1 1 1 1 1 1
Description:

Register r is incremented, r identifies any of the
registers A,B, C,D,E,H or L, assembled as follows in the
object code,

Register T
111
000
001
010
011
100
101

HEEmUOW>

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1,00

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise
H: Set 1f carry from

Bit 3; reset otherwise
P/V: Set if r was 7FH before
operation; reset otherwise
N: Reset
C: Not affected

122

Example:

If the contents of register D are 28H, after the
execution of

INC D

the contents of register D will be 29H,

123

INC (HL)

Operation: (HL)< (HL)+1
Format:
Opcode Operands

INC (HL)

0011010 0| 34

Description:

The byte contained in the address specified by the
contents of the HL register pair is incremented,

M CYCLES: 3 T STATES: 11(4,4,3) 4 MHZ E,T.: 2,75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from

Bit 3; reset otherwise
P/V: Set if (HL) was 7FH before
operation; reset otherwise
N: Reset
C: Not Affected

Example:

If the contents of the HL register pair are 3434H, and
the contents of address 3434H are 82H, after the
execution of

INC (HL)

memory location 3434H will contain 83H,

124

INC (1X+d)

Operation: (IX+d) < (IX+d)+1
Format:
Opcode Operands

INC (IX+d)

T T T T T
11011101 DD

00 34

Description:

The contents of the Index Register IX (register pair IX)
are added to a two’s complement displacement integer d
to point to an address in memory, The contents of this
address are then incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from

Bit 3; reset otherwise
P/V: Set if (IX+d) was 7FH before
operation; reset otherwise
N: Reset
C: Not affected

125

Example:

If the contents of the Index Register pair IX are 2020H,
and the memory location 2030H contains byte 34H, after
the execution of

INC (IX+10H)

the contents of memory location 2030H will be 35H,

126

INC (Y+d)

Operation: (IY+d)<« (1Y+d)+1

Format:
Opcode Operands
INC (IY+d)
1 I) 1 1 1 1
11111101 FD
| 1 L1 1 [1
T | L L 1 1
00110100 34
L] 1 1 1 1 1
1 1) I 1 1 T
d —
1 1 1 | i 1
Description:

The contents of the Index Register 1Y (register pair 1Y)
are added to a two’s complement displacement integer d
to point to an address in memory. The contents of this
address are then incremented.,

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from
Bit 3; reset otherwise

P/V: Set if (IY+d) was 7FH before

operation; reset otherwise

N: Reset

C: Not Affected

127

Example:

If the contents of the Index Register pair IY are 2020H,
and the memory location 2030H contain byte 34H, after
the execution of

INC (IY+10H)

the contents of memory location 2030H will be 35H.,

128

Operation: m<m-l

Format:
Opcode Operands
DEC n

The m operand is any of r, (HL),(IX+d) or (IY+d), as
defined for the analogous INC instructions. These
various possible opcode-operand combinations are
assembled as follows in the object code:

DEC r 0 Om—r—m1 0 1
1 1 [1 1] [
1 1 i 1 1 1 1

DEC (HL) 0011010 1| 35
t 1] 1 1 1]
1] 1) 1 1 1)

DEC (IX+d) 1101110 1| oo
1] 1 1 | [

1 I) i 1 i 1
00110101 35
1 1 1 1 1 1 1

DEC (IY+d) 1111110 1|
)))] | | 1

T _ 1 T T_ T 1
00110101 35
I

]] 1 1

*r identifies registers B,C,D,E,H,L or A assembled as
follows in the object code field above:

129

C m

Register

I

000
001
010
011
100
101
111

oD EHOOW

Description:

The byte specified by the m operand is decremented.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
DEC r 1 4 1.00
DEC (HL) 3 11(4,4,3) 2.75
DEC (IX+d) 6 23(4,4,3,5,4,3) 5.75
DEC (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if borrow from

Bit 4, reset otherwise
P/V: Set if m was 80H before
operation; reset otherwise
N: Set
C: Not affected
Example:

If the D register contains byte 2AH, after the execution
of

DEC D

register D will contain 29H.

130

~GENERAL PURPOSE ARTTHMETIC AND CPU CONTROL GROUPS-

131

DAA

Operation: —
Format:
Opcode

DAA

1 1 T I i Al 1

001001 11 27
1 L1 | 1 1 1

Description:

This instruction conditionally adjusts the Accumulator
for BCD addition and subtraction operations. For
addition (ADD, ADC, INC) or subtraction (SUB,
SBC,DEC,NEG), the following table indicates the
operation performed:

HEX HEX
VALUE VALUE NUMBER
o IN H IN ADDED | C
BEFORE| UPPER | BEFORE| LOWER TO AFTER
OPERATION DAA DIGIT DAA DIGIT BYTE DAA
(bit (bit
7=4) 3-0)
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
ADD 0 0-9 1 0-3 06 0
ADC 0 A-F 0 0-9 60 1
INC 0 9-F 0 A-F 66 1
0 A~F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
SUB 0 0-9 0 0-9 00 0
SBC 0 0-8 1 6-F FA 0
DEC 1 7-F 0 0-9 AQ 1
NEG 1 6~F 1 6-F 9A 1

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

132

Condition Bits Affected:

S: Set i1if most significant bit
of Acc, is 1 after operation;
reset otherwise

Z: Set if Acc., is zero after operation;
reset otherwise
H: See instruction

P/V: Set 1f Acc, i1s even parity after
operation; reset otherwise
N: Not affected
C: See instruction

Exanple:

If an addition operation is performed between 15 (BCD)
and 27 (BCD), simple decimal arithmetic gives this
result:

But when the binary representations are added in the
Accunulator according to standard binary arithmetic,

0001 0101
+0010 0111
0011 1100 3C

the sum is ambiguous, The DAA instruction adjusts this
result so that the correct BCD representation is
obtained:

0011l 1100

+0000 0110
0100 0010 = 42

133

Operation: A<A
Format:
Opcode

CPL

T T T T T
00101111 2F
[N R VRN NS N S

Description:

The contents of the Accumulator (register A) are
inverted (1°s complement).

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected

H: Set
P/V: Not affected
N: Set

C: Not affected

Example:

If the contents of the Accumulator are 1011 0100,
the execution of

CPL

the Accumulator contents will be 0100 1011.

134

after

Operation: A<0-A

Format:
Opcode
NEG
) 1 i 1 1 T i
11101101 ED
1 1 L 1 1 1 1
| Ll { I T T I
0100 0 100 44
1 L 1 1] 1 |
Description:

The contents of the Accumulator are negated (two’s
complement). This is the same as subtracting the
contents of the Accumulator from zero. Note that 80H is
left unchanged.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected:

S: Set 1if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if borrow from

Bit 4; reset otherwise
P/V: Set if Acc. was 80H before
operation; reset otherwise
N: Set
C: Set 1if Acc. was not O0OH before
operation; reset otherwise

135

Example:

If the contents of the Accumulator are

after the execution of

NEG

the Accunulator contents will be

136

CCF

Operation: CY «<CY
Format:
Opcode

CCF

T T
00111111 3F

Description:
The Carry flag in the F register is inverted.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected

H: Previous carry will be copied
P/V: Not affected
N: Reset

C: Set if CY was O before
operation; reset otherwise

137

SCF

Operation: CY <1
Format:
Opcode

SCF

i I 1 1] ¥)
00110111 37
] 1 [l 1 1 1

Description:
The Carry flag in the F register is set.
M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Not affected
N: Reset
C: Set

138

N O

Operation: —

Format:
Opcode
NOP
| L L L
0 00 0O0O0OOD0DO 00
Lt {1 1
Description:

The CPU performs no operation during this machine cycle.
M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

139

HALT

Operation: —

Format:
Opcode
HALT
) 1 LI LI LI 1
61110110 76
1 1 1 1 1 1 1
Description:

The HALT instruction suspends CPU operation until a
subsequent interrupt or reset is received, While in the
halt state, the processor will execute NOP’s to maintain
memory refresh logic,

M CYCLES: 1 T STATES: 4 4 MHZ E.T,.: 1.00

Condition Bits Affected: None

140

Operation: I|FF«0

Format:
Opcode
DI
1) T) 1 ' 1
11110011 F3
1 1 1 1 1 1 1
Description:

DI disables the maskable interrupt by resetting the
interrupt enable flip-flops{(IFFl and IFF2), Note that
this instruction disables the maskable interrupt during
its execution,

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Exampler
When the CPU executes the instruction
DI
the maskable interrupt is disabled until it is

subsequently re-enabled by an EI instruction., The CPU
will not respond to an Interrupt Request (INT) signal,

141

B]

Operation: IFF <1
Format:
Opcode

EI

T 1]) 1 1 ¥
111114011 FB
! 1 Il | —

Description:

The enable interrupt instruction will set both interrupt
enable flip flops (IFF! and IFF2) to a logic “1°
allowing recognition of any maskable interrupt. Note
that during the execution of this instruction and the
following instruction, maskable interrupts will be
disabled.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:
When the CPU executes instruction

EI
RETI

the maskable interrupt will be enabled after the
execution of the RETI imnstruction.

142

IV

Operation: —
Format:

Opcode Operands

| I S
11101101 ED
, :

| B e —
01 000 11 0] 46
1

Description:

The IM O instruction sets interrupt mode 0. In this
mode the interrupting device can insert ‘any instruction
on the data bus for execution by the CPU. The first
byte of a multi-byte instruction is read during the
interrupt acknowledge cycle. Subsequent bytes are read
in by a normal memory read sequence.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

143

IV

Operation: —

Format:

Opcode Operands

T T T
11101101 ED
L1 L1

01 010110 56

Description:

The IM instruction sets interrupt mode 1., In this mode
the processor will respond to an interrupt by executing
a restart to location 0038H,

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2,00

Condition Bits Affected: None

144

IV

Operation: —
Format:

Opcode Operands

LI
1110110 1| ED
|

| N m— T
01011110 5E
L !

Description:

The IM 2 instruction sets the vectoreed interrupt mode
2, This mode allows an indirect call to any memory
location by an 8 bit vector supplied from the peripheral
device. This vector then becomes the least significant
8 bits of the indirect pointer while the I register in
the CPU provides the most significant 8 bits. This
address points to an addreess in a vector table which is
the starting address for the interrupt service routine.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

145

-16 BIT ARITHMETIC GROUP-

146

ADD HL, ss

Operation: HL < HL+ss
Format:
Opcode Operands

ADD HL,ss

1 1 1 I T I 1

0 0s s 10 01
R SR B Bl Bl B

Description:

The contents of register pair ss (any of register pairs
BC,DE,HL or SP) are added to the contents of register
pair HL and the result is stored in HL, Operand ss is
specified as follows in the assembled object code.

Register
Pair 58
BC 00
DE 01
HL 10
SP 11

M CYCLES: 3 T STATES: 11(4,4,3) 4 MHZ E.T.: 2,75

Condition Bits Affected:

S: Not affected
Z: Not affected
Hs Set if carry out of
Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from
Bit 15; reset otherwise

147

Exanple:

If register pair HL contains the integer 4242H and
register pair DE contains 1111H, after the execution of

ADD HL,DE

the HL register pair will contain 5353H.

148

ADC HL, ss

Operation: HL<HL+ss+CY
Format:
Opcode Operands

ADC HL,ss

11101101 ED

T T T T T T
0 1

0

| ! 1 1 1 1 1

Description:

The contents of register pair ss (any of register pairs
BC,DE,HL or SP) are added with the Carry Flag (C flag in
the F register) to the contents of register pair HL, and
the result is stored in HL, Operand ss is specified as
follows in the assembled object code,

Register
Pair 58
BC 00
DE 01
HL 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry out of
Bit 1l; reset otherwise

P/V: Set if overflow;

reset otherwise

N: Reset

C: Set if carry from

Bit 15; reset otherwise

149

Example:

If the register pair BC contains 2222H, register pair HL
contains 5437H and the Carry Flag is set, after the
execution of

ADC HL,BC

the contents of HL will be 765AH.

150

BC HL, ss

Operation: HL<HL-ss-CY

Format:
Opcode Operands
SBC HL,ss
1’11701 10 1] €D
1 1 1 1 J
0'1's's' 0010
—l 1 1 1] 1 1

Description:

The contents of the register pair ss (any of register
pairs BC,DE,HL or SP) and the Carry Flag (C flag in the
F register) are subtracted from the contents of register
pair HL and the result is stored in HL. Operand ss is
specified as follows in the assembled object code.

Register
Pair sSs
BC 00
DE 01
HL 10
SP 11

M CYCLES: 4

T STATES: 15(4,4,4,3)

Condition Bits Affected:

Set if result is negative;
reset otherwise

Set if result is zero;
reset otherwise

Set if a borrow from
Bit l2;reset otherwise
Set if overflow;

reset otherwise

Set

Set if borrow;

reset otherwise

151

4 MHZ E.T.:

3.75

Example:

If the contents of the HL register pair are 9999H, the
contents of register pair DE are 1111H, and the Carry
Flag is set, after the execution of

SBC HL,DE

the contents of HL will be 8887H.

152

D X, pp

Operation: IX<IX+pp
Format:
Opcode Operands

ADD IX,pp

11011 10 1 DD

OIO Iplp lllO 1011
1 1 1 1 1

1 1

Description:

The contents of register pair pp (any of register pairs
BC,DE,IX or SP) are added to the contents of the Index

Register IX, and the results are stored in IX, Operand
pp 1s specified as follows in the assembled object code.

Register

Pair PP
BC 00
DE 01
IX 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Not affected
Z: Hot affected
H: Set if carry out of
Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from
Bit 15; reset otherwise

153

Example:

If the contents of Index Register IX are 333H and the
contents of register pair BC are 5555H, after the
execution of

ADD IX,BC

the contents of IX will be 8888H.

154

D

1Y,

mrr

Operation: 1Y« IY+rr
Format:
Opcode Operands
ADD IY,rr
L] I 1 1 I I
11111101 FD
L 1 J 1 1] 1
1 1 1 I 1 | I
0 0r r 1001
1 1 1 1 [I I
Description:

The contents of register pair rr (any of register pairs
BC,DE, 1Y or SP) are added to the contents of Index

Register 1Y,

and the result is stored in 1IY.

Operand rr

is specified as follows in the assembled object code,

Register
Pair rr
BC 00
DE 01
1Y 10
SP 11
M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75
Condition Bits Affected:
S: Not affected
Z: Not affected
He Set if carry out of
Bit 11; reset otherwise
P/V: Not affected
H Reset
C: Set if carry from
Bit 15; reset otherwise

155

Example:

If the contents of Index Register IY are 333H and the
contents of register pair BC are 555H, after the
execution of

ADD 1Y,BC

the contents of 1Y will be 8888H,

156

INC ss

Operation: ss<ss+1
Format:
Opcodes Operands

INC ss

Description:

The contents of register pair ss (any of register pairs
BC, DE,HL or SP) are incremented., Operand ss is
specified as follows in the assembled object code.

Register
Pair S8
BC 00
DE 01
HL 10
SP 11

M CYCLES: 1 T STATES: 6 4 MHZ E.T, 1.50

Condition Bits Affected: None

Example:

If the register pair contains 1000H, after the execution
of

INC HL

HL will contain 1001H,

157

INC

Operation: IX<IX+1
Format:
Opcode Operands

INC IX

1 I) 1 I L) I
11011101 DD
1 1 1

0 010001 1| 23

Description:
The contents of the Index Register IX are incremented.
M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the Index Register IX contains the integer 3300H
after the execution of

INC IX

the contents of Index Register IX will be 3301H,

158

1<

INC Y

Operation: IY<«IY+1

Format:
Opcode Operands
INC IY
1 1 1 I 1 1 I
1l 1|1| 1|1| 1.01 1 FD
1 1 1 1 I 1 1
001 00O0T1S1 23
] 1 | 1 | 1 1
Description:

The contents of the Index Register IY are incremented,
M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2,50

Condition Bits Affected: None

Example:

If the contents of the Index Register are 2977H, after
the execution of

INC IY

the contents of Index Register IY will be 2978H,

159

Operation: §s<ss-1

Format:
Opcode Operands
DEC ss
000 s s 1011

Description:

DEC ss

The contents of register pair ss (any of the register
pairs BC,DE,HL or SP) are decremented. Operand ss is
specified as follows in the assembled object code,

Pair 88
BC 00
DE 01
HL 10
SP 11

M CYCLES: 1 T STATES:

Condition Bits Affected:

Example:

If register pair HL contains 1001H,

of

DEC HL

6 4 MHZ E.T.: 1.50

None

the contents of HL will be 1000H,

160

after the execution

| X

Operation: IX<«<IX-1

Format:
Opcode Operands
DEC IX
1101110 1| op
1 1 1 1 1 1 1
000 1 0 10 1 1} 28
1 1 1 1 1 [[
Descriptions:

The contents of Index Register IX are decremented.
M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.,: 2,50

Condition Bits Affected: None

Example:

If the contents of Index Register IX are 2006H, after
the execution of

DEC IX

the contents of Index Register IX will be 2005H,

161

Operation: 1Y < 1Y -1

Format:
Opcode Operands
DEC 1Y
I 1 LI 1 T 1
11111101 FD
1 1 1 i1 1 1

¥ 1)) I T 1
00101011 2B
N SR TN T T B

Description:
The contents of the Index Register 1Y are decremented.
M CYCLES: 2 T STATES: 10 (4,6) 4 MHZ E.T.: 2,50

Condition Bits Affected: None

Example:

If the contents of the Index Register 1Y are 7649H,
after the execution of

DEC IY

the contents of Index Register 1Y will be 7648H,

162

1Y

-ROTATE AND SHIFT GROUP-

163

RLCA

I7<—ﬂ||

A

Operation:
Format:

Opcode Operands

RLCA

T T T
00000111 07
IR S B B

Description:

The contents of the Accumulator (register A) are rotated
left one bit position. The sign bit (bit 7) is copied
into the Carry Flag and also into bit 0. Bit 0 is the
least significant bit.

M CYCLES: 1| T STATES 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected

H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.

164

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1 0

[lofofofi]olo]o

after the execution of
RLCA
the contents of the Accumulator and Carry Flag will be

c 7 6 5 4 3 2 1 O

[J[ofoJo s o o o 4]

165

RLA

Iiill7<h—ﬁlﬂ

Operation:
Format:

Opcode Operands

0001011 1| 17

Description:

The contents of the Accumulator (register A) are rotated
left one bit position through the Carry Flag. The
previous content of the Carry Flag is copied into bit O.
Bit O is the least significant bit.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.

166

Lxanple:

If the contents of the Accunmulator and the Carry Flag
are

III ofrf1ry1ryo}p1y1740

after the execution of
RLA

the contents of the Accumulator and the Carry Flag will
be

[:] 1j1]110]111}10}1

167

RRCA

Operation:

A
Format:
Opcode Operands
RRCA
T T I T L I
000011 11 OF
1 L | 1 L 1 1

Description:

The contents of the Accumulator (register A) are rotated
right one bit position. Bit O is copied into the Carry
Flag and also into bit 7. Bit 0 is the least
significant bit.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

: Not affected
Z: Not affected

H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 0 of Acc.

168

Example:

If the contents of the Accumulator are

[:] 0O(0]1]0}0f0]1

After the execution of
RRCA

the contents of the Accumulator and the Carry Flag will
be

III ojojyo|j1{o0j0]O0 1

169

RA

Operation: :|7 ’"i:i

A

Format:
Opcode Operands

RRA

| m—
00011111 1F
1

Description:

The contents of the Accumulator (register A) are rotated
right one bit position through the Carry Flag. The

previous content of the Carry Flag is copied into bit 7.
Bit 0 is the least significant bit.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit O of Acc.

170

Example:

If the contents of the Accumulator and the Carry Flag
are

after the execution of
RRA

the contents of the Accumulator and the Carry Flag will
be

171

RLC r

Operation: 7 0
r
Format:
Opcode Operands
RLC r
T T T T T 1
11001011 CB
1 1 1 1 1 1 1
LI 1 V L
0 00 0 0Qe—r—
L L 1 i 1 J

Description:

The contents of register r are rotated left one bit

positione.

Flag and also into bit 0.

The content of bit 7 is copied into the Carry
Operand r is specified as

follows in the assembled object code:

Register

M CYCLES: 2

Um0 w

T STATES:

r

000
001
010
011
100
101
111

8(4,4)

172

4 MHZ E.T.: 2.00

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Reset

P/V: Set if parity even;
reset otherwise
N: Reset
C: Data from Bit 7 of
source register

Example:

If the contents of register r are

after the execution of
RLC r

the contents of register r and the Carry Flag will be

173

RLC (HL)

Operation: ’ 0
Format:
Opcode Operands

RLC (HL)

1100101 1| cB
1

i 1 I 1 I 1
0 00 O0O0OT1T10 06

Description:

The contents of the memory address specified by the
contents of register pair HL are rotated left one bit
position. The content of bit 7 is copied into the Carry
Flag and also into bit 0. Bit O is the least
significant bit.

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Reset

P/V: Set if parity even;

reset otherwise

N: Reset

C: Data from Bit 7 of

source register

174

Example:

If the contents of the
the contents of memory

after the execution of
RLC (HL)

the contents of memory
will be

HL register pair are 2828H, and
location 2828H are

7 6 5 4 3 2 1 0

location 2828H and the Carry Flag

175

RLC (X+d)

Operation:
Format:

Opcode Operands

RLC (IX+d)

1101110 1 DD

1100101 1| cB

1 1 LIPS
00000110 06

Description:

The contents of the memory address specified by the sum
of the contents of the Index Register IX and a two’s

complement displacement integer d, are rotated left one
bit position. The content of bit 7 is copied into the

Carry Flag and also into bit 0. Bit 0 is the least
significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result 1is negative;
reset otherwise

Z: Set 1if result is zero;
reset otherwise

H: Reset

P/V: Set if parity even;
reset otherwise
N: Reset
C: Data from Bit 7 of
source register

176

Example:

If the contents of the Index Register IX are 1000H, and
the contents of memory location 1022H are

7 6 5 4 3 2 1 0

after the execution of
RLC (IX+2H)

the contents of memory location 1002H and the Carry Flag
will be

177

RLC 0Y+d)

Operation: “—0

(1Y +d)
Format:
Opcode Operands
RLC (1Y+d)
1’1111 10 1} Fp
L 1 1 1 1 1 1
1’1000 101 1| cB
d 1 1 1 1 L1
llldl | L L
r 11 1 1 1 1
000001 10| 06
| N N S B | L1

Description:

The contents of the memory address specified by the sum

of the contents of the Index Register
complement displacement integer d are
bit position. The content of bit 7 is
Carry Flag and also into bit 0. Bit
significant bit.

M CYCLES:

6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:

IY and a two’'s
rotated left one
copied into the
0 is the least

4 MHZ E.T.: 5.75

S: Set if result is negative;

reset otherwise

Z: Set if result is zero}

reset otherwise
H: Reset

P/V: Set if parity even;
reset otherwise
N: Reset
C: Data from Bit 7 of

source register

178

Example:

If the contents of the Index Register IY are 1000H, and
the contents of memory location 1002H are

after the execution of
RLC (IY+2H)

the contents of memory location 1002H and the Carry Flag
will be

179

RL

R 1
Operation: 0

m

Format:

Opcode Operands
RL m

The m operand is any of r,(HL), (IX+d) or (IY+d), as
defined for the analogous RLC instructions., These
various possible opcode-operand combinations are
specified as follows in the assembled object code:

RL T 1100101 1] cB

I 1 1 1 1 i 1

T T T T T
0 0 0 1 0e—pr—
YOS RN T W S T

T T T T T T T
RL (HL) 11001011 CB
[S SR R N

T T T T T T
00010110 16
)

1 ! 1 [l 1 1

RL (IX+d) 11011101 DD

L
110010 11| CB

L) 1 1 1

Jd i | 1 1) |

T T T T T
00010110 16

| i | 1 ! 1 1

180

RL (IY+d) 11111101 FD

I 1 T
01 011 CB

L 1 I 1 I 1 1
00010110 16

L | 1 1 | 1 1

*r identifies registers B,C,D,E,H,L or A specified as
follows in the assembled object code above:

Register r
000
001
010
0l1
011
101
111

P DM OW

Description:

The contents of the m operand are rotated left one bit
position. The content of bit 7 is copied into the Carry
Flag and the previous content of the Carry Flag is
copied into bit 0.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
RL r 2 8(4,4) 2.00
RL (HL) 4 154, 4,4,3) 3.75
RL (IX+d) 6 23(4,4,3,5,4,3) 5.75
RL (IY+d) 6 23(4,4,3,5,4,3) 5.75

181

Condition Bits Affected:

S: Set 1f result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise
: Reset

P/V: Set if parity even;
reset otherwise
N: Reset
C: Data from Bit 7 of
source register

Example:

If the contents of register D and the Carry Flag are

after the execution of
RL D

the contents of register D and the Carry Flag will be

182

Operation:

Format:

Opcode

- RRC

(=]

El
<

Operands

n

The m operand is any of r,(HL),

RRC r

RRC (HL)

RRC (IX+d)

(IX+d) or (1Y+d),
defined for the analogous RLC instructions.
various possible opcode-operand combinations are

specified as follows in the assembled object code:

T T
1 00 1011

1
[R R TR N
1) 1 I 1 I I
0 0 0 0 1-—r—
[T T SR B N |
L ¥ 1) T)
110010 11
N T W T WO
I 1 J 1 1)
00001110
RS N S DU N
1 I R T) I L
11011101
T S N DA RO S R
| LR T I
110010 11
[T T S N |
1 L b T L I
d
N NN NN SRS N T
1 L 1 1 1
00001110

183

CB

cB

OE

DD

CB

OE

as

RRC (IY+d) 11111101 FD

T 1 _ T 1T 1
1100101 1| CB

LI
0 0001110 OE

*r identifies registers B,C,D,E,H,L or A specified as
follows in the assembled object code above:

Register r

000
001
010
011
100
101
111

oImmoOw

Description:

The contents of operand m are rotated right one bit
position. The content of bit 0 is copied into the Carry
Flag and also into bit 7. Bit 0 is the least significant
bit.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
RRC r 2 8(4,4) 2.00
RRC (HL) 4 15C4,4,4,3) 3.75
RRC (IX+d) 6 23(4,4,3,5,4,3) 5,75
RRC (IY+d) 6 23(b,4,3,5,4,3) 5.75

184

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if result is zero;
reset otherwise
: Reset

P/V: Set if parity even;
reset otherwise
N: Reset
C: Data from Bit 0 of
source register

Example:
If the contents of register A are

7 6 5 4 3 2 1 0

after the execution of
RRC A

the contents of register A and the Carry Flag will be

185

Operation:
- m
Format:

Opcode

RR

The m operand is any of r,
defined for the analogous RLC instructions.

—

Operand

(HL),

(IX+d),

or (IY+d), as
These

various possible opcode—~operand combinations are
specified as follows in the assembled object code:

RR r

RR (HL)

RR (IX+d)

T T T T T T
11001011 CB
RS R T TR T B
T T T T T
0 0 1 1=-=—r—
I TS W R SR B |
T T T T
11001011 CB
[W N N BN
T T T T T 1
0 0011110 1E
[S W SRR S B
| I B . B R S
11011101 DD
] P R SR
T T T T T T
110 0 1 0 11 CB
SR S T T T
T T T T T
N L,ISJ, PR S
T T T T T
00011110 1E
[T Ml St S B

186

T T T T T T
RR (IY+d) 11} llllll l110|1 FD
T T T T T T
110 0 1 0 11 CB
I R B L1
T T T T T
d I
R S TR R N B
T T T T T
00011110 1E
I T T R W BN |

*r identifies registers B,C,D,E,H,L or A specified as
follows in the assembled object code above:

Register r
000
001
010
0ll1
100
101
111

PCODMmUOOw

Description:

The contents of operand m are rotated right one bit
position through the Carry flag. The content of bit 0 is
copied into the Carry Flag and the previous content of
the Carry Flag is copied into bit 7. Bit 0 is the least
significant bit.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
RR T 2 8(4,4) 2.00
RR (HL) 4 15(4,4,4,3) 3.75
RR (IX+d) 6 23(b,4,3,5,4,3) 5.75
RR (IY+d) 6 23(4,4,3,5,4,3) 5.75

187

Condition Bits Affected:

S: Set if result is negative;
reset otherwise
Z: Set if result is zero;

reset otherwise
H: Reset
P/V: Set if parity 1is even;
reset otherwise
N: Reset
C: Data from Bit 0 of
source register

Example:
If the contents of the HL register pair are 4343H, and

the contents of memory location 4343H and the Carry Flag
are

after the execution of
RR (HL)

the contents of location 4343H and the Carry Flag will
be

188

SLA

. Hi 7<—0 |=0
Operation:
- m

Format:
Opcode Operands
SLA m
The m operand is any of r, (HL), (IX+d) or (IY+d), as
defined for the analogous RLC instructions, These

various possible opcode-operand combinations are
specified as follows in the assembled object code:

1 1 1 1 1 T

]
SLA r 1100101 1| cB
J 1 1 1

1 ! 1

I 1 I i 1 i 1

0 001 0 0=—r—>
[HE S RO R B

T LI S E—
SLA (L) 11 1'0I 0I1I 011 1 CB

| U I 1 1 1)

0 01 00110 26
[T R W T R W

SLA (IX+d) 1101110 1| oD

T T
11001011 CB
1 L1 1

001001 10 26

189

T 1 T T T 1 1

SLA (IY+d) 1 1111101 FD
1 l 1 1 [N

L

T T T T T T T
110010 11 cB
1 | | | | | i

LI LI 1 1 1
001 00110 26
I S T B |

| 1

*r identifies registers B,C,D,E,H,L or A specified as
follows in the assembled object code field above:

Register r
B 000
c 001
D 010
E 011
H 100
L 101
A 111

Description:

An arithmetic shift left one bit position is performed
on the contents of operand m. The content of bit 7 is
copied into the Carry Flag. Bit 0 is the least
significant bit.

INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
SLA r 2 8(4,4) 2.00
SLA (HL) 4 15(4,4,4,3) 3.75
SLA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SLA (IY+d) 6 23(4,4,3,5,4,3) 5.75

190

Condition Bits Affected:

St Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Reset

P/V: Set if parity is even;
reset otherwise
N: Reset
C: Data from Bit 7

Example:

If the contents of register L are

after the execution of
SLA L

the contents of register L and the Carry Flag will

c 7 6 5 4 3 2 1 0

III oj1|(1]J]0t0j0t1}o0

191

RA

m

7—=0p|CY
Operation: L .

m
Format:

Opcode Operands

SRA n
The m operand is any of r, (HL), (IX+d) or (IY+d),as
defined for the analogous RLC instructions, These

various possible opcode-operand combinations are
specified as follows in the assembled object code:

SRA r 1100101 1}y CB

1 1
0 01 0 1e—r—
I R WU S O B

T T T T T T
SRA(HL) 1 1|0|0|1|01111 CB
1

00101110 2E

SRA(IX+d) 110 1 1 01 DD

T T T T
11001011 CB
| I N R |

001L01110 2E

192

SRA(IY+d)

) 1 I I L]
00101110

FD

CB

2E

*r identifies registers B,C,D,E,H,L or A specified as
follows in the assembled object code field above:

> EDmO oW

Register

r

000
001
010
011
100
101
111

An arithmetic shift right one bit position is performed

on the contents of operand m.

The content of bit 0 is

copied into the Carry Flag and the previous content of
Bit 0 is the least significant bit.

bit 7 is unchanged.

INSTRUCTION M CYCLES T STATES
SRA r 2 8(4,4)

SRA (HL) 4 15(4,4,4,3)
SRA (IX+d) 6

SRA (IY+d) 6 23(4,4,3,5,

23(4,4,3,5,4,3)
4,3)

193

4 MHZ E.T.

2.00
3.75
5.75
5.75

Condition Bits Affected:

S: Set 1f result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Reset

P/V: Set if parity is even;

reset otherwise

N: Reset

C: Data from Bit 0 of
source register

Example:

If the contents of the Index Register IX are 1000H, and
the contents of memory location 1003H are

7. 6 5 4 3 2 1 0

after the execution of
SRA (IX+3H)

the contents of memory location 1003H and the Carry Flag
will be

194

Operation:
Format:
Opcode

SRL

The operand m is any of r,
defined for the analogous RLC instructions,

Operands
n

(iL),

(IX+d) or (IY+d),

These

various possible opcode-operand combinations are
specified as follows in the assembled object code:

SRL r

SRL (HL)

SRL (IX+d)

)) 1 1 1 1 1
11001011

195

CB

CB

3E

DD

cB

3E

as

RL

SRL (IY+d)

B R R TR T T N B
T T T T T
1 10 0 101
1 1 L 1 [l 1 L
T T T T
d
[N N S §

FD

cB

3E

*r identifies registers B,C,D,E,H,L or A specified as
follows in the assembled object code fields above:

Register

PO mEmoOOow

Description:

|

000
001
010
011
100
101
111

The contents of operand m are shifted right one bit

position.

The content of bit 0 is copied into the Carry

Bit O is the least significant

Flag, and bit 7 is reset.

bit.

INSTRUCTION M CYCLES T STATES

SRL (HL) 4 15(4,4,4,3)
SRL (IX+d) 6 23(4,4,3,5,4,3)
SRL (IY+d) 6 23(4,4,3,5,4,3)

196

4 MHZ E.T.

2.00
3.75
5.75
5.75

Condition Bits Affected:

S: Reset

Z: Set if result is zero;
reset otherwise

H: Reset

P/V: Set if parity is even;y

reset otherwise

N: Reset

C: Data from Bit 0 of

source register
Example:
If the contents of register B are

7 6 5 4 3 2 1 0

after the execution of
SRL B

the contents of register B and the Carry Flag will

be
7 6 5 4 3 2 1 0 c
011 000 1 1 1 1

197

Operation: AI(HL)

Format:
Opcode Operands

RLD

LR L L
11101101 ED
| ISUUR I N I — |

"1 101 1 1 1] 6F

Description:

The contents of the low order four bits (bits 3,2,1 and
0) of the memory location (HL) are copied into the high
order four bits (7,6,5 and 4) of that same memory
location; the previous contents of those high order four
bits are copied into the low order four bits of the
Accumulator (register A); and the previous contents of
the low order four bits of the Accunulator are copied
into the low order four bits of memory locatiom (HL).
The contents of the high order bits of the Accunulator
are unaffected., Note: (HL) means the memory location
specified by the contents of the HL register pair,

M CYCLES: 5 T STATES: 18(4,4,3,4,3) 4 MHZ E,T.: 4.50

Condition Bits Affected:

S: Set if Acc. is negative after
operation; reset otherwise
Z: Set if Acc. is zero after

operation; reset otherwise
H: Reset

P/V: Set if parity of Acc., is even
after operation; reset otherwise
N: Reset

C: Not affected

198

Example:

If the contents
the contents of
5000H are

of the HL register pair are 5000H, and
the Accunmulator and memory location

of1|1|1f{1]0(1}O0 Accunulator

ojoj1y1y0(0j0}|1 (5000H)

after the execution of

RLD

the contents of
5000H will be

the Accumulator and memory location

oj1j]1]1|10|0]|1|1 Accunulator

ojofoj1rj1jo0j1]o0 (5000H)

199

[]
Operation: A(””

Format:
Opcode Operands

RRD

1 I L] I

1 T 1
11101101 ED
T T S S B T |

L I 1 LI 1 1
001100111 67
[N N N

Description:

The contents of the low order four bits (bits 3,2,1 and
0) of memory location (HL) are copied into the low order
four bits of the Accumulator (register A); the previous
contents of the low order four bits of the Accumulator
are copied into the high order four bits (7,6,5 and 4)
of location (HL); and the previous contents of the high
order four bits of (HL) are copied into the low order
four bits of (HL)., The contents of the high order bits
of the Accumulator are unaffected. Note: (HL) means
the memory location specified by the contents of the HL
register pair,

M CYCLES: 5 T STATES: 18(4,4,3,4,3) 4 MHZ E.T.: 4,50

Condition Bits Affected:

S: Set if Acc., is negative after
operation; reset otherwise

Z: Set if Acc., 1s zero after
operation; reset otherwise
H: Reset

P/V: Set if parity of Acc. is even after
operation; reset otherwise
N: Reset
C: Not affected

200

Example:

If the contents of the HL register pair are 5000H, and
the contents of the Accumulator and memory location
5000H are

11]0|j]0f(0O}]JO|1([Of0O Accunmulator

ofoj1j0fo0j0fo0fo (5000H)

after the execution of
RRD

the contents of the Accumulator and memory location
5000H will be

1|/]0{0|0|0O0]|O]|]O]O Accumulator

0of17y070)j0j0]|1]0O (5000H)

201

-BIT SET, RESET AND TEST GROUP-

202

SIT b, r

Operation: Z<Ty
Format:

Opcode Operands

BIT b,r

T
11001011 CB

Description:

This instruction tests Bit b in register r and sets the
Z flag accordingly. Operands b and r are specified as
follows in the assembled object code:

Bit Tested b Register r
0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is
0; reset otherwise

H: Set
P/V: Unknown
N: Reset

C: Not affected

203

Example:

If bit 2 in register B contains 0, after the execution
of

BIT 2,B
the Z flag in the F register will contain 1, and bit 2

in register B will remain 0, Bit 0 in register B is the
least significant bit.,’

204

BIT b, (HL)

Operation: Z< (HL),
Format:
Opcode Operands

BIT b, (HL)

T T T T T 1
110010 11 CB

1 1 1 1 [l 1 1

T T T 1.1 _1
0 1l ee—b—1 10
1 1 1 1 1] 1

Description:

This instruction tests bit b in the memory location
specified by the contents of the HL register pair and
sets the Z flag accordingly. Operand b is specified as
follows in the assembled object code:

Bit Tested b

000
001
010
011
100
101
110
111

NouwmeswLNN-O

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is
0; reset otherwise
H: Set
P/V: Unknown
H: Reset
C: Not affected

205

Example:

If the HL register pair contains 4444H, and bit 4 in the
memory location 444H contains 1, after the execution of

BIT 4, (HL)
the Z flag in the F register will contain 0, and bit 4

in memory location 4444H will still contain 1. (Bit O in
memory location 4444H is the least significant bit,)

206

BIT b, X+d)

Operation: Z*—“X+mb
Format:
Opcode Operands

BIT b, (IX+d)

Description:

This instruction tests bit b in the memory location
specified by the contents of register pair IX combined
with the two’s complement displacement d and sets the 2
flag accordingly. Operand b is specified as follows in
the assembled object code.

Bit Tested b

000
001
010
0Ll
100
101
110
111

~Noounmp W~ O

M CYCLES: 5 T STATES: 20(4,4,3,5,4) 4 MHZ E.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is
0; reset otherwise

207

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is
0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit
6 in memory location 2004H contains 1, after the
execution of

BIT 6, (IX+4H)
the Z flag in the F register will contain 0, and bit 6

in memory location 2004H will still contain 1, (Bit O
in memory location 2004H is the least significant bit.)

208

SIT

b, (Y+d)

BIT b, (IY+d)

Operation: Z‘-ﬂY+dm

Format:
Opcode Operands
BIT b, (IY+d)
L] LR
11 10 1| FD

1'17'0010'11] cB

Description:

This instruction tests bit b in the memory location

specified by the contents of register pair 1Y combined
with the two’s complement displacement d and sets the 2
flag accordingly.
the assembled object code:

Bit Tested

M CYCLES: 5

N s WO

T STATES:

b
000
001
010
011
100
101
110
111

20(4,4,3,5,4)

209

Operand b is specified as follows in

4 MHZ E.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is
0; reset otherwise
H: Set
P/V: Unknown
: Reset
C: Not affected

Example:
If the contents of Index Register are 2000H, and bit 6
in memory location 2004H contains 1, after the execution
of’

BIT 6, (IY+4H)
the Z flag in the F register sill contain 0, and bit 6

in memory location 2004H will still contain 1, (Bit O
in memory location 2004H is the least significant bit.)

210

=T b, r

Operation: rp< 1
Format:
Opcode Operands

SET b,r

1'100'10'1 1] c8

Description:

Bit b in register r (any of registers B,C,D,E,H,L or A)
is set. Operands b and r are specified as follows in
the assembled object code:

Bit b Register r
0 000 B 000
1 001 C 001
2 010 D 010
3 0l1 E o011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:
After the execution of
SET 4,A

it 4 in register A will be set. (Bit 0 is the least

significant bit,)

211

SET b, (HL)

Operation: (HL)y<«1
Format:
Opcode Operands

SET b, (HL)

Description:

Bit b in the memory location addressed by the contents
of register pair HL is set. Operand b is specified as
follows in the assembled object code:

Bit Tested b
000
001
010
011
100
101
110
111

~Noubs LN - O

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, after
the execution of

SET 4, (HL)

bit 4 in memory location 3000H will be 1. (Bit O in
memory location 3000H is the least significant bit.)

212

ET b, (X+d)

Operation: (IX+d)p <1

Format:
Opcode Operands
SET b, (IX+d)
T _ 1T _ T _ 1T _ T 1
11011101 DD
] 1 1 1 1 1 1
| I R | T
11001011 CB

Description:

Bit b in the memory location addressed by the sum of the
contents of the IX register pair and the two’s
complement integer d is set. Operand b is specified as
follows in the assembled object code:

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.:
5.75

Condition Bits Affected:

None

213

Example:

If the contents of Index Register are 2000H, after the
execution of

SET 0, (IX+3H)

bit 0 in memory location 2003H will be 1, (Bit 0 in
memory location 2003H is the least significant bit,)

214

ET b, (Y+d]

Operation: (IY+d)y <1

Format:
Opcode Operands
SET b, (IY+d)
T T T T _ T T _T

1 1 1 L] 1

T T T T T
l le—b——1 1 0
PR T T SR W

Description:

Bit b in the memory location addressed by the sum of the
contents of the IY register pair and the two’s
complement displacement d is set. Operand b is
specified as follows in the assembled object code:

Bit Tested b
000
001
010
011
100
101
110
111

NV WLWN P~ O

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) & MHZ E.T.:
5.75

Condition Bits Affected: None

Example:

If the contents of Index Register 1Y are 2000H, after

215

the execution of
SET 0, (IY+3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in
memory location 2003H is the least significant bit.)

216

RES b, m

Operation: sp<0
Format:

Opcode Operands

RES b,m
Operand b is any bit (7 through 0) of the contents of
the m operand,(any of r, (HL), (IX+d) or (1Y+d)) as
defined for the analogous SET instructions, These

various possible opcode-operand combinations are
assembled as follows in the object code:

RES b,r 1’10010 1 1| cB

1 1 1] L] 1) T
l1 0 «—b— e—r—s

RES b, (HL) 11001011 cB

RES b, (IX+d) 1101 1 10,1 DD

T
l1 0«—b—1 1 0

| i i | 1 1 [l

] 1 L] 1 1 I 1
RES b,(IY+d) |1 1 11 110 1| FD
1 1 1 1

-

T T T T 1T
1001011 CB
YRS TR T N SN B

217

Bit Reset b Register r

0 000 B 000

1 001 c 001

2 010 D 0l0

3 011 E 011

4 100 H 100

5 101 L 101

6 110 A 111

7 111
Description:
Bit b in operand m is reset,
INSTRUCTION M CYCLES T STATES 4 MHZ E.T.
RES r 4 8(4,4) 2,00
RES (HL) 4 15(4,4,4,3) 3.75
RES (IX+d) 6 23(4,4,3,5,4,3) 5.75
RES (IY+d) 6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected: None
Example:

After the execution of
RES 6,D

bit 6 in register D will be reset, (Bit O in register D
is the least significant bit,)

218

-JUMP GROUP-

219

aln

Operation: PC < nn

Format:

Opcode Operands

JP nn

1 I I i I 1 I

1 | 1 1 1 1 1

Note: The first operand in this assembled object code
is the low order byte of a 2-byte address.

Description:

Operand nn is loaded into register pair PC (Program
Counter). The next instruction is fetched from the

location designated by the new contents of the PC.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

220

JP cc, nNnn

Operation: IF cc TRUE,PC < nn

Format:

Opcode Operands
JP cc,nn
i 1§ 1 1 1 1
]l 1le—cc—=0 10
L | 1 1 L. 1 1
1 LN LI LI L

n
L 1 1 1 1 |
L 1 T) LI I
n
i1 Il | S 1 1

Note: The first n operand in this assembled object code
is the low order byte of a 2-byte memory address,

Description:

If condition cec is true, the instruction loads operand
nn into register pair PC (Program Counter), and the
program continues with the instruction beginning at
address nn., If condition cc is false, the Program
Counter is incremented as usual, and the program
continues with the next sequential instruction.,
Condition cc is programmed as one of eight status which
corresponds to condition bits in the Flag Register
(register F). These eight status are defined in the
table below which also specifies the corresponding cc
bit fields in the assembled object code.

cc CONDITION RELEVARNT
FLAG

000 NZ non zero Z

001 Z zero Z

010 NC no carry c

011 C carry C

100 PO parity odd P/V

101 PE parity evea P/V

110 P sign positive S

111 M sign negative S

221

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:
If the Carry Flag (C flag in the F register) is set and
the contents of address 1520 are O03H, after the
execution of

JP C,1520H
the Program Counter will contain 1520H, and on the next

machine cycle the CPU will fetch from address 1520H the
byte O03H.

222

Operation: PC<PC+e
Format:
Opcode Operand

JR e

T T I T T 1 ¥
000011000 18
1 [1 1 1 1 1

Description:

This instruction provides for unconditional branching to
other segments of a program. The value of the
displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location
designated by the new contents of the PC, This jump is
measured from the address of the instruction opcode and
has a range of =126 to +129 bytes, The assembler
automatically adjusts for the twice incremented PC,

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

Condition Bits Affected: None

Example:

To jump forward 5 locations from address 480, the
following assembly language statement is used:

JR $+5

The resulting object code and final PC value is shown
below:
Location Instruction

480
481
482
483
484
485

8
3

(=

P

PC after jump

223

e

=)

C, e

Operation: IfC=0, continue
IfC=1, PC<PC+e

Format:
Opcode Operands
JR C,e
J 1 L] 1) I I
00111000 38
1 1] 1 1 1 1
1] I L 1 1))
e-2
| 1 1 1 1 1 1
Description:

This instruction provides for conditional branching to
other segments of a program depending on the results of
a test on the Carry Flag. If the flag is equal to a
“l”, the value of the displacement e is added to the
Program Counter (PC) and the next instruction is fetched
from the location designated by the new contents of the
PC, The jump is measured from the address of the
instruction opcode and has a range of -126 to +129
bytes, The assembler automatically adjusts for the
twice incremented PC,

If the flag is equal to a “0°, the next instruction to
be executed is taken from the location following this
instruction,

If condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.:3.00
If condition is not met:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1,75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back 4
locations from 480, The assembly language statement is:

224

JR C,$-4

The resulting object code and final PC value is shown
below:

Location Instruction

47C <«<— PC after jump

47D —

47E _

47F -_

480 38

481 FA (2°s complement-6)

225

=R NC, e

Operation: IfC=1, continue
IfC=0, PC<~PC+e

Format:
Opcode Operands
JR NC,e
1 I i 1 I I 1
0 01 10O0O0 30
1 1 1 1 1 i |
) ¥ Ll 1 I J 1
e-2 —
i | 1 [l L 1 1 |
Description:

This instruction provides for conditional branching to
other segments of a program depending on the results of
a test on the Carry Flag. If the flag is equal to 07,
the value of the displacement e is added to the Program
Counter (PC) and the next instruction is fetched from
the location designated by the new contents of the PC.
The jump is measured from the address of the instruction
opcode and has a range of -126 to +129 bytes. The
assembler automatically adjusts for the twice
incremented PC,

If the flag is equal to a “1°, the next instruction to
be executed is taken from the location following this
instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 HHZ E.T.: 3.00
If the condition is not met:

M CYCLES: 7 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the
jump instruction., The assembly language statement is:

226

JR NC,$

The resulting object code and PC after the jump are

shown below:
Location

480
481

Instruction

227

30 «— PC after jump
00

Z, e

Operation: IfZ=0, continue
IfZ=1, PC<PC+e

Format:
Opcode Operands
JR Z,e
1 I I 1 I 1 I
001 01 0 00O 28
Il 1 1 1 1 1 1
1 I 1 1 1 1]
e-2
1 1 1 1 1 1 1
Description:

This instruction provides for conditional branching to
other segments of a program depending on the results of
a test on the Zero Flag, If the flag is equal to a ‘17,
the value of the displacement e is added to the Program
Counter (PC) and the next instruction is fetched from
the location designated by the new contents of the PC,
The jump is measured from the address of the instruction
opcode and has a range of ~126 to +129 bytes. The
assembler automatically adjusts for the twice
incremented PC.,

If the Zero Flag is equal to a “0°, the next instruction
to be executed is taken from the location following this
instruction,

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

If the condition is not net:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:
The Zero Flag is set and it is required to jump forward

5 locations from address 300, The following assembly
language statement is used:

228

JR Z,$ +5

The resulting object code and final PC value is shown
below:

Location Instrﬁction

300
301
302
303
304
305

onN
w

RN

PC after jump

229

)

Format:

NZ, e

If Z=1, continue
IfZ=0, PC<PC+e

Operation:

Opcode Operands

JR NZ,e

T T T T T T
0 010 0O0O0DMD 2N

Description:

This instruction provides for conditional branching to
other segments of a program depending on the results of
a test on the Zero Flag., If the flag is equal to a 07,
the value of the displacement e is added to the Program
Counter (PC) and the next instruction is fetched from
the location designated by the new contents of the PC,
The jump is measured from the address of the instruction
opcode and has a range of =126 to +129 bytes. The
assembler automatically adjusts for the twice
incremented PC,

If the Zero Flag is equal to a 17, the next instruction
to be executed is taken from the location following this
instruction.

If the condition is met:
M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E,T.,: 3.00
If the condition is not met:

M CYCLES: 2

T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Exanple:

The Zero Flag is reset and it is required to jump back 4
locations from 480, The assembly language statement is:

230

JR NZ,$-4

The resulting object code and final PC value is shown
below:

Location Instruction

47C <«— PC after jump

47D —_

47E —_

47F _—

480 20

481 FA (2° complement-6)

231

~ (HL)

Operation: PC<HL

Format:
Opcode Operands
JP (HL)
I) 1 1] L I
11101001 E9
1 1 1 1 1 1 1
Description:

The Program Counter (register pair PC) is loaded with
the contents of the HL register pair., The next
instruction is fetched from the location designated by
the new contents of the PC,

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the
contents of the HL register pair are 4800H, after the
execution of

JP (HL)

the contents of the Program Counter will be 4800H,

232

Operation: PC<«IX

Format:
Opcode Operands
JP (1X)
1 T ¥ 1 1 1 T
11011101 DD
1 1 1 1 1 1 1
1) T 1 1 1 1]
11101001 E9
1 [l 1 1 1 1 1

Description:

The Program Counter (register pair PC) 1is loaded with
the contents of the IX Register Pair. The next
instruction is fetched from the location designated by
the new contents of the PC.

M CYCLES: 2

T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H, and
the contents of the IX Register Pair are 4800H, after
the execution of

JP (IX)

the contents of the Program Counter will be 4800H.

233

(123

P Y]

Operation: PC <Y
Format:
Opcode Operands

Jp (1Y)

111111¢01 FD

)) I
111010 l0|1 E9
|

Description:

The Program Counter (register pair PC) 1is loaded with
the contents of the 1Y Register Pair. The next
instruction is fetched from the location designated by
the new contents of the PC.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the
contents of the IY Register Pair are 4800H, after the
execution of

JP (1Y)

the contents of the Program Counter will be 4800H.

234

DJNZ,

Operation: —
Format:
Opcode Operand
DJINZ e
T T 1 T 1 1 i
000100 O00D0 10
N R R N T T
T I i I 1 I I
e-2
1 L IR | ! | 1
Description:

This instruction 1is similar to the conditional jump
instructions except that a register value is used to
deternine branching, The B register is decremented and
if a non zero value remains, the value of the
displacement e is added to the Program Counter (PC),.
The next instruction is fetched from the location
designated by the new contents of the PC, The jump is
measured from the address of the instruction opcode and
has a range of -126 to +129 bytes, The assembler
automatically adjusts for the twice incremented PC,

If the result of decrementing leaves B with a zero
value, the next instruction to be executed is taken from
the location following this instruction,

If B¥O:

M CYCLES: 3 T STATES: 13(5,3,5) 4 MHZ E,T.: 3.25

If B=0:

M CYCLES: 2 T STATES: 8(5,3) 4 MHZ E.T.: 2,00

Condition Bits Affected: None

Example:
A typical software routine is used to demonstrate the

use of the DJIJNZ instruction, This routine moves a line
from an input buffer (INBUF) to an output buffer

235

(OUTBUF). It moves the bytes until it finds a CR, or
until it has moved 80 bytes, whichever occurs first.

LD B, 80 ;Set up counter
LD HL,Inbuf sSet up pointers
LD DE,Outbuf
LOOP: LD A, (HL) ;Get next byte from
sinput buffer
LD (DE),A sStore in output buffer
CcP ODH 3Is it a CR?
JR Z,DONE sYes finished
INC HL sIncrement pointers
INC DE
DJNZ LOOP sLoop back 1if 80

;bytes have not
s;been moved
DONE:

236

-CALL AND RETURN GROUP-

237

CALL nn

Operation: (SP-1) <PCy. (SP-2)«<PC| , PC<+ nn
Format:
Opcode Operands

CALL nn

T T T . T .17 3
1100110 1] D

Note: The first of the two n operands in the assembled
object code above is the least significant byte of a
two-byte memory address.

Description:

The current contents of the Program Counter (PC) are
pushed onto the top of the external memory stack. The
operands nn are then loaded into the PC to point to the
address in memory where the first opcode of a subroutine
is to be fetched. (At the end of the subroutine,a
RETurn instruction can be used to return to the original
program flow by popping the top of the stack back into
the PC.) The push is accomplished by first decrementing
the current contents of the Stack Pointer (register pair
SP), loading the high-order byte of the PC contents into
the memory address now pointed to by the SP; then
decrementing SP again, and loading the low-order byte of
the PC contents into the top of stack. Note: Because
this is a 3-byte instruction, the Program Counter will
have been incremented by 3 before the push is executed.

M CYCLES: 5 T STATES: 17(4,3,4,3,3) 4 MHZ E.T.: 4.25

Condition Bits Affected: None

238

Example:

If the contents of the Program Counter are lA47H, the
contents of the Stack Pointer are 3002H, and memory
locations have the contents:

Location Contents
1A47H CDH
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the
three-byte instruction CD3521H will be fetched to the
CPU for execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of this instruction, the contents of
memory address 300lH will be !AH, the contents of
address 3000H will be 4AH, the contents of the Stack
Pointer will be 3000H, and the contents of the Program
Counter will be 2135H, pointing to the address of the
first opcode of the subroutine now to be executed.

239

CALL cc, nn

Operation: IF cc TRUE: (SP-I) < PCy

(SP-2) < PC|,PC < nn
Format:

Opcode Operands

CALL cc,nn

T 1 1 I t I]
1 1 <+—cc——1 0 O
1 1 1 1 1 1 1

I 1 T 1 1 I i

] ! 1 1 1 1 1

I 1 | I | | | .

1] 1 1 1 1 1

Note: The first of the two n operands in the assembled
object code above is the least significant byte of the
two-byte memory address.

Description:

If condition cc is true, this instruction pushes the
current contents of the Program Counter (PC) onto the
top of the external memory stack, then loads the
operands nn into PC to point to the address in memory
where the first opcode of a subroutine is to be fetched.
(At the end of the subroutine, a RETurn instruction can
be used to return to the original program flow by
popping the top of the stack back into PC.,) 1If
condition cc is false, the Program Counter is
incremented as usual, and the program continues with the
next sequential instruction, The stack push is
accomplished by first decrementing the current contents
of the Stack Pointer (SP), loading the high-order byte
of the PC contents into the memory address now pointed
to by SP; then decrementing SP again, and loading the
low-order byte of the PC contents into the top of the
stack, Note: Because this is a 3-byte instruction, the
Program Counter will have been incremented by 3 before

240

the push is executed., Condition cc is programmed as one
of eight status which corresponds to condition bits in
the Flag Register (register F)., These eight status are
defined in the table below, which also specifies the
corresponding cc bit fields in the assembled object
code:

cc Condition Relevant
Flag

000 NZ non zero Z

001 Z zero Z

010 NC non carry c

011 C carry c

100 PO parity odd P/V

101 PE parity even P/Vv

110 P sign positive S

111 M sign negative S

If cc is true:

M CYCLES: 5 T STATES: 17(4,3,4,3,3) 4 MHZ E.T.: 4,25
If cc is false:

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E,T.: 2.50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents
of the Program Counter are lA47H, the contents of the

Stack Pointer are 3002H, and memory locations have the
contents:

Location Contents
1A47H D4H
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the
three-byte instruction D43521H will be fetched to the
CPU for execution, The mnemonic equivalent of this is

CALL NC,2135H

241

After the execution of this instruction, the contents of
memory address 3001H will be lAH, the contents of
address 3000H will be 4AH, the contents of the Stack
Pointer will be 3000H, and the contents of the Program
Counter will be 2135H, pointing to the address of the
first opcode of the subroutine now to be executed.

242

Operation: PCp . (gp). PCH<« (SP+1)
Format:
Opcode

RET

T T T T T T 71
11001 0 01 C9
1 1 1 1 1

1 1

Description:

The byte at the memory location specified by the
contents of the Stack Pointer (SP) register pair are
moved to the low order eight bits of the Program Counter
(PC). The SP is now incremented and the byte at the
memory location specified by the new contents of the SP
are moved to the high order eight bits of the PC. The
SP is now incremented again. The next op code following
this instruction will be fetched from the memory
location specified by the PC. This instruction is
normally used to return to the main line program at the
completion of a routine entered by a CALL instruction.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the
contents of the Stack Pointer are 2000H, the contents of
memory location 2000H are B5H, and the contents of
memory location 2001H are 18H, then after the execution
of

RET
the contetns of the Stack Pointer will be 2002H and the

contents of the Program Counter will be 18B5H, pointing
to the address of the next program opcode to be fetched.

243

— |

cC

Operation: IFccTRUE:PCL+%SN,PCH*WSPH)
Format:
Opcode Operand

RET cc

1 1 1 R]
l 1 e—CCeoms0 0 O
1 1 1 1 1 1 1

Description:

If condition cc is true, the byte at the memory location
specified by the contents of the Stack Pointer (SP)
register pair are moved to the low order eight bits of
the Program Counter (PC). The SP is now incremented and
the byte at the memory location specified by the new
contents of the SP are moved to the high order eight
bits of the PC. The SP is now incremented again. The
next op code following this instruction will be fetched
from the memory location specified by the PC. This
instruction is normally used to return to the main line
program at the completion of a routine entered by a CALL
instruction. If condition cc is false, the PC is simply
incremented as usual, and the program continues with the
next sequential instruction. Condition cc 1s programmed
as one of eight status which correspond to condition
bits in the Flag Register (register F). These eight
status are defined in the table below, which also
specifies the corresponding cc bit fields in the
assembled object code.

cc Condition Relevant
Flag

000 NZ non zero z

001 Z zero A

010 NC non carry C

011 C carry c

100 PO parity odd P/V

101 PE parity even P/V

110 P sign positive S

111 M sign negative S

If cc is true:

244

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75
If cc is false:
M CYCLES: 1 T STATES: 5 4 MHZ E.T.: 1.25

Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of
the Program Counter are 3535H, the contents of the Stack
Pointer are 2000H, the contents of memory location 2000H
are B5H, and the contents of memory location 200lH are
18H, then after the execution of

RET M
the contents of the Stack Pointer will be 2002H and the

contents of the Program Counter will be 18B5H, pointing
to the address of the next program opcode to be fetched.

245

=T

Operation: Return from interrupt
Format:
Opcode

RETI

T T T T T T 1
1110110 1} ED
1 1 1

T T T T T T
01 00 110 1 4D
1 i 1 1 L

Description:

This instruction is used at the end of a maskable
interrupt service routine to:

1. Restore the contents of the Program Counter (PC)
(analogous to the RET instruction)

2. To signal an I/0 device that the interrupt routine
has been completed. The RETI instruction also
facilitates the nesting of interrupts allowing higher
priority devicess to temporarily suspend service of
lower priority service routines. Note: This
instruction does not enable interrupts which were
disabled when the interrupt routine was entered.
Before doing the RETI instruction, the enable
interrupt instruction (EI) should be executed to
allow recognition of interrupts after completion of

the current service routine.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B connected in a
daisy chain configuration with A having a higher
priority than B. ’
A B
+

L IEI IEO IEI IEO

-

=l

(=]
-

246

B generates an interrupt and is acknowledged. (The
interrupt enable out, IEO, of B goes low, blocking any
lower priority devices from interrupting while B is
being serviced). Then A generates an interrupt,
suspending service of B. (The IEO of A goes “low’
indicating that a higher priority device is being
serviced.) The A routine is completed and a RETI is
issued resetting the IEO of A, allowing the B routine to
continue. A second RETI is issued on completion of the
B routine and the IEO of B is reset (high) allowing
lower priority devices interrupt access.

247

= TN

Operation: Return from non maskable interrupt
Format:
Opcode

RETN

T T T T T 1
11101101 ED
1 1 1

T T T _T_ T 1
01000101 45
1 1 1 i 1 1 1

Description:

This instruction is used at the end of a non-maskable
interrupt service routine to restore the contents of the
Program Counter (PC) (analogous to the RET instruction).
The state of IFF2 is copied back into IFFl so that
maskable interrupts are enabled immediately following
the RETN if they were enabled before the non-maskable
interrupt.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 1000H and the
contents of the Program Counter are lA45H when a non
maskable interrupt (NMI) signal is received, the CPU
will ignore the next instruction and will instead
restart to memory address 0066H. That is, the current
Program Counter contents of 1A45H will be pushed onto
the external stack address of OFFFH and OFFEH, high
order-byte first, and 0066H will be loaded onto the
Program Counter. That address begins an interrupt
service routine which ends with RETN instruction. Upon
the execution of RETN, the former Program Counter
contents are popped off the external memory stack,
low-order first, resulting in a Stack Pointer contents
again of 1000H. The program flow continues where it
left off with an opcode fetch to address lA45H.

248

order-byte first, and 0066H will be loaded onto the
Program Counter, That address begins an interrupt
service routine which ends with RETN instruction., Upon
the execution of RETN, the former Program Counter
contents are popped off the external memory stack,
low-order first, resulting in a Stack Pointer contents
again of 1000H, The program flow continues where it
left off with an opcode fetch to address 1A45H,

249

_RST p

Operation: (SP-1) «PCy , (SP-2)<PC , PCH<O0, PCL <P

Format:
Opcode Operand
RST P
I Ll I | | | 1
1 le—t—1 11
1 1 1 1 1 1 1
Description:

The current Program Counter (PC) contents are pushed
onto the external memory stack, and the page zero memory
location given by operand p is loaded into the PC,
Program execution then begins with the opcode in the
address now pointed to by PC. The push is performed by
first decrementing the contents of the Stack Pointer
(SP), loading the high-order byte of PC into the memory
address now pointed to by SP, decrementing SP again, and
loading the low-order byte of PC into the address now
pointed to by SP, The ReSTart instruction allows for a
jump to one of eight addresses as shown in the table
below, The operand p is assembled into the object code
using the corresponding T state, Note: Since all
addresses are in page zero of memory, the high order
byte of PC is 1loaded with O0H., The number selected
from the "p" column of the table is loaded into the
low-order byte of PC.

P t
00H 000
08H 001
10H 010
18H 0l1
20H 100
28H 101
3on 110
38H 111

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75

260

Example:

If the contents of the Program Counter are 15B3H, after
the execution of

RST 18H (Object code 1101111)

the PC will contain O0Ol8H, as the address of the next
opcode to be fetched.

251

~INPUT AND OUTPUT GROUP-

252

IN A, (Nn)

Operation: A < (n)
Format:
Opcode Operands

IN A,(n)

110110 11 DB

Description:

The operand n 1s placed on the bottom half (A0 through
A7) of the address bus to select the I/0 device at one
of 256 possible ports, The contents of the Accumulator
also appear on the top half (A8 through Al5) of the
address bus at this time, Then one byte from the
selected port is placed on the data bus and written into
the Accumulator (register A) in the CPU,.

M CYCLES: 3 T STATES: 11(4,3,4) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte
7BH is available at the peripheral device mapped to I/0
port address O0lH, then after the execution of

IN A, (O1lH)

the Accumulator will contain 7BH,

253

IN r, (C)

Operation: r< (C)
Format:
Opcode Operands

IN r,(C)

-
11101101 ED

T T T T T
0 lee—r—=0 0 0
TS T TR SN N S |

Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the I/0
device at one of 256 possible ports., The contents of
Register B are placed on the top half (A8 through Al5)
of the address bus at this time, Then one byte from the
selected port is placed on the data bus and written into
register r in the CPU., Register r identifies any of the
CPU registers shown in the following table, which also
shows the corresponding 3-bit "r" field for each., The
flags will be affected, checking the input data.

Reg. r

000
001
010
011
100
101
111

PHIIHUDOW

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E,T.,: 3.00

254

Condition Bits Affected:

S: Set 1if input data is negative;
reset otherwise

Z: Set if input data is zero;
reset otherwise

H Reset
P/V: Set if parity is even;

reset otherwise

N: Reset

C: Not affected

Example:

If the contents of register C are 07H, the contents of
register B are 10H, and the byte 7BH is available at the
peripheral device mapped to I/O0 port address 07H, then

after the execution of

IN D, (C)

255

INI

Operation: (HL)< (C}, B « B-1, HL< HL+1

Format:
Opcode
INI
I I I 1 1 |]
11101101 ED
] L 1 1 1 I H
I) I) 1 I ¥
101 00010 A2
L 1 L 1] 1 L]
Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the 1/0
device at one of 256 possible ports, Register B may be
used as a byte counter, and its contents are placed on
the top half (A8 through Al5) of the address bus at this
time, Then one byte from the selected port is placed on
the data bus and written to the CPU, The contents of
the HL register pair are then placed on the address bus
and the input byte is written into the corresponding
location of memory. Finally the byte counter 1is
decremented and register pair HL is incremented.,

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E,T.: 4,00

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0;
reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of
register B are 10H, the contents of the HL register pair
are 1000H, and the byte 7BH is available at the
peripheral device mapped to I/0 port address 07H, then

256

after the execution of
INI
memory location 1000H will contain 7BH, the HL register

pair will contain 100lH, and register B will contain
OFH,

257

Operation: (HL)<(C), B<B-1, HL< HL+1

Format:
Opcode
INIR
1 1 1 LR T
11101101 ED
1 1 1 [1 L1
| 1 1] Ll T LI
10110010 B2
| ISR NN RN (RS NN SR

Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the I/0
device at one of 256 possible ports. Register B is used
as a byte counter, and its contents are placed on the
top half (A8 through Al5) of the address bus at this
time. Then one byte from the selected port is placed on
the data bus and written to the CPU. The contents of
the HL register pair are placed on the address bus and
the input byte is written into the corresponding
location of memory. Then register pair HL is
incremented, the byte counter is decremented. If
decrementing causes B to go to zero, the instruction is
terminated. I1f B is not zero, the PC is decremented by
two and the instruction repeated. Interrupts will be
recognized and two refresh cycles will be executed after
each data transfer. ©Note that if B is set to zero prior
to instruction execution, 256 bytes of data will be

input.

If B#0:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

I1f B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

258

INI

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of
register B are 03H, the contents of the HL register pair
are 1000H, and the following sequence of bytes are
available at the peripheral device mapped to I/0 port of
address 07H:

51H |
A9H
03H
then after the execution of
INIR
the HL register pair will contain 1003H, register B will

contain zero, and memory locations will have contents as
follows:

Location Contents
1000H 51H
1001H A9H

1002H 03H

259

Operation: (HL)<«(C), B «< B-1, HL < HL-1
Format:
Opcode

IND

1 I 1 1 1]
11101101 ED
!

I
L 1 !] Il 1

1 1 1 L) 1 1 1
10101010 AA
I T N B

1 1

Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the I/0
device at one of 256 possible ports., Register B may be
used as a byte counter, and its contents are placed on
the top half (A8 through Al5) of the address bus at this
time, Then one byte from the selected port is placed on
the data bus and written to the CPU, The contents of
the HL register pair are placed on the address bus and
the input byte is written into the corresponding
location of memory., Finally the byte counter and
register pair HL are decremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E,T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0;
reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:
If the contents of register C are 07H, the contents of

register B are 10H, the contents of the HL register pair
are 1000H, and the byte 7BH is available at the

260

IN

peripheral device mapped to I/0 port address 07H, then
after the execution of

IND
memory location 1000H will contain 7BH, the HL register

pair will contain OFFFH, and register B will contain
OFH,

261

IN

Operation: (HL)<« (C). B+ B-1., HL < HL-1

Format:

LI T L
11101101 ED
1

101 11010]| BA

Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the 1/0
device at one of 256 possible ports. Register B is used
as a byte counter, and its contents are placed on the
top half (A8 through Al5) of the address_bus at this
time. Then one byte from the selected port is placed on
the data bus and written to the CPU. The contents of
the HL register pair are placed on the address bus and
the input byte is writtenm into the corresponding
location of memory. Then HL and the byte counter are
decremented. If decrementing causes B to go to zero, the
instruction is terminated. If B is not zero, the PC is
decremented by two and the instruction repeated.
Interrupts will be recognized and two refresh cycles
will be executed after each data transfer. Note that if

B is set to zero prior to instruction execution, 256
bytes of data will be input.

If B#0:

M CYCLES: 5 T STATES:21(4,5,3,4,5) 4 MHZ E.T.: 5.25
If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

262

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown

N: Set

C: Not affected
Example:

If the contents of register C are 07H, the contents of
register B are 03H, the contents of the HL register pair
are 1000H, and the following sequence of bytes are
available at the peripheral device mapped to I/0 port
address 07H:

51H
A9H
03H
then after the execution of
INDR
the HL register pair will contain OFFDH, register B will

contain zero, and memory locations will have contents as
follows:

Location Contents
OFFEH 03H
OFFFH A9H
1000H 51H

263

ouT (n),

Operation: (n)«<A

Format:
Opcode Operands

ouT (n),A

L l 1 4 T)
11010011 D3
TS YO MR TR U S

Description:

The operand n is placed on the bottom half (A0 through
A7) of the address bus to select the I/0 device at one
of 256 possible ports. The contents of the Accumulator
(register A) also appear on the top half (A8 through
Al5) of the address bus at this time. Then the byte
contained in the Accumulator is placed on the data bus
and written iato the selected peripheral device.

M CYCLES: 3 T STATES: 11(4,3,4) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after
the execution of

OUT (OlH),A

the byte 23H will have been written to the peripheral
device mapped to I/0 port address OlH.

264

ouT C), r

Operation: (C)<«r

Format:
Opcode Operands
ouT (C),r
T 1 1 1 1) |
11101101 ED
1) I | i R |
1 1 LI 1 1 T
0 1l=—r—0 0 1
1 1 Il 1 |)
Description:

The contents of register C are placed on the bottom half
(A0 through A7) of the address bus to select the I/0
device at one of 256 possible ports. The contents of
Register B are placed on the top half (A8 through AlS5)
of the address bus at this time, Then the byte
contained in register r is placed on the data bus and
written into the selected peripheral device, Register r
identifies any of the CPU registers shown in the
following table, which also shows the corresponding
3-bit "r" field for each which appears in the assembled
object code:

Register r

000
001
010
011
100
101
111

PHIERUOW®

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00

265

Condition Bits Affected: None

Example:

If the contents of register C are O0lH and the contents
of register D are 5AH, after the execution of

OUT (C),D

the byte 5AH will have been written to the peripheral
device mapped to I/0 port address OlH,

266

OuTI

Operation: (C)« (HL), B<B-1, HL<HL+1

Format:
Opcode
OUT1I
] 1 I T]) T
11101101 ED
1 1 1 1 1 1 1
¥ 1 1 L 1 1 T
1 0100011 A3
1] 1 1 1 1 1
Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored
in the CPU, Then, after the byte counter (B) is
decremented, the contents of register C are placed on
the bottom half (A0 through A7) of the address bus to
select the I/0 device at one of 256 possible ports,
Register B may be used as a byte counter, and its
decremented value is placed on the top half (A8 through
Al5) of the address bus, The byte to be output is
placed on the data bus and written into selected
peripheral device, Finally the register pair HL is
incremented,

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set 1f B-1=0;
reset otherwise

H: Unknown
P/V: Unknown
: Set

: Not affected
Example:
If the contents of register C are 07H, the contents of

register B are 10H, the contents of the HL register pair
are 1000H, and the contents of memory address 1000H are

267

59H, then after the execution of
OUTI
register B will contain OFH, the HL register pair will

contain 1001H, and the byte 59H will have been written
to the peripheral device mapped to I/0O port address O07H.

268

OoTl

Operation: (C)<« (HL), B<B-1| HL< HL+1
Format:
Opcode

OTIR

¥ 1 U T
01101 ED
1 1

T T T
1 11

1 1 1

¥ 1 Ll ! LI T
10110011 B3
1] | 1 1 1 1

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored
in the CPU. Then, after the byte counter (B) is
decremented, the contents of register C are placed on
the bottom half (AO through A7) of the address bus to
select the I/0 device at one of 256 possible ports.
Register B may be used as a byte counter, and its
decremented value 1is placed on the top half (A8 through
Al5) of the address bus at this time. Next the byte to
be output is placed on the data bus and written into the
selected peripheral device. Then register pair HL is
incremented. If the decremented B register 1is not zero,
the Program Counter (PC) is decremented by 2 and the
instruction is repeated. If B has gone to zero, the
instruction is terminated. Interrupts will be recognized
and two refresh cycles will be executed after each data
transfer. Note that if B is set to zero prior to
instruction execution, the instruction will output 256
bytes of data.

If B#0:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

269

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown

N: Set

C: Not affected
Example:

If the contents of register C are 07H, the contents of
register B are 03H, the contents of the HL register pair
are 1000H, and memory locations have the following
contents:

Location Contents
1000H 51H
1001H A9H
1002H 03H

then after the execution of
OTIR

the HL register pair will contain 1003H, register B will
contain zero, and a group of bytes will have been
written to the peripheral device mapped to I/0 port
address O7H in the following sequence:

51H

A9H
03H

270

OuTD

Operation: (C)<« (HL), B<«B-1, HL<HL-1

Format:

11101101 ED

101010 1 1| A8

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored
in the CPU. Then, after the byte counter (B) 1is
decremented, the contents of register C are placed on
the bottom half (A0 through A7) of the address bus to
select the I/0 device at one of 256 possible ports.
Register B may be used as a byte counter, and its
decremented value is placed on the top half (A8 through
Al5) of the address bus at this time. Next the byte to
be output is placed on the data bus and written into the
selected peripheral device. Finally the register pair
HL is decremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0;
reset otherwise

H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of

2N

register B are 10H, the contents of the HL register pair
are 1000H, and the contents of memory location 1000H are
59H, after the execution of

OUTD
register B will contain OFH, the HL register pair will

contain OFFFH, and the byte 59H will have been written
to the peripheral device mapped to I/0 port address O07H.

272

OTI

Operation: (C) < (HL), B+ B-1, HL < HL-1

Format:

111 1 101 ED
1 1 1 1

10111011 BB

Description:

The contents of the HL register pair are placed on the
address bus to select a location in memory. The byte
contained in this memory location is temporarily stored
in the CPU. Then, after the byte counter (B) is
decremented, the contents of register C are placed on
the bottom half (AO through A7) of the address bus to
select the I/0 device at one of 256 possible ports.
Register B may be used as a byte counter, and its
decremented value is placed on the top half (A8 through
Al5) of the address bus at this time. Next the byte to
be output is placed on the data bus and written into the
selected peripheral device. Then register pair HL is
decremented and if the decremented B register is not
zero, the Program Counter (PC) is decremented by 2 and
the instruction is repeated. If B has gone to zero, the
instruction is terminated. Interrupts will be
recognized and two refresh cycles will be executed after
each data transfer. Note that if B is set to zero prior
to instruction execution, the instruction will output
256 bytes of data.

If B#0:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25
If B=0:

4 MHZ E.T.: 4.00

M CYCLES: 4 T STATES: 16(4,5,3,4)

273

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of
register B are 03H, the contents of the HL register pair
are 1000H, and memory locations have the following

contents:

Location Contents
OFFEH 51H
OFFFH A9H
1000H 03H

then after the execution of
OTDR

the HL register pair will contain OFFDH, register B will
contain zero, and a group of bytes will have been
written to the peripheral device mapped to I/0 port
addres 07H in the following sequence:

03H

A9H
51H

274

Z80-CPU INSTRUCTION SET

ALPHABETICAL
ASSEMBLY MNEMONIC OPERATION PAGE
ADC HL,ss Add with Carry Reg. pair ss to HL............... 149
ADC A,s Add with carry operand s to ACCe .iveeveeenernnnn. 108
ADD A,n Add value N 0 ACCe.iiiiiiiiiieeirnrnoreesesiorersereesenenns 102
ADD A,r Add Reg. I O ACCe iiireiiiimeniiniiiieiiniieiiniiiiieinennas 100
ADD A, (HL) Add location (HL) tO ACCe.ieerrerrreieereresenecocensees 103
ADD A, (IX+d) Add location (IX+4d) tO ACCe.iieiieriereenroarnoersenes 104
ADD A, (IY+d) Add location (IY+d) tO ACCoe ciiererriireeennnnceaceanes 106
ADD HL,ss Add Reg. pair ss to HL.....ciieiieiiiiiiiiiiniiiiinnnnne. 147
ADD IX,pp Add Reg. pair pp to IXccciiiiiiiiiiininionnnnannn, 153
ADD 1Y, rr Add Reg. pair rr to IY .iiiiiiiiiiiiiiiiniinniinennns 155
AND s Logical “AND’ of operand s and AcCCe..ccevennn... 14
BIT b, (HL) Test BIT b of location (HL)...ciieierremcrerennennnees 205
BIT b, (IX+d) Test BIT b of location (IX+d)...ceviiriiouuunnnnnn 207
BIT b,(IY+d) Test BIT b of location (IY+d).......oovvvvunnnnn.n. .. 209
BIT b,r Test BIT b 0f ReBe Toiiiiiiiiiiiiiiiiiiiiiicienneneenns 203
CALL cc,nn Call subroutine at location nn 1if

condition cc 18 trUe ...ciciiviiiiiiiieiiiiiniinnecrerconnnn 240
CALL nn Unconditional call subroutine

at location nN......cciiiiiiiiiiiiiiiii e 238
CCF Complement carry £1ag ..cceevverniieniiniiiiiinieiennnnenss 137
CP s Compare operand s with Acce......cciiiiiiinnninnen... 120
CPD Compare location (HL) and Acc.

decrement HL and BC......cccciiiiiiiiininiinnnnnnnnnnnnennns 95
CPDR Compare location (HL) and Acc.

decrement HL and BC,

repeat until BC=0ccccoiiiiiiiiniiiineirneennnnnnns 97
CPIL Compare location (HL) and Acc.

increment HL and decrement BC..........cievnnnnnen.. 91
CPIR Compare location (HL) and Acc.

increment HL, decrement BC

repeat until BC=0.....coiciiiiiiiiimiiiinninnniiiennnenennnnn, 93
CPL Complement Acc. (178 comp).ceceemreeiciiinniciinnnnen, 134
DAA Decimal adjusSt ACCe sieirriniiiieiiiiiiiiiieniiiienieennnnns 132
DEC m Decrement operand M .ccccvieeeiiiinieiiriiiiicenrerannnnnees 129
DEC IX Decrement IX .iciciiiiiiinierieinsiseiorenaeseeranannoneranonsnens 161
DEC 1Y Decrement Y coeeeeeieiieiotiteeneniieereroneecnncnonaosseranees v 162
DEC ss Decrement Reg. pair sSs...cceciiciiiiiiiiiiiiiiiinnnnnnne, 160
DI Disable InterTUPES ccvieiiiiiiiiiiiiiiiieiiiiirieaeennneeenns 141
DJINZ e Decrement B and Jump

relative if BAD +ivtiireeenneeerenenoenenennns 235
EI Enable interrupts C ettt 142
EX (SP),HL Exchange the location (SP)

and HL ...ttt iniieiiniieienarenarseeseneanenana 80

275

EX (sP),IX
EX (SP),1Y

EX AF,AF’
EX DE,HL
EXX

HALT
IM O
IM 1
IM 2
IN A, (n)

IN r,(C)

INC (HL)
INC IX

INC (IX+d)
INC 1Y

INC (IY+d)
INC r

INC ss

IND

INDR

INI

INIR

JP (HL)
JP (IX)
JP (1Y)
JP cc,nn

JP nn
JR C,e

JR e

JR NC,e

Exchange the location (SP)

= 8 1 81
Exchange the location (SP)

E- 8 ¢ X< S 82
Exchange the contents of AF and AF”............ 78
Exchange the contents of DE and HL.............. 77

Exchange the contents of
BC,DE,HL with contents of

BC’,DE’,HL’ respectively....cciieiieriinnininnnniennnnns 79
HALT (wait for interrupt or reset),....c....... 140
Set interrupt mode O .iicciiiiiiiiiiiiiiiiiiiiieaiiieeanens 143
Set interrupt mode 1 ... iiiiiiiiiiiiiiiiiiiiinnineeanaes 144
Set interrupt mode 2 . iiiiiiiiiiiiiiiiiieiiiiaieiaas 145
Load the Acc. with

input from device n.cciiiiiiiiiiiiiiiiiiiiiiieii, 253
Load the Reg. r with

input from device (C).iiiiiiiiiiiriiiiooiiiiiiiieiineninnns 254
Increment location (HL)..ccccoveriiviiiiemniiiinnnnn.e. 124
Increment I X . iiiiiiiiiiiiiiiiiiiiiiiieeereeaseeterotosonansenenns 158
Increment location (IX+d) .ceeiiiiiiiiiiiiioeniiennennns 125
Increment LY. iiiiiciiiiiiiiiiiniiiiiiiiiaiiiiiaiiiaiensacennnnes 159
Increment location (IY+d)..ieiiiiiiiiiiiiinennnanannns 127
Increment Rege. Tcccciiriernimiuieneinnennnnes JUTTOSRN 122
Increment Reg. pair SSiciiecciiiiieciniiinncnnnennss 157

Load location (HL) with

input from port (C),

decrement HL and B.........ciciviiiiiiiiiiiiiiiniiinnn 260
Load location (HL) with

input from port (C),

decrement HL and decrement B,

repeat until B=0 _, 262
Load location (HL) with

input from port (C);

and increment HL and decrement Bceeeeee 256
Load location (HL) with

input from port (C),

increment HL and decrement B,

repeat untill B=0 ..ccceriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeees 258
Unconditional Jump to (HL)...... eetesesteaenterntnnas 232
Unconditional Jump to (IX).eeeieeerererrecerrecennnns 233
Unconditional Jump to (IY).....cccoiiiiimmeiiianninnns 234
Jump to location nn

1f condition cc 1s true...cciiiiiiiiiiiiiiiiiiiiiaianna, 27
Unconditional jump to location nn 220
Jump relative to

PCte 1f carry=l.iiciiiiiiiiiiiiiiiiiiiiiiiaaeiiiiiieeeinaaaanns 224
Unconditional Jump

relative to PCHe ..iiiiiiiiiiiiiiiiiieiiiaiiiiniiiniiiinnann. 223

Jump relative to
PC+e 1f carry=0

..

276

JR NZ,e Jump relative to

PCt+e 1if non zero (Z=0).iiiiiiiiiiiiiiirriiiiererecernnnns 230
JR Z,e Jump relative to
PCHe 1f 2er0o (Z=1).ieeeieiirieiiinierrenronocearaneenaneneans 228
LD A, (BC) Load Acc. with location (BC)......cooerivrrnennnnnn.. 42
LD A, (DE) Load Acc. with location (DE) ..iiiiiiiiiiiiiinnnnnnnn. 43
LD A,I Load AccCe WLtRh T eiiriiiiiiiiiiiiiiii i eeeeeeanannns 48
LD A, (nn) Load Acc. with location nn_ ceerenens 44
LD A,R Load Acc. with Rege Ro.iiiiiiiiiiiiiiiiiiiieiiienenannenn 49
LD (BC),A Load location (BC) with ACCe.iiiiiiiiiiiieeinnanenns 45
LD (DE),A Load location (DE) with AccCe.. . oviiiiviiiinnnnnnn 46
LD (HL),n Load location (HL) with value n........ovevveeennen 39
LD dd,nn Load Reg. pair dd with value nn.................... 53
LD dd, (nn) Load Reg. pair dd with location (nn)........... 57
LD HL,(nn) Load HL with location (nn).....ccciceviviieininininnnn. 56
LD (HL),r Load location (HL) with Rege. T .iiieiiicirnnniannn 34
LD I,A Loa2d I Wit h ACC e teeeiiieereieeereieesecteecscssonnssenassnnnss 50
LF IX,nn Load IX with value nNn..cccoeiiiiiiiiiiiiiiiiiiiennanes. 54
LD IX, (nn) Load IX with location (nNn).c..cceiviiiiivenenoarecnenn. 59
LD (IX+4d),n Load location (IX+d) with value n................ 40
LD (IX+d),r Load location (IX+d) with Reg. T.....ceeoeeun..... 35
LD IY,nn Load IY with value nniiviiiiiiiiiiiiiiiiiieiinnnnes 55
LD 1Y, (nn) Load IY with location (NN).ciceereiseerereeerenieceenns 60
LD (IY+d),n Load location (IY+d) with value Neceereeevnnnnen. 41
LD (IY+d),r Load location (IY+d) with Rege T ...oovvevvnonnnn. 37
LD (nn),A Load location (nn) with AcCe. . iiiiiiiiiiieunnanens 47
LD (nn),dd Load location (nn) with Reg. pair dd.......... 62
LD (nn),HL Load location (nn) with HL ciiiieeiiuunnn 61
LD (nn),IX Load location (mn) with IX. ... 64
LD (nn),IY Load location (nn) with IY 65
LD R,A Load R With ACCe ciiiiiiiiiiiiiiiiieieoieraetniinerernnanenns 51
LD r,(HL) Load Reg. r with location (HL)ccveevevernnennn. 29
LD r,(IX+d) Load Reg. r with location (IX+d)....cccevviannennn 30
LD r,(IY+d) Load Reg. r with location (IY+d).................. 32
LD r,n Load Reg. r with value nccoiiiimnniiiin., 28
LD r,r’ Load Reg. r with Reg. T iiiiiiiiieeranennenn 27
LD SP,HL Load SP with HL | . . iiiiiiiiiiiiiiiiiienenes 66
LD SP,IX Load SP with IX .iiiiiiiiiiiiiiiiiiiiiirenncnnenneneenes 67
LD SP,1IY Load SP with IY | iiiiiiiiiiiiiiiirncenirinreraneiennnees 68
LDD Load location (DE) with location (HL),
decrement DE,HL and BCccccceeens 87
LDDR Load location (DE) with location (HL),
decrement DE,HL and BC;
repeat until BC=0 ...ccccoiiiiiiiiiiiiiiiiiiiniiiiiiennnnnn. 89

277

LDI

LDIR

NEG
NOP
OR s
OTDR

OTIR

OUT (C),t
OUT (n),A
OUTD

OUTI

POP IX

POP IY

POP qq

PUSH IX
PUSH 1Y
PUSH qgq
RES b,m
RET

RET cc

RETI

RETN

RL m

RLA

RLC (HL)
RLC (IX+4d)
RLC (IY+d)
RLC r

RLCA

RLD

RR m
RRA
RRC m

Load location (DE) with location (HL),
increment DE,HL, decrement BC..... teteteieesnannoans 83
Load locationm (DE) with location (HL),
increment DE,HL, decrement

BC and repeat until BC=0......... B PP 85
Negate Acc. (2°s complement)........eeeevreeenneene.. 135
No operationm.....ccoeeeveninninnns Ceeteriecseenaiietenas ceeeeess. 139
Logical ‘OR’ of operand s and AcCe.....c........ 116

Load output port (C) with location (HL)
decrement HL and B,

repeat until B=0 .ccciiiiiriiiiiiiiiiiiiiiiiiiiiiiiiiieea 273
Load output port (C) with location (HL),
increment HL, decrement B,

repeat until B=0coicinvvennn... BN 269
Load output port (C) with Reg. r.................. 265
Load output port (n) with Acc........ rreeeae 264
Load output port (C) with location (HL),

decrement HL and B......ccoiiiiiiiiiiiiiiiiiiiiiiiiinnaanne. 271
Load output port (C) with location (HL),

increment HL and decrement B_ 267
Load IX with top of stackcccciiiiiiiiiiniin... 74
Load 1Y with top of stack ..ccccceiiiiiiiiiiiiiiaa.. 75
Load Reg. pair qq with top of stack....... R

Load IX onto stack,, 70
Load 1Y onto stack... 71
Load Reg. pair qgq onto stack........eerenen. 69
Reset Bit b of operand m..........oeeeiiiiieneeennennnnn 217
Return from subroutineccooviiiiiiaienin.. 243
Return from subroutine if condition

CC 18 LrUE Liiiiiiiiiiiiiiii ettt ittt eearaaaaen 244
Return from interrupt eteeeereseeiaieienaas 246
Return from non maskable interrupt........... ... 248
Rotate left through carry operand m,........... 180
Rotate left Acc. through carry. ., ... s .. 166
Rotate location (HL) left circular.............. 174
Rotate location (IX+d) left circclar....... ... 176
Rotate location (IY+d) left circular 178
Rotate Reg. r left circularcccovvieninnnn. 172
Rotate left circular Acc.c.cooviinnnn. .. 164
Rotate digit left and right

between Acc. and location (HL)................. ve... 108
Rotate right through carry operand m.......... 186
Rotate right Acc. through carry.................... 170
Rotate operand m right circular 183

278

RRCA

RRD

RST
SBC

SBC

SCF
SET
SET
SET
SET
SLA
SRA
SRL
SUB
XOR

P
A,s

HL,ss

b, (HL)
b, (IX+d)
b, (IY+d)
b,r

wwpgBB

Rotate right circular ACCe ceciiciieieriiirincnenecnnn. 168
Rotate digit right and left

between Acc. and location (HL).ceceerroeon........ . 200
Restart to location pP.cciiveieriiiiieiiiniieinienennnnnnn. 250
Subtract operand s

from Acce With CArIY ciiiiiiiiiiiiiiieniceteiiiniiiieennen. 112
Subtract Reg. pair ss from

HL With carry . iiciiiiiiiiiiiiiiiiiiieieiircstercnneercnnnnones 151
Set carry flag (C=1l) .iiriruiiieerernrneiennnnininenenens 138
Set Bit b of location (HL) .cveeeireneiinnnnnerananns 212
Set Bit b of location (IX+d)............. ceresesiacen 213
Set Bit b of location (IY+d).eeiiiiiiiiierninrnnnnnns 215
Set Bit b 0f REBe Faririririnicnnaeeninenrnnereesennnnnns 21
Shift operand m left arithmetic 189
Shift operand m right arithmetic.............. vee. 192
Shift operand m right logical...cccceeeirvnnnnnnn.n 195
Subtract operand s from ACC.e....ccceirrrrennneneneen 110
Exclusive ‘OR’ operand s and ACCe.verrreernnnn... 118

279

1)

2)

3)

4)

5)

6)

7

8)

APPENDIX A
ERROR MESSAGES AND EXPLANATIONS

WARNING - OPCODE REDEFINED
Indicates that an opcode has been redefined by
a macro so that future uses of the opcode will
result in the appropriate macro call. This
message may be suppressed by the NOW option.
NAME CONTAINS INVALID CHARACTERS
Indicates that a name (either a label or an
operand) contains illegal characters. Names
must start with an alphabetic character, an
underbar (_), or a dollar sign ($). Any
following characters must be either
alphanumeric (A...Z or 0...9), a question
mark (?), a dollar sign ($), or an underbar (_).
INVALID OPCODE
Indicates that the opcode was not recognized.
Occurs when the opcode contains an illegal
character (including non-printing control
characters), when the opcode is not either all
upper case or all lower case, or when macros
are used and the M option is not specified.
INVALID NUMBER
Indicates an invalid character in a number.
Occurs when a number contains an illegal
character (including non-printing control
characters) or a number contains a digit not
allowed in the specified base (e.g., 8 or 9 in
an octal number or a letter in a hexadecimal
number where the trailing H was omitted.)
INVALID OPERATOR
Indicates use of an invalid operator in an
expression. Occurs when an operator such as
AND or XOR is misspelled or contains illegal
characters.
SYNTAX ERROR
Indicates the syntax of the statement is
invalid. Occurs when an expression is
incorrectly formed, unmatched parenthesis are
found in an operand field, or a DEFM string is
either too long (greater tham 63 characters)
or contains unbalanced quotes.
ASSEMBLER ERROR
Indicates that the assembler has failed to
process this instruction. Usually occurs when
an expression is incorrectly formed.
UNDEFINED SYMBOL
Indicates that a symbol in an operand field

280

9)

10)

11)

12)

13)

14)

15)

was never defined. Occurs when a name is
misspelled or not declared as a label for an
instruction or pseudo-op.

INVALID OPERAND COMBINATION
Indicates that the operand combination for
this opcode is invalid. Occurs when a register
name or condition code is missspelled or
incorrectly used with the particular opcode.,

EXPRESSION OUT OF RANGE
Indicates that the value of an expression is
either too large or too small for the
appropriate quantity. Occurs on 1l6-bit
arithmetic overflow or division by zero in an
expression, incrementing the reference counter
beyond a 16-bit value, or trying to use a
value which will not fit into a particular
bit-field - typically a byte.

MULTIPLE DECLARATION
Indicates that an attempt was made -to redefine
a label. Occurs when a label is misspelled,
or mistakenly used several times. The
pseudo-op DEFL can be used to assign a value
to a label which can then be redefined by
another DEFL.

MACRO DEFINITION ERROR
Indicates that a macro is incorrectly defined.

Occurs when the M option 1s not specified but

macros are used, when a macro is defined
within another macro definition, when the
parameters are not correctly specified, or an
unrecognized parameter is found in the macro
body. .

UNBALANCED QUOTES
Indicates that a string is not properly
bounded by single quote marks or quote marks
inside a string are not properly matched in
pairs.

ASSEMBLER COMMAND ERROR
Indicates that an assembler command 1is not
recognized or is incorrectly formed. The
command must begin with an asterisk (*) in
column one, the first letter identifies the
command, and any parameters such as “ON’, OFF’
or a filename must be properly delimited. The
command will be ignored.

MACRO EXPANSION ERROR
Indicates that the expansiocn of a single line
in a macro has overflowed the expansion
buffer. Occurs when substitution of parameter
causes the line to increase in length beyond
the capacity of the buffer (currently 128

281

16)

17)

18)

19)

20)

21)

22)

bytes). The line will be truncated.

MACRO STACK OVERFLOW
Indicates that the depth of nesting of macro
calls has exceeded the macro parameter stack
buffer capacity. Occurs when the sum of the
parameter string lengths (plus some additional
information for each macro call) is longer
than the buffer (currently 256 bytes), which
often happens if infinitely recursive macro
calls are used. The macro call which caused
the error will be ignored.

INCLUDE NESTED TOO DEEP
Indicates that a *Include command was found
which would have caused a nesting of included
source files to a depth greater than four,
where the original source file is considered
to be level one. The command will be ignored.

GLOBAL DEFINITION ERROR
Indicates that either a label was present on a
GLOBAL pseudo-op statement, or there was an
attempt to give an absolute value to a GLOBAL
symbol in a relocatable module. The latter
case is not allowed since all GLOBALs in a
relocatable module will be relocated by the
Linker. May occur either after a GLOBAL
pseudo-op or after an EQU or DEFL statement
which 1is attempting to absolutize a
relocatable GLOBAL symbol.

EXTERNAL DEFINITION ERROR
Indicates that either a label was present on
an EXTERNAL pseudo-op statement, or there was
an attempt to declare a symbol to be EXTERNAL
which had previously been defined within the
module to have an absolute value. May occur
due to a misspelling or other oversight.

NAME DECLARED GLOBAL AND EXTERNAL
Indicates that the name was found in both a
GLOBAL pseudo=-op and an EXTERNAL pseudo-op
which is contradictory. May occur due to a
misspelling or other oversight.

LABEL DECLARED AS EXTERNAL
Indicates that a name has been declared in
both an EXTERNAL pseudo=-op and as a label in
this module. May occur due to a misspelling
or other oversight.

INVALID EXTERNAL EXPRESSION
Indicates that a symbol name which has been
declared in an EXTERNAL pseudo-op is
improperly used in an expression. May occur
when invalid arithmetic operators are applied
to an external expression or when the mode of

282

an operand must be either absolute or
relocatable.

23) INVALID RELOCATABLE EXPRESSION g
Indicates than an expression which contains a
relocatable value (either a label or the
reference counter sumbol $§ in a relocatable
module) 1s improperly formed or used. May
occur when invalid arithmetic operators are
applied to a relocatable expression or when
the mode of an operand must be absolute.
Remember that all relocatable values
(addresses) must be represented in 16 bits.

24) EXPRESSION MUST BE ABSOLUTE
Indicates that the mode of an expression is
not absolute when it should be. May occur
when a relocatable or external expression is
used to specify a quantity that must be either
constant or representable in less than 16
bits. ‘ .

25) UNDEFINED GLOBAL(S)

Indicates that one or more sumbols which were
declared in a GLOBAL pseudo-op were never
actually defined as a label in this module.
May occur due to a misspelling or other
oversight. .

26) WARNING - ORG IS RELOCATABL
Indicates that an ORG statement was
encountered in a relocatable module. This
warning is issued to remind the user that the
reference counter is set to a relocatable
value, not an absolute one. May occur when
the Absolute option is not specified for an
absolute module. This warning may be
suppressed by the NOW option.

283

2-80 CRUSS ASSEMBLER

07/09/76 10:22:47
0BJ CODt STMY SOURCE STATEMENT

LUC

0000
Q001
0004
0007
0008
0009
000A
Q008
vooc
000D
000E
0010
0012
0014
00le
0ols
0019
001C
00LF
0020
0021
0022
0023
0024
0025
0026
0028
0029
002A
0028
002C
002€
0030
0032
0034
0036
0038
003A
003C
003D
0040
0043
0044
0045
0046
0047
0048
0049
004A
004C
004E
0052
0056
0058
005A
005C
005E
0060
0062
0064
0066
006A
006E
0070
0072
0074
0076
0078
0074

8E
DDYEOS
FDBEOVS
8F

88

89

8A

8B

8C

8D
CE20
ED4A
ED5A
ED6A
EDTA
86
DDB60S
FD8605
87

80

81

82

83

84

85
€620
09

19

29

39
DDOS
0D19
0029
DD39
FDOY
FD19
FD29
FD39
A6

DDA G605
FDA605
A7

A0

AL

a2

A3

A4

AS
E620
CB46
DDCBO546
FDCBO546
CB47
CB40
CB4l
CB42
CB43
CB44
CB45
CB4E
DDCBOS4E
FDCBOS4E
CB4F
CcB48
CB49
CB4A
CB4B
cB4C
CB4D

OB ~NVPD N -

APPENDIX B

INSTRUCTION SET ALPHABETICAL ORDER

1.06 OF 06/18/76

VERSION
0PCODE LISTING
ADC Ay (HL)
ADC Ay (IX+IND)
ADC Ay {1Y+IND)
aucC ArA
apc A,yB
ADC AyC
ADC AyD
ADC AGE
ADC AyH
ADC AyL
ADC AyN
ADC HL,BC
ADC HL,DE
ADC HL o HL
ADC HL, SP
ADD Ay (HL)
ADD Ay (IX+IND)
ADD Ay {LIY+IND)
ADD AyA
ADD AyB
ADD A,C
ADD Ay D
ALD AyE
ADD AyH
ADD Ayl
ADD CAWN
ADD HL,B8C
ADD HLsDE
ADD HL HL
ADD HL, SP
ADOD 1x,8C
ADD I1X,0E
ADD IXs IX
ADD IXySP
ADD Iy,8C
ADD Iy ,DE
ADD IY, 1Y
ADD 1Y,5SP
AND (HL)
AND {IX+IND)
AND (1Y+IND)
AND A
AND -]
AND c
AND D
AND E
AND H
AND L
AND N
BIT 0y (HL)
BIT 0, (IX+IND)
BIT 0, (IY+IND)
8IT 0,4
BIT 0,8
BIT 0,C
B1T 0,D
8IT 0,E
BIT OsH
BIT OsL
BIT 1,{HL}
BIT 1Ly, {IX+IND)
8IT 1, (IY+IND)
BIT LyA
BIT 1+8
BIT 1,C
BIT 1,0
BIT 1,E
BIT 1yH
8IT Lol

284

Loc

007C
Q07E
0082
0086
0os8
008A
008C
008E
0090
0092
0094
0096
009A
009E
00A0
U0A2
00A4
0046
00A8
00AA
00AC
00AE
0082
0086
o088
008A
008C
00BE
0gco
00cC2
00C4
00C6
00CA
00CE
00D0
0002
00D4
0006
0008
00DA
0oncC
00DE
Q0E2
O0Eé6
00ES8
00EA
0OEC
00EE
00F0
Q0F2
00F4
00F6
OOFA
00FE
0100
0102
0104
0106
0l08
010A
o10C
0l0F
0112
0115
0118
olls
OllE
o121
0124

08J CODE

c8s56
0DCBOS556
FDCBOU556
CcB57
CB50
C851
cB52
CcB53
cB54
CB55
CBSE
DDCBOSSE
FDCBOUSSE
CB5F
cB58
CB59
CBSA
CB58
CcB5C
cB5D
CB66
0DCBOS66
FDCBO566
cB67
CB60
cBé6l
CB62
CB63

(o 1.2
CB65
CB6E
DDCBOS6E
FDCBOS56E
CB6F
CB68
CBe69
CB6A
(9:1.1:)
cB6C
cB6D
cB76
DDCBOST76
FDCBOS76
cB77
C870
ca71
cB72
cB73
cB74
ce7s
CB7E
DDCBOS7E
FDCBOSTE
CBTF
cs78
CB79
CB7A
cB78
cB7C
CB7D
DCB405
FC84Q5
D48405
CD8405
C48405
F48405
ECB8405
E48405
CC8405

STMT SOURCE STATEMENT

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

BIT
BIT
8IT
BIT
8IT
BIT
BIT
BIT
BIT
8IT
BIT
BIT
B17
8IT
BIT
8IT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
8IT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
8IT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
B8IT
BIT
BIT
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

29 (HL)
2y {IX+IND)
2, (1Y+IND)
2,A
248
2,C
240
24E
24H
2,L
3,(HL)
3y(IX+IND)
3, (1Y+IND)
3,A
3,B
3,C
34D
3,E
34H
3.L
4y (HL)
4y LIX+IND)
4y(1Y+IND)
4y A
4,8
4yC
44E
4+H
4L
5y{HL)
Sy (IX+IND)
5, (1Y+IND)
SyA
58
5+C
590
S5»E
S+H
5L
64y (HL)
6y (1X+IND)
69 LIY+IND)
69A
648
6,C
64D
64E
64H
6yL
Ty (HL)
T+ LIX+IND)
T+ LIV+IND)
XY,
7+8
T74C
740
T+E
T+H
TeL
CoNN
My NN
NC yNN
NN
NZ ¢ NN
P s NN
PE+NN
PQOyNN
ZyNN

2-80 CROSS ASSEMBLER VERSION

07/09/76 10:22:47 OPCOUDE LISTING
LoC 0BJ CODE STMT SOURCE STATEMENT
0127 3F 139 CCF
o128 BE 140 CP (HL)
0129 DDBEOS 141 CP (IX+IND)
0l12C FDBEOS 142 CP (IY+IND)
012F BF 143 cP A
0130 B8 144 P B
0131 B9 145 P C
0132 BA 146 cP D
0133 88 147 P E
0134 BC 148 CP H
0135 8D 149 P L
0136 FE20 150 PN
0138 EDA9 151 cPD
013A EDBY 152 CPOR
013C EDAL 153 cPI
013E EDB1 154 CPIR
0140 2F 155 cPL
ol4l 27 156 DAA
0142 35 157 DEC (HL)
0143 DD3505 158 DEC (IX+IND)
0146 FD3505 159 DEC (IY+#IND)
0149 3D 160 DEC A
0l4A 05 161 DEC 8
0148 0B 162 DEC BC
014C 00 163 DEC C
014D 15 164 DEC D
014E 18 165 DEC DE
014F 1D 166 DEC E
0150 25 167 DEC H
o151 28 168 DEC HL
0152 0D28 169 DEC IX
0154 FD28 170 DEC 1Y
0156 20 171 DEC L
0157 38 172 DEC sSP
0158 F3 173 1} ¢
0159 102¢ 174 DJNZ DIS
0158 FB 175 El
015C E3 176 EX {(SP),HL
0150 DDE3 177 EX (SP),IX
O1SF FDE3 178 EX (SP)yIY
olél 08 179 EX AF,AF*
0162 €EB 180 EX DE,HL
0163 D9 181 EXX
oles 76 182 HALT
0165 ED46 183 I o
0167 EDS56 184 M 1
0169 EDSE 185 M2
0168 ED78 186 IN Ay(C)
016D DB20 187 IN AN
016F ED4O 188 IN B,(C)
0171 ED48 189 IN CyiC)
0173 EDS0 190 IN DyO)
0175 ED58 191 IN EslC)
0177 ED6O 192 IN Hy(C)
0179 EDéB 193 IN LyiC)
0178 34 194 INC (HL)
017C DD3405 195 INC (IX+IND)
017F FD3405 196 INC (IY+IND)
0182 3C 197 INC A
0183 04 198 INC B
olse 03 199 INC BC
0185 oOC 200 INC C
0186 14 201 INC D
0is7 i3 202 INC DE
o188 1C 203 INC E
0189 24 204 INC H
olea 23 205 INC HL
o188 DD23 206 INC IX
0180 FD23 207 INC 1Y

1.06 OF 06/18/76

Loc

018F
0190
0191
0193
0195
0197
0199
019A
019C
019E
01aAl
01A4
O01A7
OLlAA
O1AD
0180
o183
0186
0189
o188
O01BD
018F
0l1C1
01C3
0l1C4
01Cs
01Cé6
01C7
olcs
01C9
01CA
olLce
olCcC
01CE
0101
0104
0107
01DA
0100
01EO
OlE3
01E7
0lEA
OlED
01Fo
01F3
0lF6
01F9
OlFC
0200
0203
0207
0208
020E
0212
0216
021A
0218
021C
0210
0220
0223
0226
0227
0228
0229
022A
0228
0z2C

285

08J COOE

2c
33

EDAA
EDBA
EDA2
EDB2

E9

DDES
FDE9
DAB40S5
FAB405
D28405
€38405
28405
F26405
EAB4OS
£28405
CA8405
382
182E
302€
202E
282€

02

12

17

70

71

72

73

7%

75

3620
DD7705
DD7005
DD7105
DD7205
0D7305
DD7405
DD7505
DD360520
FD7705
FD7005
FD7105
FD7205
FD7305
FDT405
FD7505
FD360520
328405
ED438405
EDS538405
228405
DD228405
FD228405
ED738405
0A

1A

1€
OD7E0S5
FD7EQS
348405
F

78

79

7A

78

7c

EDS7

STMT SOURCE STATEMENT

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

1267

268
269

270
271
272
2713
274
275

276

INC
INC
INO
INDR
INI
INIR
JP

gp

JP
JP
JP
JP
JP
JP
Je
JP
JP
JP
JR
JR
JR
JR
JR
LD
LD
LD
LD
Lo
Lo
Lo
Lo
LD
LD
LD
Lo
Lo
Lo
LD
Lo
Lo
Lo
LD
LD
Lo
L
LD
LD
Lo
Lo
Lo
Lo
Lo
Lo
Lo
LD
Lo
LD
LD
Lo
Lo
LD
Lo
Lo
Lo
LD
LD
LD
LD
LD

L
SP

{HL)

(1X)

(1y)

CoNN

My NN

NCyNN

NN

NZy NN

PyNN

PEJNN

POy NN

Z+NN

C,0IS

DIS

NC,DIS
NZ,DIS
Z,DIS
(8ClyA
(DE) »A
(HL),A
(HL) 8
(HL)HC
{HL),D
(HL) »E
(HL) oH
(HL),L
{HL) +N
(IX+IND),A
(IX+IND),B
(IX+IND),C
(IX+IND),D
(IX+IND),E
(IX+IND)H
(IX+IND) oL
(IX+IND} N
(IY+IND) A
(IY+IND},8
(IY+IND),C
(IY+IND) D
(IY+IND),E
(1Y+IND)yH
(IY+IND)oL
(IVY+IND) N
(NN) A
{NN),8C

"(NN) ,DE

(NN) oHL
(NN)oIX
{NN) o 1Y
(NN}, SP
A,(BC)

A, (DE)

Ay (HL)

Ay LIX+IND)
As(LY+IND)
Ay (NN)

AyA

A:B

AyC

AyD

AsE

AyH

Ayl

Z-80 CROSS ASSEMBLER
0OPCODE LISTI
STMT SOURCE STATEMENT

07/09/76 10:22:347
Loc 08J CODE
022E 70 2117
022F 3€20 278
0231 46 279
0232 DD4605 280
0235 FD4605 281
0238 47 282
0239 40 283
023A 41 284
0238 42 285
023C 43 286
023D 44 287
023E 45 288
023F 0620 289
0241 ED4B8405 290
0245 0168405 291
0248 4E 292
0249 DD4EOS 293
024C FD4EO05 294
024F 4F 295
0250 48 296
0251 49 297
0252 4A 298
0253 48 299
0254 4C 300
0255 4D 301
0256 0E20 302
0258 56 303
0259 DD5605 304
025C FD5605 305
025F 57 306
0260 50 307
0261 51 308
0262 52 309
0263 53 310
0264 54 311
0265 55 312
0266 1620 313
0268 ED5B88405 314
026C 118405 315
026F SE 316
0270 DDSEO0S 317
0273 FDSEOS 318
0276 SF 319
0277 58 320
0278 59 321
0279 SA 322
027A 58 323
0278 sC 324
027C 50 325
0270 1€20 326
027F 66 327
0230 DD6605 328
0283 FD6605 329
0286 67 330
0287 60 331
0288 61 332
0289 62 333
028A 63 334
0288 64 335
028C 65 336
0280 2620 337
028F 2AB405 338
0292 218405 339
0295 ED47 340
0297 DD2AB8405 341
0298 0D218405 342
029F FD2AB40S 343
02A3 FD218405 344
02A7 6E 345

LD
Lo
Lo
LD
Lo
Lo
Lo
LD
Lo
Lo

LD

Lo
LD
LD
Lo
Lo
LD
LD
LD
Lo
LD
Lo
LD
Lo
Lo
Lo
Lo
LD
LD
Lo
Lo
Lo
LD
Lo
Lo
LD
LD
LD
Lo
Lo
Lo
Lo
LD
LD
Lo
Lo
Lo
LD
Lo
Lo
Lo
LD
L
Lo
LD

VERSION

Ayl

AN

By (HL)

By CIX+IND)
By(IY+IND)
ByB

8,C

840

ByE
BsHoNN

Byl

ByN

BCy {NN)
BCyNN
Cy(HL}
CylIX+IND)
Cy(IY+IND)
C'A

Ce8

CE

CoH

CoL

CeN

Dy {HL}

Dyl IX+IND)
Dy LIY+IND)
D.8

0,C

D,D

DyE

DsH

D,L

DN

DE, (NN)
DE o NN

Ey (HL)

Es ({ IX+IND)
Eo{LY+IND)
EyA

EeB

EJC

EyD

EsE

EsH

Eosl

EsN

Hy (HL)

Hy L IX+IND)
Hy ({1Y+IND}
HyA

HyB

H,C

HsD

HyE

HeH

Hyl

HsN

HL s (NN)

HL +NN

IA

IXs I{NN)
IXsNN

1Y, {NN)
1Y+ NN

Ly (HL)

1.06 OF 06/18/76

NG

286

Lac

02A8
02A8
02AE
Q2AF
0280
0281
0282
0283
02B4
0285
0287
0288
028C
028BE
02C0
02C3
02C5
02C7
02C9
o2cs
02C0
02CE
02CF
02D2
0205
0206
0207
0208
0209
02DA
0208
020C
020€
02E0
02E2
02E4
02E6
02E8
02EA
02€C
02EE
02F0
02F2
02F4
02F6
Q2F7
02F8
02F9
02FA
02FC
02FE
02FF
0300
0301
0302
0304
0306
0308
030C
0310
0312
0314
0316
Q318
031A
031C
031E
0320
0324

08J CODE

DD6EO5
FD6EOS
6F

68

69

6A

68

6C

60
2E20
EDTB8405
F9
ODF9
FOF9
318405
EDASB
EDBB
EDAO
EDBO
ED44
[s]0}

Bé
DDOB605
FDB605
B7

BO

Bl

B2

B3

B4

BS
F620
EDBB
EDB3
ED79
ED41
ED49
ED51
€059
ED61
ED6S
0320
EDAB
EDA3
Fl

Ccl

0l

El
DDEL
FDEL
F5 :
Cc5

D5

ES
DOES
FDES
cB86
DDCBO586
FDCBOS586
cBaav
cB8o
cBsl
cB82
cB83
CBo4
cess
CB8E
DDCBOS8E
FDCBOSBE

346

347

348

349

350
351

352

353
354

355

356

357

358
359
360

361

362
363

364
365
3606
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
4l2
413
4l4

Lo
LD
Lo
LD
Lo
LD
LD
LD
LD
LD
LD
Lo
LD
LD
Lo
LOD
LDOR
Lol
LOIR
NEG
NOP
OR
OR
OR
oR
OR
OR
orR
OR
OR
OR
OR
OTOR
OTIR
ouT
out
out
out
out
ourt
out
out
ouTD
ouTI
POP
POP
POP
POP
PoP
POP
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

STMT SOURCE STATEMENT

Ly ({IX+IND)
Ly {IY®IND)
LeA

L,8

L.C

LD

LsE

LyH

Lyl

L+N
SPy(NN)
SPyHL
SPyIX
SPy1Y
SPyNN

(HL)
{IX+IND)
(IY+IND)

ZrIMooo>»

(C)yA
(C),8
(C)sC
{C).D
(C)E
(C)oH
{C)ol
NyA

1Y
0,{HL)
0o [IX+IND)
0, (1Y+IND)
0yA
0+8
0,C
- 0s0
0,E
OsH
Oyl
1,(HL)
Ly ({IX+IND)
1, ({IY+IND)

7-80
07/09/76 10:22:41
Loc 08J CUDE
0328 C88F
032A CBs8
032C CB8Y
032E CBBA
0330 CB8B
0332 CB8C
0334 CBBD
0336 CB96
0338 DDCBUS96
033C FDCBO596
0340 CB97
0342 CB9O
0344 CB9I
0346 CB92
0348 CB93
034A CB94
034C CB95
034E CBIE
0350 DOCBOSYE
0354 FDCBOS9E
0358 CB9F -
0354 CBYS
035C CB99
0356 CB9A
0360 CB9B
0362 CcB9C
0364 CB9D
0366 CBA6
0368 DDCBOSAG
036C FDCBOSAG
0370 CBAT
0372 CBAO
0374 CBAlL
0376 CBA2
0378 CBA3
037A CBA4
037C CBAS
037E . CBAE
U380 DDCBOSAE
0384 FDCBOSAE
0388 CBAF
038A CBAB
038C CBA9
038E CBAA
0390 CBAB
0392z CBAC
0394 CBAD
0396 CBB6
0398 DDCBOS5B6
039C FDCBOS586
03A0 CBBT
03A2 CBBO
03A4 CBB1
03A6 CBB2
03A8 CBB3
03AA CBB4
03AC CBBS
03AE CBBE
0380 DDCBOSBE
0384 FDCBUSBE
0388 CBBF
038A CBB88
03BC CBBY
03BE CBBA
03C0 CBBB
03C2 CBBC
03C4 CBBD
03C6 €9
03C7 D8

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
«61
462
463
464
465
466
467
468
469
470
471
472
473
474
415
476
477
478
479
%80
481
482
483

CROUSS ASSEMBLER
0PCODE
STMT SOURCE STATEMENT

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES

RES
RES
RES
RET
RET

VERSION

1,A

148

1,C

1.0

1,E

14H

1sL

29 (HL)

2, { IX+]IND}
2y L 1Y+IND)
24A

248

2,C

2,0

24E

24H

2yL

3, (HL)
3,(IX+IND)
3y (IY+IND)
3,4A

3,8

3,C

3,0

3,E

3,H

3.L

49 (HL)

4. (IX+IND)
4y IY+IND)
4404

498

44C

440

44E

49H

440

54 (HL)

Sy { IX+IND)
Sy LIY+IND)
S5yA

5.8

S'C

5,0

5»€

5¢H

SeL .

645 {HL)

64 (IX+IND)
6y LIY+IND)
6yA

6,8

6,C

640

6.E

64H

64L
T+(HL)

Ty (IX+IND)
T7+,(1Y+IND)
T+A

7.8

7+C

740

T.E

7.H

TsL

C

l.06 OF 06/18/76

LISTING

287

Loc

03Cs
03C9
03CA
03cs
03CC
03C0
03CE
03CF
0301

0303
03D5
0309
030D
03DF
03El
03E3
03€E5
03€E7
03€9
03EB
03EC
03EE
03F2
03F6
03F8
03FA
03FC
O3FE
0400
0402

0404
0405
0407
V409
040D
041l

04l3
0415

0417
0419
041B
0410
041F

0420
0422

0426
042A
042C
042E

0430
0432
0434
0436
0438
0439
0438
043C
043D
043E
043F
0440
0441

0442
0443
0444
0447
044A
0448
044C

' 08J CODE

F3
00
co
Fo
E6
EO
c8
E04D
ED45
CB16
DDCBO516
FOCBOS16
cB17
CB10
CBL1
cB12
c813

. CBl4
celis
17
cBO6
DDCBOS506
FOCBO506
c807
CBOU
c8ol
CBO2
ceo3
CBU4
cB05.
07
ED6F
CBLE
DDCBOSLE
FOCBOSLE
CBLF
cB18
CBlY
CBLA
cB18,
CB1C
CB1D
1F
CBOE
DDCBOS50E
FDCBOSOE
CBOF
cBO8
€809
CBOA
cBoB
c80C
C80D
OF
ED67
c7
07
OF
€7
EF
1
FF
CF
SE
DD9YEDS
FDIEOS
9F
98
99

STMT SOURCE STATEMENT

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
5217
528
529
530
531
532
533
534
535
536
537
538
539
540
S41
542
543
544
545
546
547
548
549
550
551
552

RET
RET
RET
RET
RET
RET
RET
RETI
RETN
RL
RL
RL
RL
RL
RL
RL
RL
RL
RL
RLA
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLCA
RLD
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RRA
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRCA
RRD
RST
RST
RST
RST
RST
RST
RST
RST
S8
saC
sBC
ssC
secC
S8C

{
(
(

FIMOO®E>

(
(
(

rrmodod

M
NC
NZ
P
PE
PO
z

HL)
[X+IND)
LY+IND)

(HL)
(IX+IND)
(1Y+IND)

FIMOO® P>

HL)
IX+IND)
IY+IND)

(HL)
{IX+IND)
(1Y+IND)

rImooOo>

0

10H

18H

20H

28H

30H

38H

8

Ay (HL)

Ay L IX+IND)
Ay,(IY+IND)
AvA

A,B

A,C

Z-80 CROSS ASSEMBLER
10:22:47
STMT SOURCE STATEMENT

01/09/176

LoC 0BJ CODE
044D 9A

V44E 9B

044F 9C

0450 9D

06451 DE20
0453 ED42
0455 ED52
0457 ED62
0459 EDT2
0458 37

045C CBC6
045E DDCBOSC6
0462 FDCBOSCG
0466 CBCT
0468 CBCO
046A CBC1
046C CBC2
046E CBC3
0470 CBC4
0472 CBCS
0474 CBCE
0476 DDCBOSCE
047A FDCBOSCE
047 CBCF
u4B0 CBCS
0482 CBCY
0484 CBCA
0486 CBCB
0488 CBCC
048A CBCD
048C CBD6
048E DDCBOSDG
0492 FDCBOS5D6
0496 CBD7
0498 CBDO
049A CBOD1
049C CBL2
049E CBD3
04A0 CBD4
04A2 CBDS
04A4 CBDB
04A6 CBDE
04A8 DDCBOSDE
04AC FDCBOSDE
0480 CBDF
0482 €809
0484 CBDA
04B6 CBD8
0488 CBOC
04BA CBULD
048C CBE6
04BE DDCBOSE6
04C2 FDCBOSEG
04C6 CBET
04C8 CBEO
04CA CBEL
04CC CBE2
04CE CBE3
04D0 CBE4
04D2 CBES
0404 CBEE
04D6 DDCBOSEE
040A FDCBOSEE
04DE CBEF
04E0 CHEW
04E2 CBE9
04E4 CBEA
04E6 CBEB
04EB CBEC

553
554

555
556
557
558
559
560
561

562
563

564

565
566

567
568
569

570
571
572
573
574
575
576
5717
578
519
580
581

582
583
584
585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
6la
615
6lé
617
6l8
619
620
621

VERSION
OPCODE LISTING
S8C AyD
SBC AyE
secC AyH
sBC AsL
sac AN
SBC HL ¢8C
SB8C HL,DE
SBC HL 9 HL
SBC HL,SP
SCF
SET 0y (HL)
SET Oy LIX+IND)
SET 0y (IY+IND)
SET 0sA :
SET 048
SET 0,C
SET 0,D
SET (X33
SET OsH
SET Oyt
SET 1y (HL)
SET 1, (L IX+IND)
SET Ly (LIY+IND)
SET 1+A
SET 1,8
SET 1.C
SET 1.0
SET 1€
SET 1+H
SET 1sL
SET 24 (HL)
SET 2y ({IX+IND)}
SET 2, {1Y+IND)
SET 2,A
SET 248
SET 2+C
SET 2,0
SET 24E
SET 2yH
SET 24L
SET 38
SET 3, (HL)
SET 3, IX+IND)
SET 3, (1Y+IND)
SET 3,A
SET 3,C
SET 3,0
SET 3,E
SET 34H
SET 3L
SET 449 (HL)
SET 49 LIX+IND)
SET 4y LIY+IND)
SET 49A
SET 4,48
SET 4,C
SET 4,0
SET 44E
SET 44H
SET 4oL
SET 59 (HL)
SET S5y {IX+IND)
SET 5, (1Y+IND)
SET 5,A
SET 548
SET 5,C
SET 540
SET 5,E
SET 5yH

288

Loc

04EA
U4EC
Q4EE
04F2
04F6
04F8
04FA
04FC
04FE
0500
0502
0504
0506
050A
U50E
0510
0512
0514
0516
0518
051A
051C
051E
0522
0526
0528
052A
052C
052E
0530
0532
0534
0536
053A
053E
0540
0542
0544
0546
0548
054A
054C
054E
0552
0556
0558
055A
055C
055E
0560
0562
0564
0565
0568
6568
056C
056D
056E
056F
0570
0571
0572
0574
0575
0578
0578
057C

057D
057€

L.06 OF 06/18/76

084 CODE

CBED
CBF6
DDCBOSFo
FDCBOS5F6
CBF7
CBFO
CBF1
CBF2
CBF3
CBF4
CBF5
CBFE
DDCBOSFE
FOCBOSFE
CBFF
CBF8
cBr9
CBFA
CoF8
CBFC
CBFD
cB26
DDCBOS26
FDCBO526
cB27
cB20
[1:¥33
cBz22
cB23
c824
cB25
CB2E
DDCBOS52E
FDCBOS52E
CB2F
c828
cB29
CB2A
(9:¥1:}
cs2c
c820
CB3E
DDCBOS3E
FDCBOS3E
CB3F
CcB3s8
CcB39
CB3A
cs38
C83C
Cc83d

96
DD9605
FD9605
917

90

91

92

93

94

95

D620

AE
DDAEOS
FDAEOS
AF

A8

A9

AA

STMT SOURCE STATEMENT

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
641
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
6719
680
681
682
683
684
685
686
687
688
689
690

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL
sus
sus
sus
SUB
sus
sus
Sus
sus
sus
SuB
)
XOR
XOR
XOR
XOR
XOR
XOR
X0R

Syl

Gy (HL)

69 (IX+IND)
6y (IY+IND)
69A ¢

648

6,C

640

6+4E

6)H

6yL

Ty(HL)

Ty (IX+IND)
T, LIV+IND)
T+A

7+8

T7+C

740

T4E

7¢H

TsL

(HL)
(IX+IND)
(LY+IND)

(IX+IND)
(1Y+IND)

{IX+IND)
(IY+IND)

FIMOO®P»

(HL)
(IX+IND)
(IY+IND)

ZrPIMOO®>»

=
»xr
* -
:
Zz
o

(IY+IND)}

CO®P»

07/09/76
LucC oBJ
057F AB
0580 AC
0581 AD
0582 EE20
U584

7-80 CROSS ASSEMBLER

10:22:417

691
692
693
694
695
696
697
698
699
700

NN
IND
M

N
oIS

VERSION

QPCODE LISTING
CODE STMT SOURCE STATEMENT

XOR
X0OR
XOR
XOR
DEFS
EQU
EQU
EQuU
EQU
END

Zr-rIm

2
5
10H
20H
30H

1.06 OF 06/18/76

289

APPENDIX C
INSTRUCTION SET NUMERICAL ORDER

1-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:20:50 «OPCODE LISTING

LoC 0BJ CODE STMT SOQURCE STATEMENT Loc 0BJ CODE STMT SOURCE STATEMENT
0000 0o 1 NOP 0063 45 70 LD B,L
0001 018405 2 LD BC NN 0064 46 71 LD By(HL)
0004 02 3 LO (BCl,A 0065 47 72 LD 8,A
0005 03 4 INC 8C 0066 48 73 LD C,y8
0006 04 5 INC B8 0067 49 T4 LD C,C
0007 0sS 6 DEC 8 0068 4A 75 LD C,D
0008 0620 7 LD B,N 0069 48 76 LD CyE
000A 07 8 RLCA 006A 4C 77 LD CyH
[o]e]+]:] 08 9 EX AF,AF* 0068 4D 18 LD C,tL
000C 09 10 ADD HL,BC 006C 4E 79 LD Co(HL)
0000 0A 11 LD A,(BC) 0060 4F 80 LD CyA
000E [*]:] 12 DEC 8C 006E 50 81 LD D,8
Q00F oC 13 INC C 006F 51 82 LD D,C
oolo0 0D 14 DEC C 0070 52 83 LD DD
0011 0E20 15 LD CoN 0071 53 84 LD D,E
0013 OF 16 RRCA 0072 54 85 LD DsH
0014 102€ 17 DJINZ DIS 0073 55 86 LD DyL
00lé 118405 18 LD DEJNN 0074 56 87 LD Dy (HL)
0019 12 19 LD (DE),A 0075 57 88 LD DA
001A 13 20 INC DE 0076 58 89 LD EsB
0018 14 21 INC D 0077 59 90 LD E.C
Q01C 15 22 DEC D 0078 SA 91 LD EoD
0010 1620 23 LD DoN 0079 58 92 LD EsE
Q01F 17 24 RLA 007A 5C 93 LD EoH
0020 182E 25 JR DIS 0078 50 94 LD E,lL
0022 19 26 ADD HL,DE 007¢C 5E 95 LD EslHL}
0023 1A 27 LD A,(DE) 007D 5F 96 LD E.A
0024 18 28 DEC DE 007E 60 97 LD H,B
0025 1C 29 INC E 007F 61 98 LD HyC
0026 10 30 0EC E 0080 62 99 LD HyD
0027 1E20 31 LD E«N [+]: 3 63 100 LD H4E
0029 1F 32 RRA 0082 64 101 LD HsH
002A 202€ 33 JR NZ,DIS 0083 65 102 LD Hsl
002C 218405 34 LD HLe«NN 0084 66 103 LD He(HL)
002F 228405 35 LD (NN),HL 0085 67 104 LD HsA
0032 23 36 INC HL 0086 68 105 LD LB
0033 24 37 INC H 0087 69 106 LD L,C
0034 25 38 DEC H 0088 6A 107 LD LoD
0035 262V 39 LD H«N 0089 68 108 LD LyE
0037 27 40 DAA 008A 6C 109 LD LsH
0038 282€E 41 JR Z,01S ¢088B 6D 110 L0 L,L
003A 29 42 ADD HL,HL [e]1]:19 6E 111 LD Ls(HL)
0038 2A8405 43 LD HL4s(NN) 0080 6F 112 LD LyA
003E 28 44 DEC HL 008E 70 113 LD (HL)+8B
003F 2C 45 INC L Q08F 71 ll4 LD (HL)sC
0040 20 46 DEC L 0090 72 115 LD (HL),»D
0041 2€20 4“7 LD L4N 0091 13 116 LD (HL)E
0043 2F 48 cPL 0092 T4 117 LD (HL)}oH
0044 302¢€ 49 JR NC,DIS 0093 75 118 LD {(HL),L
0046 318405 50 LD SPsNN 0094 16 119 HALT
0049 328405 51 LD (NN),A 0095 77 120 LD (HL)yA
004C 33 52 INC SP 0096 78 121 LD A,B
004D 34 53 INC (HL) 0097 79 122 LD A,C
004E 35 54 DEC (HL) 0098 T7A 123 LD AyD
Q04F 3620 55 LD (HL),N 0099 78 124 LD A,E
0051 37 56 SCF 009A 7C 125 LD A,H
0052 382E 57 JR CyDIS 0098 0 126 LD A,L
0054 39 58 ADD HL,SP 009C 7€ 127 LD A,(HL)
0055 3A8405 59 LD AsINN) 009D 7F 128 LD AsA
vos8 3B 60 DEC SP 009E 80 129 ADD A,.B
0059 3C 61 INC A Q09F 8l 130 ADD A,C
005A 30 Ce2 DEC A 00A0 82 131 ADD A4D
0058 3e20 63 LD AyN 00Al. 83 132 ADD AsE
0050 3F 64 CCF 00A2 ' 84 133 ADD A¢H
005E 40 65 LD 8,8 00A3 85 134 ADD A,L
005F 41 66 LD B,C Q0A4 86 135 ADD A, (HL)
0060 42 67 L0 B,D 00AS 87 136 ADD AyA
0061 43 68 LD ByE 00A6 88 137 ADC A48
0062 44 69 LD BsHoNN 00A7 89 138 ADC A.C

290

Z-8B0 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:20:50 +OPCODE LISTING

Loc 0BJ CODE STMT SOURCE STATEMENT Loc 0B8J CODE STMT SOURCE STATEMENT
00A8 8A 139 ADC A,D 00FB 00 208 RET NC
00A9 88 140 ADC A,E Q0FC)] 209 POP DE
00AA 8C 141 ADC AsH O0FD D28405 210 JP NCoNN
00AB 80 142 ADC A, L 0100 D320 211 OUT NyA
00AC 8E 143 ADC A, {HL} 0102 D484 05 212 CALL NC,NN
00AD 8F 144 ADC AsA 0105 DS 213 PUSH DE
O00AE 90 145 Sus B 0106 0620 214 SuB N
Q0AF 91 146 sus C 0108 D7 215 RST 10H
0080 . 92 147 sus 0 0109 D8 216 RET C
[+[0]-7} 93 148 SuUB E 0l10A D9 217 EXX
0082 94 149 SuB H 0lo08 DAB405 218 JP CyNN
0083 95 150 sus L 010E DB20 219 IN A,N
0084 96 151 Sus (HL) oiLlo DCB840S 220 CALL C,NN
0085 97 152 SuB A o113 DE20 221 SBC AlN
00B6 98 153 SBC A,B 0115 OF 222 RST 18H
0087 99 154 SBC A,C o116] 223 RET PO
ooB8 9A 155 SBC A,D o117 El 224 POP HL
0089 98 156 SBC ALE 0118 E£28405 225 JP POyNN
008A 9C 157 SBC A.H olls E3 226 EX (SP)yHL
ooBB 90 158 SBC Ayl o1icC E48405 227 CALL POyNN
oosC 9€ 159 SBC As(HL) OllF E5 228 PUSH HL
008D 9F 160 SBC AyA 0120 E620 229 AND N
QOBE A0 161 AND B 0122 ET 230 RST 20H
QOBF Al 162 AND C 0123 E8 231 RET PE
00Co A2 163 AND D 0124 E9 232 JP (HL)
0oc1 A3 164 AND E 0125 EA8405 233 JP PEJNN
00Cc2 A4 165 AND H 0128 EB 234 EX DEHL
00C3 AS 166 AND L 0129 EC8405 235 CALL PE,NN
00C4 Ab l67 AND (HL) 0l2¢ EE20 236 XOR N
00CS A7 168 AND A 012E EF 2317 RST 28H
0océe A8 169 XOR B8 012F FO 238 RET P
00C7 A9 170 XO0R C 0130 Fl 239 POP AF
[+]e]0%:] AA 171 XO0R D 0131 F28405 240 JP P4NN
0ace LY:] 172 XO0R E 0134 F3 241 DI
0QCA AC 173 XOR H 0135 F48405 242 CALL PoNN
ooce AD 174 XOR L 0138 F5 243 PUSH AF
0occ AE 175 XOR (HL) 0139 F620 244 OR N
0oCcb AF 176 XO0R A 0138 F7 245 RST 30H
GOCE BO 177 OR B 013C] 246 RET M
00CF 81 . 178 OR C 0130 F9 2417 LD SPyHL
00DL0 82 179 OR D 013E FAB405 248 JP M,NN
0oD1 B3 180 OR E 0l41 FB 249 El
uoD2 B4 18l OR H 0142 FCB8405 250 CALL MyNN
0003 8BS 182 OR L 0145 FE20 251 CP N
0004 B6 183 OR (HL) 0147 FF 252 RST 38H
0005 87 184 OR A 0l48 (o101} 253 RLC B
00D6 B8 185 cp B 014A ceol 254 RLC C
0007 89 186 cp C 0l4C CBo2 255 RLC D
0008 BA 187 cP D 014E CBO3 256 RLC E
0009 88 188 CP E 0150 CB04 257 RLC H
00DA BC 189 CP H 0152 CBOS 258 RLC L
oobB BD 190 cP L 0l54 [o3:1+1) 259 RLC (HL)
00bC BE 191 CP (HL) 0156 cso7 260 RLC A
0Qo0 BF 192 cp A 0158 cBso8 261 RRC 8
00DE Co 193 RET NZ 015A CBO9 262 RRC C
00DF cl 194 POP BC 015C C80A 263 RRC D
00EO C28405 195 JP NZyNN 015E csos 264 RRC E
00E3 C38405 196 JP NN 0160 cBocC 265 RRC H
00E6 C48405 197 CALL NZ4NN 0162 CBOD 266 RRC L
00E9 Cc5 198 PUSH BC 0l64 CBOE 267 RRC (HL)
VOEA €620 199 ADD AsN 0166 CBOF 268 RRC A
00EC [oF A 200 RST O oles cBlo 269 RL 8
00ED cs 201 RET Z 0l6A csll 270 RL C
00EE c9 202 RET 016C cBl2 271 RL D
00EF CA840U5 203 JP 24NN Ol6E cel13 272 RL E
00F2 CC8405 204 CALL Z,NN 0170 CBla 273 RL H
00F5 CD8405 205 CALL NN 0172 cBls 274 RL L
00F8 CE20 206 ADC A4N 0174 csleé 275 RL (HL)
00FA CF 207 RST 8 0176 cB17 276 RL A

291

2-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:20:50 +OPCODE LISTING

Loc 0BJ CODE STMT SOURCE STATEMENT Loc 0BJ CODE STMT SOURCE STATEMENT
0178 cBl8 2717 RR B 0202 cB65S 346 BIT 4,L
Ol7A cBl9 278 RR C 0204 cBé6 347 BIT 4,(HL)
017C CB1A 219 RR D 0206 cB67 348 BIT 4,A
017€ cBlB 280 KR E 0208 CB68 349 BIT 5,8
0180 cBlC 281 RR H 020A CB69 350 8IT 5,C
o182 cslD 282 RR L v20C CB6A 351 BIT 5,0
0184 CBILE 283 RR (HL) 020E CB68B 352 BIT SyE
ol86 CBLF 284 RR A 0210 cBsC 353 BIT 5.H
o188 €820 285 sLA 8 0212 cB6D 354 BIT SeL
0l18A ce21 286 SLA C 0214 CB6E 355 BEIT Sy(HL)
ol18C cB22 287 SLA O 0216 CB6F 356 BIT 5,4
018E cB23 288 SLA E 0218 cB70 357 BIT 6,8
0190 CB24 289 SLA H 021A cB71 358 BIT 6,C
o192 c8e25 29Q SLA L 021¢C cB72 359 BIT 6,40
0194 cB2é6 291 SLA (HL) 021E ca73 360 BIT 64E
0196 cB27 292 SLA A 0220 CB74 361 BIT 64H
0198 cB2s 293 SRA B 0222 c875 362 BIT 6,L
019A cB29 294 SRA C 0224 CB76 363 BIT 64(HL)
019C cB2A 295 SRA D 0226 cBar7 364 BIT 6,A
Ol9E cs2e 296 SRA E 0228 cB78 365 BIT 7,8
0lA0 cs2C 297 SRA H 022A c879 366 BIT 7,C
0142 cB20 298 SRA L 022C CB7A 367 BIT 7,0
0lA4 CHB2E 299 SRA (HL) 022€ ca7B 368 BIT 7,E
0las CB2F 300 SRA A 0230 cB7C 369 BIT 7,H
0las ce3s 301 SRL B 0232 CB70D 370 BIT 7,L
0lAA CB39 302 SRL C 0234 CB7E 371 BIT 7,(HL)
0lAC CB83A 303 SRL D 0236 CB7F 372 BIT 7,A
OlAE CB3B 304 SRL E 0238 ceso 373 RES 048
ulso CcB3C 305 SRL H 023A cesl 374 RES 04C
olB82 CB83D 306 SRL L 023C cB82 375 RES 040
01B4 CB3E 307 SRL (HL) 023E c883 376 RES 04E
ol8é CB3F 308 SRL A 0240 cB84 377 RES 0yH
olLBs CB840 309 BIT 0.8 0242 cB8s 3718 RES OsL
01BA CcB4l 310 BIT 04C 0244 cB86 . 379 RES 0y (HL)
o18C cB42 311 BIT 04D 0246 cB87 380 RES 0,A
01BE CB43 312 BIT O,E 0248 cess 381 RES 148
01Co CB44 313 BIT OsH 024A cBa9 382 RES 1,C
0l1C2 CBé45 314 8IT 0sL 024C CB8A 383 RES 140
01C4 CB46 315 BIT 0s(HL) 024E cBss 384 RES 14E
uicCé CB47 316 BIT 04A 0250 (q:1:19 385 RES 1l+H
olcs CB48 317 BIT 1,8 0252 CByD 386 RES 1L
0lCA CB49 318 BIT 1,C 0254 CB8E 387 RES 1,(HL)
olcc CB4A 319 8IT 1,0 0256 CB8F 388 RES 1yA
0lCE CB4B 320 BIT 1,E 0258 c890 389 RES 248
0100 CB4C 321 BIT 1,H 025A cB89l 390 RES 2,C
0102 C84L 322 BIT LyL 025C cB92 391 RES 24D
0104 CB4E 323 BIT 1.(HL) 025E cB893 392 RES 2,E
0106 CB4F 324 BIT 1,A 0260 CB94 393 RES 24H
01D8 cBS0 329 BIT 248 0262 cB895 394 RES 2,L
01DA cB51 326 BIT 2.C 0264 CB96 395 RES 24(HL)
olo0C cB52 327 8IT 2.0 0266 c897 396 RES 2yA
010E cB53 328 BIT 24E 0268 cB98 397 RES 3,48
OlEO CB54 329 BIT 24H 026A ce99 394 RES 3,C
OlE2 €855 330 BIT 2,t 026C cB9A 399 RES 3,D
OlE4 €856 331 BIT 24(HL) 026E c898 400 RES 3,E
OlE6 cB57 332 BIT 2,A 0270 cB89cC 401 RES 34H
OlE8 cas8 333 8IT 3,8 0272 CB9D 402 RES 3,L
OlEA c859 334 BIT 3.C 0274 CB9E 403 RES 3,(HL)
OlEC CBSA 335 BIT 3,0 0276 CB9F 404 RES 3,A
OlEE cBSB 336 BIT 34€ 0278 CBAO 405 RES 4,8
ULFO cescC 337 BIT 3,H 027A CBAL 406 RES 4,C
O01F2 cB8sD 338 BIT 3,L 027¢C CBA2 407 RES 4,0
OLF4 CBSE 339 BIT 3,(HL) 027€ CBA3 408 RES 4+E
01Fé6 CB5F 340 BIT 3,A 0280 CBA4 409 RES 44H
OlF8 €860 341 BIT 4,8 ' 0282 C8A5 410 RES 4,L :
OLlFA CBol 342 BIT 4,C 0284 CBA6 411 RES 4y (HL)
0LlFC CB62 343 BIT 4,40 0286 CBA7 412 RES 444
OlFE cB863 344 BIT 4.E 0288 CcBAS 413 RES 5.8
0200 CBo4 345 BIT 44H 028A CBA9 4lae RES 5,C

292

7-80 CROSS ASSEMBLER VERSION
07/09/76 10:20:50 «0PCUDE LISTING
LoC 0BJ CODE STMT SOURCE STATEMENT

028C CBAA 415 RES 5,0
028E cBag 4l6 RES 5t
0290 CBAC 417 RES S,H
0292 CBAD 418 RES 5,L
0294 CBAE 419 RES 54 (HL}
0296 CBAF 420 RES 5,A
0298 caBo 421 RES 6,8
029A 8Bl 422 RES 6,C
029C cBB2 423 RES 64D
029E CuB3 424 RES 6,E
02A0 cBB4 425 RES 64H
02A2 c88s 426 RES 6yL
02A4 [o1-1:7) 427 RES 64{HL)
02A6 ceB7 428 RES 64A
0248 CvBs 429 RES 7.8
02AA cB8B9 430 RES 7,C
V2AC CBBA 431 RES 7.0

02 AE CBBB 432 RES T74E€ -
0280 cBBC 433 RES 74H
0282 cesD 434 RES 7L
0284 CBBE 435 RES 7,(HL)
0286 CBBF 436 RES TsA
0288 c8Co 437 SET 0.8
028A cBCl 438 SET 0,4C
028C cBC2 439 SET 0,0
02BE c8C3 440 SET 0,E
02Co0 cBCq 44l SET OyH
02C2 [o1:108.3 442 SET OsL
02C4 caCeé 443 SET 0, (HL)
02Ce6 cBC7 444 SET 0,A
02C8 (o1 108°] 445 SET 1.8
02Ca cBC9 446 SET 1,C
02CC CBCA 44T SET 1,0
02CE cscs 448 SET 1,E
0200 cacc 449 SET 14H
0202 cBCD 450 SET 1.L
02D4 (BCE 451 SET 1,(HL)
0206 CBCF 452 SET 1+A
0208 C800 453 SET 2,8
020A csul 454 SET 2,.C
020C cBD2 455 SET 24D
020& CBO3 456 SET 24E
02E0 CBD4 457 SET 24H
02E2 CBDS 458 SET 2,L
02E4 CBL6 459 SET 2, (HL)
02€6 cs07 460 SET 2,A
02€8 [oF: 101] 461 SET 3 B
02tA c8D9 462 SET 3,C
02EC caDA 463 SET 3,0
Q2EE ceos 464 SET 3,E
02F0 c8ocC 465 SET 3,H
02F2 CBDD 466 SET 3,L
02F4 CBDE 467 SET 3, (HL)
02F6 CBDF 468 SET 3,A
02F8 CBEO 469 SET 4,8
02FA CBEL 470 SET 4,C
02FC CBE2 471 SET 4,0
02FE CBE3 472 SET 4,E
0300 CBE4 413 SET 4.4H
0302 CBES 474 SET 4,L
0304 CBE6 ©75 SET 4,(HL)
0306 CBE7 476 SET 44A
0308 CBES 4717 SET 5.8
030A CBEY 478 SET 5.C
03ocC CBEA 479 SET 540
030E CBEB 480 SET 5,E
u3lo0 CBEC 481 SET 5.H
0312 CBED 482 SET S5,L
0314 CBEE 483 SET 5,.(HL)

l1.06

293

OF 06/18/176

Loc

0316
0318
031A
031C
031E
0320
0322
0324
0326
0328
032A
032C
032E
0330
0332
0334
0336
0338
033A
033C
0340
0344
0346
0348
034C
034E
0351
0354
0358
035A
0350
0360
0363
0366
0369
036C
036F
0372
0375
0378
0378
037€
o038l
0384
0387
038A
038D
0390
0393
0396
0399
039C
039€E
03A0
03A2
03A4
0346
03AA
03AE
0382
0386
038A
03BE
03C2
03Cé6
03CA
03CE
0302
03D6

08J CODE

CBEF
CBFOQ
CBFl
CBF2
CBF3
CBF4
CBF5
CBFé6
CBF17
CBF8
CBF9
CBFA
CBFB
CBFC
CB8FD
CBFE
CBFF
vD09
DD19
DD216405
DD228405
uD23
bD29
DD2A 8405
pD28
003405
DD3505
DD360520
0039
DD4605
DD4EO0S
DD5605
DDSEOS
DD660S
DD6EOS
UD7005
DD7105
DD7205
0D7305
0D7405
DD7505
DD7705
DD7E05
0D8605
DDBEOS
DD9605
DD9EOS
DDA605
DDAEOS
0DB605
DDBEOS
DDE1
DDE3
DDES
DDE9
DDF9
DDCBO506
DDCBOSOE
DDCBOS516
DDCBOS51E
DDCBOS526
DDCBOS2E
DDCBO5S3E
DCCBOS46
DDCBOS4E
0DCBOSS6
DDCBOSSE
DDCBO566
DLCBOS6E

STMT SOURCE STATEMENT

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

SET 5,A

SET 648

SET 6,C

SET 6,0

SET 64E

SET 64H

SET 6,L

SET 6,(HL)

SET 6,4

SET 7.8

SET 7.C

SET 7,0

SET T,E

SET 74H

SET 7.L

SET 7,(HL)

SET 7,A

ADD 1X,8C

ADD IX,DE

LD IXyNN

LD (NN), IX

INC IX

ADD IX,IX

LD IX4(NN)

DEC IX

INC (IX+IND)
DEC (IX+IND)
LD (IX+IND),N
ADD IX,SP

LD By(IX+IND)
LD C,(IX+IND)
LD O+¢IX+IND)
LD Eo{IX+IND)
LD HeUIX+IND)
LD Ly(IX+IND)
LD (IX+IND),B
LD (IX+INDJ,C
LD (IX+IND),D
LD (IX+IND),E
LD (IX+IND)4H
LD (IX+IND),L
LD (IX+IND),A
LD A, (IX+IND)
ADD A, {IX+IND)
ADC Ay (IX+IND)
SUB (IX+IND)
SBC A, (IX+IND)
AND (IX+IND)
XOR (IX+IND)
OR (IX+IND)

CP (IX+IND)
POP IX

EX (SP),IX
PUSH IX

JP LIX)

LD SPyIX

RLC (IX+IND)
RRC (IX+IND)
RL (IX+IND)

RR (IX+IND)
SLA {IX+IND)
SRA (IX+IND)
SRL (IX+IND)
BIT C,{IX+IND}
BIT 1,(IX+IND)
BIT 2,(IX+IND)
BIT 3,{IX+IND)
BIT 4, (IX+IND)
BIT 5,(IX+IND)

1-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:20:50 <OPCODE LISTING

Loc 0BJ CODE STMT SOURCE STATEMENT Lac 08J CODE STMT SOURCE STATEMENT
03DA DDCBOS576 553 BIT 6,(1X+IND) 0494 EDB9 622 CPDR

03DE DOCBOSTE 554 BIT 7,(IX+IND) 0496 EDBA 623 INOR

03E2 0DCBOS86 555 RES 04(IX+IND) 0498 EDBB 624 OTOR

03E6 DDCBOSBE 556 RES lelIX+IND) 049A FDO9 625 ADD 1Y,BC

03EA 0DCBO596 557 RES 2,(IX+IND) 049C FD19 626 ADD 1Y4DE

03EE DDCBOS9E 558 RES 3, (IX+IND) 049€E FD218405 627 LD [Y,NN

03F2 DDCBOSAG 559 RES 4, {IX+IND)} 04A2 FD228405 628 LD (NN), 1Y
03F6 DDCBOSAE 560 RES 5, (IX+IND) 04A6 FD23 629 INC 1Y

03FA DDCBOSB6 561 RES 64 (IX+IND) 04A8 FD29 630 ADD IY,1Y

03FE DDCBOS5SBE 562 RES T7.(IX+IND) 04AA FD2A 8405 631 LD IY,(NN)
0402 DDCBO5CH 563 SET 0y (IX+IND) 04AE FD28 632 DEC 1Y

0406 DDCBOSCE 564 SET Lly(IX+IND) 0480 FD3405 633 INC (IY+IND)
040A DOCBOSD6 565 SET 2,(IX+IND) 0483 FD3505 634 DEC (1Y+IND)
040E ODCBOSDE 566 SET 3,(IX+IND) 0486 FD360520 635 LD (IY+IND) 4N
0412 DDCBOSES 567 SET 4.(IX+IND) 04BA FD39 636 ADD IY,SP

0416 DDCBOSEE 568 SET 5,(IX+IND) 048C FD4605 637 LD Bo(IY+IND)
041A DDCBOSF6 569 SET 6, (IX+IND) 04BF FD4EOS 638 LD Cy(IY#IND)
041E DDCBOSFE 570 SET 7+(IX+IND) 04C2 FD5605 639 LD D,(IY+IND)
0422 ED4O 571 IN By (C) 04CS FD5E05 640 LD Eo{IY+IND)
0424 ED41 572 ouT (C),y8B 04€C8 FD6605 641 LD He(1Y+IND)
0426 ED42 573 SBC HL,BC 04CB FD6EQS 642 LD Ly (1Y+IND)
0428 ED438405 574 LD (NN),BC 04CE FD7005 643 LD (IY+IND),B
042C ED44 575 NEG 0401 FD7105 644 LD (IY+IND),C
042E ED4S 576 RETN 0404 FDT205 645 LD (IY+IND),D
0430 ED4S 517 IM O 04D7 FD7305 646 LD (IY+IND),E
0432 ED&7 578 LD I.A 04DA FD7405 647 LD (IY+IND)sH
0434 ED48 579 IN C,(C) 040D FDT505 648 LD (IY+IND),L
0436 ED49 580 ouT (C),C 04E0Q FD7705 649 LD (IY+IND),A
0438 ED4A 581 ADC HL,BC 04E3 FD7E05 650 LD A, (IY+IND)
043A ED4B84US 582 LD BCy(NN) 04E6 FD8605S 651 ADD A, (IY+IND)
043E E04D 583 RETI 04t9 FDBEOS 652 ADC A, (IY+IND)
0440 ED50 584 IN Dy(C) 04EC FD9605 653 SUB (LIY+IND)
0442 EDS1 585 OuT (C),D O4EF FO9EOS 654 SBC A,(1Y+IND)
0444 ED52 586 SBC HL,DE 04F2 FDA60S 655 AND (IY+IND)}
0446 ED538405 587 LD (NN),DE 04F5 FDAEOS 656 XOR (IY+IND)
04%4A ED56 588 IM 1 04F8 FDB60S 657 OR (I1Y+IND)
044C EDS57 589 LD A,I 04FB FDBEOS 658 CP (IY+IND)
044E EDS58 590 IN Eo(C) 04FE FDE1 659 POP 1Y

0450 EDS9 591 QUT (C)HE 0500 FDE3 660 EX (SP).IY
0452 ED5A 592 ADC HL,0E 0502 FDES 661 PUSH 1Y
0454 ED5B8405 593 LD DE.(NN) 0504 FDES 662 JP (1Y)

0458 EOSE 594 IM 2 0506 FOF9 663 LD SP,IY

045A ED6O 595 IN H,(C) 0508 FDCBO506 664 RLC (IY+IND)
045C ED61 596 OUT (C),H 050C FDCBOSOE 665 RRC (IY+IND)
045E ED62 597 SBC HL,HL 0510 FDCBOS516 666 RL (IY+IND)
0460 ED67 598 RRD 0514 FDCBOSLE 667 RR (IY+IND)
0462 ED68B 599 IN LolC) 0518 FOCBOS26 668 SLA (IY+IND)
0464 ED69 600 oUT (C),L 051C FOCBOS52E 669 SRA (IY+IND)
0466 ED6A 601 ADC HL,HL 0520 FOCBOS3E 670 SRL (IY+IND)
0468 ED6F 602 RLD 0524 FDCBO546 671 BIT O, (IY+IND)
046A EDT2 603 SBC HL,SP 0528 FDCBOS4E 672 BIT Llo(IY+IND)
046C ED738405 604 LD (NN),SP 052C FDCBO556 673 BIT 2,(1Y+IND)
0470 EDT8 605 IN A LC) 0530 FDCBOSSE 6% BIT 3,({IY+IND)
0472 EDT9 606 ouUT (C),A 0534 FDCBO566 675 BIT 4,(1Y+IND)
0474 ED7A 607 ADC HL,SP 0538 FDCBOSG6E 676 BIT S,(IY+IND)
0476 ED7B8405 608 LD SPy(NN) 053C FDCBO576 677 BIT .6,(1Y+IND)
047A EDAO 609 LDI 0540 FOCBOS7E 678 BIT 7,(1Y+IND)
047C EDAl 610 CcPI 0544 FDCBO586 679 RES 0,{1Y+IND)
047E EDA2 611 INI 0548 FDCBOSSE 680 RES 14(IY+IND)
0480 EDA3 612 ouTt 054C FDCBO596 681 RES 24(1Y+IND)
0482 EDASB 613 LDO 0550 FDCBOS59E 682 RES 3,(1Y+IND)
0484 EDA9 6l4 ceo 0554 FDCBOSA6 683 RES 4,(1Y+IND)
0486 EDAA 615 IND 0558 FDCBOSAE 684 RES 5,(1IY+IND)
0488 EDAB 616 ouTto 055C FDCBOSB6 685 RES 6,(1Y+IND)
04bA EDBO 617 LDIR 0560 FDCBOSBE 686 RES 7,(LY+IND)
048C EDBI 618 CPIR 0564 FDCBOSCO 687 SET 0,{IY+IND)
048E EDB2 619 INIR 0568 FDCBOSCE 688 SET 1,(1Y+IND)}
0490 EDB3 620 OTIR 056C FOCBO5D6 689 SET 2,(1Y+IND)
0492 EDBS 621 LDODR 0570 FDCBOSDE 690 SET 3,({1Y+IND)

294

1-80 CROSS ASSEMBLER VERSION

«OPCODE LISTING

STMT SOURCE STATEMENT

07/09/76 10:20:50
Loc 08J CODE
0574 FDCBOSEG 691
0578 FDCBOSEE 692
057C FDCBOSF6 693
0580 FDCBOSFE 694
0584 695
696
697
698
699
700

NN
IND
M

N
oIS

SET 4,(1Y+IND)
SET Sy (IY+IND)
SET 6,({1Y+IND)
SET T,{IY+IND)
DEFS 2

EQU S

EQU 10H

EQU 20H

EQU 30H

END

1.06

295

OF 06/18/76

MAIN REG SET ALTERNATE REG SET
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A F
8 c B c
] E o E
H L H L
INTERRUPT MEMORY
VECTOR REFRESH
) R
INDEX REGISTER
M % SPECIAL
PURPOSE
INDEX REGISTER |
¢ M REGISTERS
STACK POINTER SP
PROGRAM COUNTER PC

GENERAL
PURPOSE
REGISTERS

Z80-CPU REGISTER CONFIGURATION

ASCHI CHARACTER SET (7-BIT CODE)

HEXADECIMAL COLUMNS MSD o ” 2 3 s S S 3
6 5 4 3 2 1
HEX = DEC | HEX = DEC |HEX = DEC |HEX = DEC|HEX= DEC|HEX= DEC Lso 000] 001} 0107 011]100]101} 110} 111
[) o | o 0 o oo o] ofo) 0 0000 | NUL | DLE | sP o e [p
11048576 1 65536 1 80% |1 256 1 6| 1 1 0001} son | oca ' 1 A a a q
2 2,097,152 2 131,072 2 8192 |2 s12 2 32)2 2 2 o010 | stx | pec2 " 2 B R b '
s Cisara | 4zezvae | o vesse |avee | 4 eas s JocomEIOc | k2 f s e]
5 5242880 5 327,680 5 20480 |5 1,280 5 8|5 5 ; g:g? :ch; 221 ; ; : L f :
6 6,291,456 6 393216 6 24576 | 6 1536 6 9|6 6
7 17,340,032 7 458,752 7 28,672 7 1,792 7 Mm2)7 7 6 0110 ACK SYN & 6 F \" 1 v
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 18 8 7 o1 BEL ETB * 7 G w 9 w
9 9437184 9 589,824 9 36864 | 9 2304 9 1449 9 8 1000 | BS CAN { 8 H X h x
A 10,485,760 A 655,360 A 40960 | A 2560 A 160[A 10 9 1001 | HT EM) 9 | Y i v
B 11,534,336 B 720,896 B 45056 | B 2816 B 176 |8 n A 1010 | LF SuB . . 3 z i M
€ 12582912 C 786,432 C 49,152 € 3072 [192 |C 12
D 13,631,488 D 851,968 D 53248 | D 3328 o 2|0 13 B 1011 | VT EsC : K l k
€ 14,680,064 £ 917,504 E 57,344 E 3584 E 224 |E 14 c 1100 FF FS ‘ < L A\ 1 |
F 15,728,640 F 983,040 F 61,440 F 3840 F 240 | F 15 D 101 CR GS - = M] m
0123 4567 0123 4567 | 0123 | 4567 E 1110]s0 | RS * s N ! n =~
BYTE BYTE BYTE F 1mmm St Vs ! ? n -] DEL
POWERS OF 2 POWERS OF 16
2n n 16N n
256 8 20 =160 1 4
512 9 2t =16! 16 1
1024 10 28 =162 256 2
2048 1n 212 = 163 4096 3
4096 12 26 = 164 65536 4
8192 13 2P = 16° 1048576 5
16 384 14 224 = 168 16777 216 6
32768 15 228 = 167 268 435 456 7
65536 16 232 = 168 4 294 967 296 8
131072 17 2% = 16° 68719476736 9
262 144 18 240 = 1610 1099511627 776 10
524 288 19 244 = 161! 17592 186 044 416 1"
1048576 20 248 = 1612 281474 976 710 656 12
2097 152 2 252 = 1613 4503599 627 370 496 13
4194 304 22 2% = 1674 72057 594 037 927 936 U]
8 388 608 23 260 = 165 1152921 504 606 846 976 15
16777216 24

296

Zilog Sales Offices and Technical Centers

West

Sales & Technical Center
Zilog, Incorporated

1315 Dell Avenue
Campbell, CA 95008
Phone: (408) 370-8120
TWX: 910-338-7621

Sales & Technical Center
Zilog, Incorporated
18023 Sky Park Circle
Suite J

Irvine, CA 92714

Phone: (714) 549-2891
TWX: 910-595-2803

Sales & Technical Center
Zilog, Incorporated
15643 Sherman Way
Suite 430
Van Nuys, CA 91406
Phone: (213) 989-7485

- TWX: 910-495-1765

Sales & Technical Center
Zilog, Incorporated

1750 112th Ave. N.E.
Suite D161

Bellevue, WA 98004
Phone: (206) 454-5597

Zilog, Inc. 1315 Dell Ave.

Midwest

Sales & Technical Center
Zilog, Incorporated

951 North Plum Grove Road

Suite F

Schaumburg, IL 60195
Phone: (312) 885-8080
TWX: 910-291-1064

Sales & Technical Center
Zilog, Incorporated
28349 Chagrin Blvd.
Suite 109

Woodmere, OH 44122
Phone: (216) 831-7040
FAX: 216-831-2957

South

Sales & Technical Center
Zilog, Incorporated

4851 Keller Springs Road,
Suite 211

Dallas, TX 75248

Phone: (214) 931-9090
TWX: 910-860-5850

Zilog, Incorporated
7113 Burnet Rd.

Suite 207

Austin, TX 78757
Phone: (512) 453-3216

Campbell, California 95008

East

Sales & Technical Center
Zilog, Incorporated
Corporate Place

99 South Bedford St.
Burlington, MA 01803
Phone: (617) 273-4222
TWX: 710-332-1726

Sales & Technical Center
Zilog, Incorporated

240 Cedar Knolls Rd.
Cedar Knolls, NJ 07927
Phone: (201) 540-1671

Technical Center
Zilog, Incorporated
3300 Buckeye Rd.
Suite 401

Atlanta, GA 30341
Phone: (404) 451-8425

Sales & Technical Center
Zilog, Incorporated

1442 U.S. Hwy 19 South
Suite 135

Clearwater, FL 33516
Phone: (813) 535-5571

Zilog, Incorporated
613-B Pitt St.
Cornwall, Ontario
Canada K6J 3R8
Phone: (613) 938-1121

United Kingdom

Zilog (U.K.) Limited

Zilog House

43-53 Moorbridge Road
Maidenhead

Berkshire, SL6 8PL England
Phone: 0628-39200

Telex: 848609

France

Zilog, Incorporated
Cedex 31

92098 Paris La Defense
France

Phone: (1) 334-60-09
TWX: 611445F

West Germany

Zilog GmbH
Eschenstrasse 8
D-8028 TAUFKIRCHEN
Munich, West Germany
Phone: 89-612-6046
Telex: 529110 Zilog d.

Japan

Zilog, Japan K.K.

Konparu Bldg. 5F

2-8 Akasaka 4-Chome
Minato-Ku, Tokyo 107
Japan

Phone: (81) (03) 587-0528
Telex: 2422024 A/B: Zilog J

Telephone (408)370-8120 TWX 910-338-7621

03-0002-C1

Printed in USA

